
A strongly polynomial algorithm for linear programs with

at most two non-zero entries per row or column

Daniel Dadush
1
, Zhuan Khye Koh

1
, Bento Natura

2
, Neil Olver

3
, and László A. Végh

3

1
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

2
University of California, Berkeley, USA and Georgia Tech, USA

3
London School of Economics and Political Science, UK

November 13, 2023

Abstract

We give a strongly polynomial algorithm for minimum cost generalized flow, and hence for opti-

mizing any linear program with at most two non-zero entries per row, or at most two non-zero entries

per column. Primal and dual feasibility were shown by Megiddo (SICOMP ’83) and Végh (MOR ’17)

respectively. Our result can be viewed as progress towards understanding whether all linear programs

can be solved in strongly polynomial time, also referred to as Smale’s 9th problem.

Our approach is based on the recent primal-dual interior point method (IPM) due to Allamigeon,

Dadush, Loho, Natura and Végh (FOCS ’22). The number of iterations needed by the IPM is bounded,

up to a polynomial factor in the number of inequalities, by the straight line complexity of the central

path. Roughly speaking, this is the minimum number of pieces of any piecewise linear curve that

multiplicatively approximates the central path.

As our main contribution, we show that the straight line complexity of any minimum cost generalized

flow instance is polynomial in the number of arcs and vertices. By applying a reduction of Hochbaum

(ORL ’04), the same bound applies to any linear program with at most two non-zeros per column or

per row.

To be able to run the IPM, one requires a suitable initial point. For this purpose, we develop a novel

multistage approach, where each stage can be solved in strongly polynomial time given the result of

the previous stage. Beyond this, substantial work is needed to ensure that the bit complexity of each

iterate remains bounded during the execution of the algorithm. For this purpose, we show that one

can maintain a representation of the iterates as a low complexity convex combination of vertices. Our

approach is black-box and can be applied to any log-barrier path following method.

Contents
1 Introduction 1

1.1 Background and previous work . 1

1.2 The Subspace Layered Least Squares Interior Point Method and straight line complexity . 3

1.3 Computational models . 4

1.4 Our contributions . 5

1.4.1 Straight-line complexity bound for generalized flows 5

1.4.2 Initialization . 7

1.4.3 Implementation in the Turing model . 8

2 Preliminaries 9
2.1 Straight line complexity and circuits . 10

2.2 Reducing 2VPI LPs to generalized flows . 11

3 Straight line complexity in terms of the circuit imbalance measure 11

4 Minimum-cost generalized flow 13
4.1 Reduction to the generalized circulation problem . 14

4.2 Simple functions . 14

4.3 Some flow-related definitions . 15

4.4 SLC bounds via domination . 17

4.5 Path domination . 17

4.6 Weak domination bounds for non-conservative objects . 20

4.7 Dominating simple conservative objects . 22

4.8 Strong domination bounds for non-conservative objects . 26

4.8.1 Dominating objects of path type . 27

4.8.2 Dominating objects of mixed type . 27

4.8.3 Dominating objects of cycle type . 28

5 Initialization for generalized flows 29

6 Background on interior point methods 31
6.1 A stronger version of the SLLS IPM . 33

6.2 Straight-line complexity of a subspace . 34

7 An initialization framework for general Linear Programs 34
7.1 High level description . 35

7.2 The algorithm and analysis . 36

7.2.1 Stage I, Strict conic feasibility . 36

7.2.2 Stage II, From strict conic feasibility to analytic centers 38

7.2.3 Stage III, From analytic centers to optimization . 39

7.3 SLC preserving subspace operations . 41

8 A strongly polynomial rounding procedure 42

A Omitted proofs 51

B An Implementation of the SLLS IPM with Strongly Polynomial Iterations 53
B.1 Predictor-Corrector Methods . 53

B.2 Subspace Layered Least Squares Steps . 54

B.3 The Subspace LLS IPM . 57

B.4 Correctness . 57

B.5 Iteration Complexity . 60

B.6 Computing Steps in Strongly Polynomial Time . 61

B.7 A strongly polynomial singular value approximation . 63

1 Introduction
We consider linear programming (LP) in the following primal-dual form:

min ⟨𝑐, 𝑥⟩
A𝑥 = 𝑏

𝑥 ≥ 0𝑛 ,

max ⟨𝑏, 𝑦⟩
A⊤𝑦 + 𝑠 = 𝑐

𝑠 ≥ 0𝑛 ,
(LP)

where A ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 , and rk(A) = 𝑚. Our focus is on LP algorithms that find exact primal

and dual optimal solutions, or conclude infeasibility or unboundedness. We say that the dual progam is

a two variable per inequality (2VPI) linear program if every row of A⊤ includes at most two nonzero entries.

In such a case, we refer to the pair of LPs as a 2VPI primal-dual pair.

The first polynomial-time algorithms were the ellipsoid method by Khachiyan in 1979 [Kha79] and

interior point methods, introduced by Karmarkar in 1984 [Kar84]. However, it remains an outstanding

open question to find a strongly polynomial algorithm for linear programming. The question was listed by

the Fields medalist Smale as one of the most prominent mathematical challenges for the 21st century

[Sma98]. In such an algorithm, only poly(𝑛) basic arithmetic operations and comparisons are allowed,

and the algorithm uses polynomial space.

The notion of strongly polynomial algorithms was first formally introduced by Megiddo [Meg83],

under the term ‘genuinely polynomial’. The same paper gave an algorithm for two variable per inequality

feasibility systems, that is, for the dual feasibility problem in (LP) when all rows of A⊤ have at most two

nonzero entries. The corresponding primal feasibility problem can be reduced to the maximum generalized

flow problem. For this, the first strongly polynomial algorithm was given by Végh [Vég17], followed by

a faster and simpler algorithm by Olver and Végh [OV20]. The minimum-cost generalized flow problem is

the dual of a 2VPI LP, where the two nonzero entries in each column of A are a −1 entry and a positive

entry. As discussed below, this naturally corresponds to a network flow model with multipliers on the

arcs. As shown in [Hoc04], all 2VPI LPs are reducible to a dual of a minimum-cost generalized flow

problem. The existence of a strongly polynomial algorithm for this problem has been a longstanding

open question, mentioned e.g. in [AC91, CM94a, CM94b, GPT91, HN94, NPT92, Way02, Vég17, OV20].

Our main result resolves this question.

Theorem 1.1. There is a strongly polynomial algorithm for the minimum-cost generalized flow problem, and for

two variable per inequality primal-dual pairs.

1.1 Background and previous work
Strongly polynomial algorithms for well-conditioned LPs. In a seminal, Fulkerson-prize winning

paper [Tar85], Tardos obtained the first strongly polynomial algorithm for minimum-cost circulations.

A particularly important technique in this paper was variable fixing: by solving an approximate version

of the LP with rounded costs, one can deduce that a certain variable is at the lower or upper capacity

bound in an optimal solution.

Towards general LP, Tardos [Tar86] extended this approach to obtain a strongly polynomial algorithm

for ‘combinatorial LPs’. More precisely, for (LP) with an integer constraint matrix A ∈ Z𝑚×𝑛 , this algo-

rithm runs in poly(𝑛, logΔA) iterations, where ΔA is the maximum subdeterminant of A. The running

time is independent of 𝑏 and 𝑐. In particular, this bound is strongly polynomial if all entries of A are at

most poly(𝑛), such as for multicommodity flows and other combinatorial problems. Using an interior

point approach discussed below, Vavasis and Ye [VY96] obtained an algorithm with poly(𝑛, log �̄�A) arith-

metic operations, where �̄�A is the Dikin–Stewart–Todd condition number of the matrix A. For integer

matrices, �̄�A = 𝑂(𝑛ΔA), thus, this strengthens Tardos’s result. A similar dependence, using a black-box

approach extending Tardos’s work [Tar86] was obtained by Dadush, Natura, and Végh [DNV20]. Fur-

ther, Dadush, Huiberts, Natura, and Végh [DHNV23] strengthened this dependence to poly(𝑛, log �̄�∗A),
where �̄�∗A is the optimized value of �̄�A under column rescalings.

Prior results on 2VPI and generalized flows. 2VPI LPs are a natural class of LP that does not fall

into the above ‘well-conditioned’ classes: even �̄�∗A may be unbounded for the constraint matrix. At the

same time, they form an interesting intermediate class, as it is easy to see that solving an arbitrary LP is

reducible to solving one with at most three nonzero entries per row in A⊤.

For finding a feasible solution to a 2VPI system, Megiddo’s [Meg83] approach relied on parametric

search. A faster parametric search algorithm was given by Cohen and Megiddo [CM94b]. Hochbaum and

1

Naor [HN94] used an efficient Fourier–Motzkin elimination to obtain what is still the fastest deterministic

approach. Dadush, Koh, Natura, and Végh [DKNV22] used a variant of the discrete Newton method.

Recently, Karczmarz [Kar22] gave an improved randomized strongly polynomial algorithm, also using

parametric search.

Consider now monotone 2VPI (M2VPI) systems, where each inequality has at most one positive and

at most one negative entry. If such an LP is bounded, then there exists unique pointwise minimal and

a unique pointwise maximal solution. Already the algorithm in [Meg83] can be used to find these

solutions. As noted by Adler and Cosares [AC91], an M2VPI linear program is strongly polynomially

solvable if 𝑏 ≥ 0 or 𝑏 ≤ 0. Norton, Plotkin, and Tardos [NPT92] gave a strongly polynomial algorithm

for a constant number of nonzero demands.

The generalized flow problem is (after normalization) the dual of the M2VPI problem. In this

problem, we are given a directed graph 𝐺 = (𝑉, 𝐸) with node demands 𝑏𝑖 , 𝑖 ∈ 𝑉 and arc costs 𝑐𝑒 and

gain factors 𝛾𝑒 > 0 for 𝑒 ∈ 𝐸. While traversing the arc 𝑒 = (𝑖 , 𝑗), the flow value 𝑥𝑒 gets multiplied to 𝛾𝑒𝑥𝑒 .
In the minimum-cost generalized flow problem, we need to exactly satisfy all node demands at a minimum

cost. The maximum generalized flow problem is the special case when the objective is to maximize the net

flow reaching a special sink node 𝑡.
This is a fundamental network optimization model that traces back to Kantorovich’s 1939 paper

[Kan39] introducing linear programming. Generalized flow networks can be used to model transporta-

tion of a commodity through a network with leakage, or conversions between various equities in financial

networks, as well as generalized assignment problems. We refer the reader to [AMO93, Chapter 15] for

further applications.

Goldberg, Plotkin, and Tardos [GPT91] gave the first weakly polynomial combinatorial algorithm for

the maximum generalized flow problem. This was followed by a significant number of further such

algorithms, such as [CM94a, GJO97, Rad04, RW09, TW98, Way02], see further references in [OV20].

In particular, [CM94a] gave a strongly polynomial approximation scheme, i.e., a strongly polynomial

algorithm that achieves a fixed fraction of the optimum flow value in a capacitated generalized flow

network. The strongly polynomial algorithms by Végh [Vég17] and Olver and Végh [OV20] rely on the

variable fixing technique, however, in a new, ‘continuous’ scaling framework. While the original LP can

be ill-conditioned, variable fixing is still possible, since the dual solutions can be used to ‘relabel’ the

flow to make it ‘locally’ amenable to classical network flow arguments.

However, relabelling heavily relies on the special cost function of the flow maximization problem, and

does not seem to be extendable to the minimum-cost version. For solving the minimum-cost generalized

flow problem, the only known (weakly polynomial) combinatorial approach is the ratio-circuit cancelling

algorithm by Wayne [Way02]. The fastest previous weakly polynomial algorithms can be obtained using

interior point methods; an early such example is by Vaidya [Vai89]. Daitch and Spielman [DS08], and

Lee and Sidford [LS14] gave fast algorithms for obtaining an additive �-approximation; however, such

approximation cannot be used to obtain exact optimal solutions. We also note that the latter results only

apply for lossy flows, i.e., with gain factors 𝛾𝑒 ≤ 1.

Interior Point Methods and their limitations Interior point methods (IPMs) give the fastest current

weakly polynomial algorithms for general LP, see [CLS19, vdB20, vdBLSS20, JSWZ21] as well as for special

classes such as minimum-cost circulations [CKL
+
22, BCK

+
23] and multicommodity flows [vdBZ23].

They are also potent approach in the context of strongly polynomial computability, and form the basis

of our result.

The algorithms discussed next fall into the class of primal-dual path following algorithms. A key

concept here is the central path, the algebraic curve formed by minimizers of ⟨𝑐, 𝑥⟩ − �
∑𝑛
𝑖=1

log(𝑥𝑖) for

� > 0. As �→ 0, the limit of the central path is an optimal solution. Path following methods maintain

iterates in a certain neighborhood of the central path while geometrically decreasing �, and thus, the

optimality gap. The logarithmic barrier function above can be replaced by more general barrier functions.

The affine scaling step is a standard way to find a movement direction. This can be interpreted as a least

square computation in the local norm induced by the Hessian of the logarithmic barrier function.

Layered least squares (LLS) IPMs were introduced in the influential work of Vavasis and Ye [VY96]. The

LLS step in the Vavasis–Ye algorithm decomposes the variables into different layers based on the values

of the current iterate. The step direction is determined as a sequence of least squares computations

that prioritizes decreasing variables at lower layers. Roughly speaking, such steps enable to traverse

arbitrarily long but relatively straight segments of the central path in a single iteration. Combinatorial

progress is measured by crossover events, where two variables get reordered consistently with their order

in the limit optimal solution. This is very different from the variable fixing technique prevalent in the

2

combinatorial approaches discussed above. In particular, while we can infer the occurrence of a new

crossover event within a certain number of iterations, the argument only shows existence and we cannot

identify the participating variables. The condition number �̄�A appearing in the running time is a bound

on the norms of oblique projections.

This led to a line of research on improved combinatorial IPMs [MMT98, MT03, MT05, LMT09]. The

paper [DHNV23] revealed that �̄�A is closely related to the circuit imbalance measure �A that bounds the

maximum ratio of two nonzero entries of an elementary vector in the kernel of A. Moreover, they

obtained an LLS algorithm invariant under column rescaling, thus improving the dependence to the best

�∗A value achievable under column rescalings.

The above results may raise hopes to finding a strongly polynomial IPM. However, the papers by

Allamigeon, Benchimol, Gaubert, and Joswig [ABGJ18], Allamigeon, Gaubert, and Vandame [AGV22],

and Zong, Lee, and Yue [ZLY23] yield a surprising negative answer. By analyzing the tropical limits of

linear programs, these papers exhibit parametric families of LPs such that for suitably large parameter

values, no path-following method can be strongly polynomial. This was first shown for the standard

logarithmic barrier [ABGJ18], and later for arbitrary self-concordant barriers [AGV22].

1.2 The Subspace Layered Least Squares Interior Point Method and straight line
complexity

The primal central path has a natural dual counterpart. The primal-dual central path point (𝑥cp(�), 𝑠cp(�))
is the unique pair of primal and dual feasible solutions to (LP) such that 𝑥

cp

𝑖
(�)𝑠cp

𝑖
(�) = � for all 1 ≤ 𝑖 ≤ 𝑛.

Thus, the duality gap between 𝑥cp(�) and 𝑠cp(�) is 𝑛�.

The lower bounds in [ABGJ18, AGV22] are ultimately based on the following insight. The trajectory

of any path following argument is a piecewise linear curve in the neighborhood of the central path; the

number of pieces correspond to the number of iterations. Thus, a lower bound on the number of any

piecewise linear curve in the neighborhood provides a lower bound on the number of iterations. For the

examples in these papers, exponential lower bounds are shown.

The recent result by Allamigeon, Dadush, Loho, Natura, and Végh [ADL
+
23] complements these

negative results by a positive algorithmic bound. Namely, they provide an IPM whose number of

iterates matches such a lower bound within a strongly polynomial factor. Let us elaborate on the lower

bound.

Assume (LP) is feasible and bounded with optimum value 𝑣★. Given 𝑔 ≥ 0, we denote by

𝒫𝑔 B {𝑥 ∈ R𝑛 : A𝑥 = 𝑏 , 𝑥 ≥ 0 , ⟨𝑐, 𝑥⟩ ≤ 𝑣★ + 𝑔} ,
𝒟𝑔 B {𝑠 ∈ R𝑛 : ∃𝑦 ∈ R𝑚 A⊤𝑦 + 𝑠 = 𝑐 , 𝑠 ≥ 0 , ⟨𝑏, 𝑦⟩ ≥ 𝑣★ − 𝑔}

(1)

the feasible sublevel sets. They correspond to the sets of the primal and dual feasible points (𝑥, 𝑠) with

objective value within 𝑔 from the optimum 𝑣★, respectively.

Assuming that (LP) has strictly feasible primal and dual solutions, the max-central path is defined as

the parametric curve 𝑔 ↦→ 𝑧𝔪(𝑔) B (𝑥𝔪(𝑔), 𝑠𝔪(𝑔)) ∈ R2𝑛
+ , where

𝑥𝔪𝑖 (𝑔) B max{𝑥𝑖 : 𝑥 ∈ 𝒫𝑔} and 𝑠𝔪𝑖 (𝑔) B max{𝑠𝑖 : 𝑠 ∈ 𝒟𝑔} , ∀𝑖 ∈ [𝑛] . (2)

The max-central path can be seen as a combinatorial proxy to the central path. In particular, for

𝑔 = 𝑛�, 𝑥cp(�) ∈ 𝒫𝑔 and 𝑠cp(�) ∈ 𝒟𝑔 , and it is easy to see that 𝑥𝔪(𝑔)/𝑛 ≤ 𝑥cp(�) ≤ 𝑥𝔪(𝑔) and

𝑠𝔪(𝑔)/𝑛 ≤ 𝑠cp(�) ≤ 𝑠𝔪(𝑔).
For each 1 ≤ 𝑖 ≤ 𝑛, the function 𝑔 ↦→ 𝑥𝔪

𝑖
(𝑔) is a piecewise linear concave function. It corresponds to

trajectory of the shadow simplex algorithm that interpolates between the objective functions ⟨𝑐, 𝑥⟩ and

−𝑥𝑖 . The breakpoints correspond to basic feasible solutions, and therefore the number of linear pieces is

at most the number of vertices, that is, at most 2
𝑛
. We will use the following definition.1

Definition 1.2. Let 𝑓 : R+ → R+ be a function and � ∈ (0, 1). The straight line complexity of 𝑓 with

respect to �, denoted SLC�(𝑓), is the infimum number of pieces of a continuous piecewise linear function

ℎ : R+ → R+ where � 𝑓 ≤ ℎ ≤ 𝑓 .

The number of iterations in the Subspace Layered Least Squares (SLLS) IPM in [ADL
+
23] can be bounded

by the total straight line complexity of the (primal) max-central path curves.2

1We remark that our convention on the parameter � differs from [ADL
+

23], which uses (1 − �) 𝑓 ≤ ℎ ≤ 𝑓 instead.

2The condition on the starting point asserts that it is near the central path; 𝑥 ◦ 𝑠 denotes the Hadamard product.

3

Theorem 1.3 ([ADL
+
23]). There is an interior-point method that given an instance of (LP) and strictly feasible

solutions 𝑥, 𝑠 > 0 such that ∥ 𝑛𝑥◦𝑠⟨𝑥,𝑠⟩ − 1𝑛 ∥ ≤ 𝛽 for a fixed 0 < 𝛽 < 1/6, finds a pair of primal and dual optimal

solutions in

𝑂

(
min

�∈(0,1]

√
𝑛 log

(
𝑛

�

) 𝑛∑
𝑖=1

SLC�(𝑥𝔪𝑖)
)

(3)

many iterations.

The SLLS IPM requires at most a �̃�(𝑛1.5) factor more iterations than any path-following IPM for any

self-concordant barrier function. This is because it can be shown that each SLC�(𝑥𝔪𝑖) gives a lower bound

on the number of piecewise linear segments traversing a corresponding wide neighborhood. Moreover,

as noted above, SLC1(𝑥𝔪𝑖) ≤ 2
𝑛
, thus, the number of iterations is always at most singly exponential.

We note that the theorem could be equivalently written in terms of the dual straight line complexities.

The equivalence of these can be shown using arguments from [ADL
+
23]. Further, we note that the

neighborhood parameter � is not important for the overall bound. It is not difficult to show that for

0 < � < �′ < 1, SLC�′(𝑓) = 𝑂(log(1/�)/log(1/�′)) SLC�(𝑓); we do not include the proof.

According to Theorem 1.3, the number of iterations of SLLS boils down to estimating straight-line

complexities of the variables. Note that this is a purely combinatorial question about understanding the

structure of univariate piecewise linear functions 𝑥𝔪
𝑖
(𝑔).

We also note that the SLLS algorithm does not have access to approximations of the max-central path

curves attaining the minimum. Rather, the algorithm exploits the special ‘polarized’ structure of a piece

of the central path with a straight line in the neighborhood.

1.3 Computational models
There are multiple related, yet distinct notions of a strongly polynomial computational model. Smale’s

question was posed in the Blum–Shub–Smale (BSS) real model of computation [BSS89]. In this model, the

input can be given by arbitrary real numbers, and one step may compute a rational polynomial function of

the previously computed quantities with real coefficients, or make comparisons between two quantities.

In the more restrictive real RAM model, one can perform a sequence of elementary arithmetic operations

(+,−,×, /) and comparisons (≥) on real numbers. In this paper, we say that an algorithm is polynomial

in the real RAM model if the number of elementary arithmetic operations and comparisons is bounded

polynomially in the dimension of the input; in the case of LP, this is 𝐾 = 𝑛 × 𝑚 + 𝑛 + 𝑚.

We now turn to the Turing model. Consider a problem where the input is given by 𝐾 integers;

for LP, the input (A, 𝑏, 𝑐) is described by 𝐾 = 2(𝑛 × 𝑚 + 𝑛 + 𝑚) integers representing the rational

entires. An algorithm is strongly polynomial in the Turing model (see [GLS88]), if it only performs poly(𝐾)
(in the LP case, this means poly(𝑚, 𝑛)) elementary arithmetic operations and comparisons as in the

real model. Additionally, the bit-complexity of the numbers during the computations must remain

polynomially bounded in the encoding length of the input. Equivalently, the algorithm must be PSPACE.

The model has an ambiguity regarding how divisions can be implemented, see discussion of variants

in [GLS88, Section 1.3]. The results of this paper work with the most restricted setting: we maintain

rational representations (𝑝, 𝑞) of all numbers during the computation, and division
𝑝

𝑞 /
𝑝′

𝑞′ corresponds to

computing the representation (𝑝𝑞′, 𝑝′𝑞).
While a strongly polynomial algorithm in the Turing model implies a polynomial algorithm in the real

RAM model, the converse is not necessarily the case: enforcing PSPACE may be challenging. For example,

Gaussian elimination needs to be done carefully to keep the sizes of numbers under control, see [Edm67]

and [GLS88, Section 1.4]. The LLS interior point methods are (strongly) polynomial in the real RAM

model whenever log(�̄�A) = poly(𝑛), yet we are not aware of any strongly polynomial implementation

of such algorithms in the Turing model prior to this work. The situation is even worse regarding the

SLLS IPM algorithm in [ADL
+
23]. The special SLLS step requires an (approximate) singular value

decomposition, and the algorithm used in the paper also relies on squareroot computations. Hence, it is

only strongly polynomial in the extended real model (+,−,×, /,√.)
In the weakly polynomial model, i.e., when running time dependence on the total encoding length is

allowed, the bit complexity of the algorithms can be controlled by approximately solving linear systems

and roundings. In recent work, Ghadiri, Peng, and Vempala [GPV23] developed general tools that

enable to keep the bit complexity of recent fast IPMs under control. However, these techniques are not

applicable in the strongly polynomial model. In particular, it requires estimates on parameters such

as the total bit length of the input or the condition number of the matrix. They also require rounding

4

to a fixed number of bits depending on such numerical parameters; in the most stringent definition of

strongly polynomial, this cannot be done.

We note that the algorithms presented in this paper are fully deterministic.

1.4 Our contributions
We prove Theorem 1.1, i.e., give a strongly polynomial algorithm for the minimum-cost generalized

flow problem by showing that the total number of iterations of the SLLS IPM by [ADL
+
23] is strongly

polynomially bounded, and that the SLLS IPM can be implemented in strongly polynomial time in the

Turing model. Our result has three main ingredients:

(1) Straight line complexity bound: We establish in Theorem 4.1 a strongly polynomial bound SLC�(𝑥𝔪𝑒) =
𝑂(𝑛𝑚) on the straight line complexities of the variables in the minimum-cost generalized flow

problem, with � = Ω(1/(𝑚2𝑛)), where 𝑚 is the number of arcs and 𝑛 is the number of nodes of the

graph. This bound applies for the uncapacitated version of the problem as described above; if in

addition arcs have capacities, the bound becomes 𝑂(𝑚2).

(2) Initialization: IPMs require a strictly feasible and well centered starting point (𝑥0 , 𝑠0), even though

a strictly feasible (or even a feasible) solution may not exist. We present a careful initialization

scheme that solves Linear Programs in three stages, and preserves the straight line complexity

bounds.

(3) Implementation in the Turing model: We show that the bit-length of the computations can be controlled

in a model using only basic arithmetic operations and comparisons. Further, we show that the

square-root computations in [ADL
+
23] can be avoided.

The straight line complexity is established via a combinatorial argument using structural properties of

generalized flows. In contrast, the initialization and implementation tasks are applicable for general LP,

and can be seen as a direct strengthening of the result in [ADL
+
23]. We now elaborate on each of these

parts, and highlight the main technical ideas.

1.4.1 Straight-line complexity bound for generalized flows

Theorem 1.3 enables to bound the number of iterations in SLLS by bounding the straight-line complexities

SLC�(𝑥𝔪𝑖) for a suitable � > 0. In the first step, we reduce this to an even more concrete combinatorial

question of circuit covers as explained next.

Circuit covers. For the purposes of analyzing straight-line complexities, we can assume that a pair of

primal and dual optimal solutions (�̄� , 𝑠) to (LP) is provided.

For any vector ℎ ∈ ker(A), with ⟨𝑐, ℎ⟩ ≥ 0 we can define the function �̄�ℎ(𝑔) : R+ → R𝑛+ by moving

from �̄� in the direction of ℎ; this is called the ℎ-curve from �̄�. Namely, we define �̄�ℎ(𝑔) = �̄� + 𝛼(𝑔)ℎ, where

𝛼(𝑔) is chosen maximally so that �̄�ℎ(𝑔) is feasible, and has cost at most 𝑔 larger than the cost of �̄�. For

every 𝑖 ∈ [𝑛], the 𝑖-th coordinate �̄�ℎ
𝑖
(𝑔) can easily be seen to be a piecewise linear concave function with

two pieces, the first with slope ℎ𝑖/⟨𝑐, ℎ⟩ and the second constant.

Given ℎ, ℎ′ ∈ ker(A), ⟨𝑐, ℎ⟩ , ⟨𝑐, ℎ′⟩ ≥ 0, 𝛼 > 0 and 𝑖 ∈ [𝑛], we say that ℎ 𝛼-dominates ℎ′ on 𝑖 ∈ [𝑛] if

�̄�ℎ
𝑖
(𝑔) ≥ 𝛼�̄�ℎ

′
𝑖
(𝑔) for all 𝑔 ≥ 0.

In the linear space ker(A), an elementary vector is a support minimal nonzero vector, and the support

of an elementary vector is called a circuit. Note that the latter coincides with the notion of circuits of the

linear matroid of A; each circuit corresponds to a one-dimensional subspace of elementary vectors. We

let ℰ(A) denote the set of all elementary vectors.

Given an optimal solution �̄�, let us consider the augmentations from �̄� by an elementary vector

ℎ. Noting that �̄�ℎ(𝑔) is invariant under rescaling ℎ to 𝛼ℎ for 𝛼 > 0, this gives one function per

circuit. For any coordinate 𝑖 ∈ [𝑛], let us now consider the pointwise maximum at the 𝑖-th coordinate

�̂�𝑖(𝑔) = max{�̄�ℎ
𝑖
(𝑔) : ℎ ∈ ℰ(A)}. This is a piecewise linear function, but is not concave. Note also that the

number of pieces can be exponential. Nevertheless, using standard circuit decomposition techniques, it

is not difficult to show that �̂�𝑖(𝑔) approximates 𝑥𝔪
𝑖
(𝑔) up to a factor 𝑛: 𝑥𝔪

𝑖
(𝑔)/𝑛 ≤ �̂�𝑖(𝑔) ≤ 𝑥𝔪𝑖 (𝑔).

Our strategy to obtain SLC bounds is by constructing circuit covers. Given a primal optimal solution

�̄�, an index 𝑖 ∈ [𝑛] and 𝛼 > 0, we say that a set of vectors 𝑆 ⊆ ker(A) is an 𝛼-circuit cover of 𝑖 with respect

to �̄� if for every ℎ′ ∈ ℰ(A), there is a ℎ ∈ 𝑆 that 𝛼-dominates ℎ′ on 𝑖. Then, the piecewise-linear function

5

�̄�𝑆
𝑖
(𝑔) = max{�̄�ℎ

𝑖
(𝑔) : ℎ ∈ 𝑆} satisfies 𝛼𝑥𝔪

𝑖
(𝑔)/𝑛 ≤ �̄�𝑆

𝑖
(𝑔) ≤ 𝑥𝔪

𝑖
(𝑔). The upper convex envelope of this

function has at most |𝑆 | + 1 linear pieces, and consequently, SLC𝛼/𝑛(𝑥𝔪𝑖) ≤ |𝑆 | + 1.

As a simple demonstration of this technique, in Section 3 we give a simple straight-line complexity

bound in terms of �A, the circuit imbalance of A. This is defined as the maximum absolute value of the

ratio of two nonzero entries of an elementary vector in ℰ(A). In particular, it is known that �A = 1 if and

only if there exists a totally unimodular matrix B such that ker(A) = ker(B). The LLS IPM algorithms

such as [VY96] and [DHNV23] run in time poly(𝑛, log�A). We refer the reader to the survey [ENV22]

for background and more applications of circuit imbalances.

Whereas the results in [ADL
+
23] together with [VY96] already imply a poly(𝑛, log�A) bound on the

straight line complexity, we give simple direct bounds using the circuit cover approach. For each circuit,

we identify a ‘combinatorial signature’ comprising two critical indices. We select an ‘undominated’ family

of signatures and pick a single circuit for each signature. These circuits will then 1/(𝑛�2

A)-dominate

all other circuits. In fact, using that the straight line complexities are invariant under column scaling

(Lemma 2.2), we can replace the �A dependence by �★A dependence, the optimal circuit imbalance

achievable under column scaling.

Circuit covers for generalized flows. We primarily work with minimum-cost generalized flow in its

capacitated form, where arcs may have capacities, and all demands are zero; this reduction yields only

𝑛 capacitated arcs when starting from the demand form. The circuits in this version of the generalized

flow problem correspond to simple combinatorial structures: namely, a circuit either corresponds to a

conservative directed cycle, where the product of the gain factors is one, or a ‘bicycle’, namely, a flow

generating cycle connected by a path to a flow absorbing cycle. The latter are cycles where the product

of the gain factors is greater and less than one, respectively. These structures played a fundamental

role in all prior works on generalized flows, see e.g., [GPT91, Way02, Vég17, OV20], as well as for 2VPI

algorithms, e.g., [Meg83, CM94b, DKNV22, Kar22].

We construct a circuit cover of size 𝑂(𝑚𝑛) to bound the straight line complexity of the variables in

the generalized flow problem. Similarly to the �A bound discussed above, we associate a combinatorial

signature with each circuit that forms the basis of the cover. However, we need a much more careful

construction to obtain this cover. In particular, the cover will not consist of circuits but more complicated

objects.

The basis of our construction is path domination. Let us fix two nodes 𝑠 and 𝑡 in the graph. We

demonstrate a small collection of 𝑠-𝑡 walks that “dominate” the collection of all 𝑠-𝑡 paths in a certain

sense. The general cover will be constructed by combining such walks and extending this argument. We

now highlight the main ideas of path domination.

Consider an 𝑠–𝑡 walk𝑊 ; this induces an 𝑠–𝑡 flow �̄�𝑊 on the walk. We define the function
®𝑓𝑊 : R2

+ →
R+ such that

®𝑓𝑊 (�, 𝑟) denotes the maximum amount of flow that can be sent from 𝑠 to 𝑡 if there are 𝑟
units available at 𝑠, each step of the walk satisfies the capacity bound, and the cost incurred in any step

of the walk is at most �. This corresponds to a certain maximal scaling of �̄�𝑊 . (This scaling may have

total cost larger than �, and moreover since an arc of the graph can be used multiple times, it may also

violate arc capacities; but as long as the walk is 𝑛-recurrent, meaning it uses each edge at most 𝑛 times,

scaling down by 𝑛𝑚 will yield such a feasible and cheap flow.) There are two possible bottleneck arcs

that prevent a larger scaling of �̄�𝑊 from being used: a cost bottleneck arc 𝑒c where 𝑐𝑒c �̄�
𝑊
𝑒c

is maximal, and

a flow bottleneck arc 𝑒f where �̄�𝑊𝑒
f

/𝑢𝑒
f

is maximal, where 𝑐𝑒 and 𝑢𝑒 denote the cost and capacity of arc 𝑒,
respectively. We associate the combinatorial signature (𝑒c , 𝑒f , ⪯) or (𝑒c , 𝑒f , ≻) with 𝑊 , where ⪯ means

that 𝑒c precedes or equals 𝑒f on the walk𝑊 , and ≻ means that 𝑒f precedes 𝑒c.

We say that the 𝑠-𝑡 walk 𝑊 ′ dominates 𝑊 , if
®𝑓𝑊′ ≥ ®𝑓𝑊 . Our goal in this context is to show that

there is a small family of 𝑠-𝑡 walks that dominates all 𝑠-𝑡 paths. The key insight is the following path

monotonicity property: consider a path 𝑃 with signature (𝑒c , 𝑒f , ⪯), and take the subpath 𝑄 of 𝑃 starting

with 𝑒c and ending in 𝑒f. Let 𝑄′ be the highest gain path (i.e., one that maximizes the product of gain

factors) starting with 𝑒c and ending in 𝑒f whose cost bottleneck is 𝑒c and flow bottleneck is 𝑒f. After

replacing 𝑄 by 𝑄′ in 𝑃, the obtained walk 𝑃′ will dominate 𝑃. Moreover, if the signature changes, then

the flow bottleneck of 𝑃′ remains 𝑒′
f
= 𝑒f, and the cost bottleneck 𝑒′

c
will be on the part of 𝑃′ after 𝑒f. An

analogous replacement can be made for the signature type (𝑒c , 𝑒f , ≻). Starting from any path 𝑃, using

a sequence of such operations, we can reach a walk 𝑊 whose subpath between the bottleneck arcs is

already highest gain in the above sense.

Denoting the number of finite capacity arcs by �̄�, this argument enables to show the existence of a

𝑂(𝑚�̄�) sized family of 𝑛-recurrent 𝑠–𝑡 walks that dominate all 𝑠–𝑡 paths. The family is constructed by

6

fixing the signature, and from each signature, selecting the best walk for the three segments defined by

𝑠, 𝑡, and the two bottleneck arcs, such that each segment is highest gain subject to recurrence bounds

and not having other bottlenecks.

Once we have this path domination result, we can use this to demonstrate domination of more

complicated collections of objects with small dominating sets, and eventually all circuits. For instance: it

easily follows that there is a small collection of 𝑠-𝑠 walks with the property that for any flow-generating

cycle 𝐶 containing 𝑠, there is a walk 𝑅 in this collection that dominates 𝐶, in the sense that for every

choice of cost bound � ∈ R+, at least as much excess can be created using 𝑅 than 𝐶. From this, by

“composing” dominating sets for cycles and paths, we obtain a small dominating set for the collection of

“simple flow-generating objects at 𝑡” consisting of a flow-generating cycles along with a path from this

cycle to 𝑡.

1.4.2 Initialization

A strongly polynomial straight line complexity bound implies a strongly polynomial iteration bound of

the SLLS IPM method; however, it requires an initial point (𝑥0 , 𝑠0) ∈ 𝒫++ × 𝒟++ near the central path.

Such a point may not even exist; in fact, the primal or dual programs in (LP) may be infeasible. Whereas

one could use the combinatorial algorithms to decide primal [OV20] and dual [HN94] feasibility, these

algorithms do not directly yield strictly feasible solutions (which may again not exist).

The situation is analogous to Simplex, where Stage I can be used to find a feasible solution by solving

an auxiliary LP. Various initialization methods have been developed for IPMs, but none of these is directly

applicable for our purposes: only solving auxiliary systems with small straight line complexity, while

remaining in the strongly polynomial model.

A common initialization technique is the self-dual homogenous formulation [YTM94]. However,

writing the self-dual formulation of a generalized flow LP results in a more complicated problem and it

is not clear if the straight line complexity admits a similar bound. (Note also that in the simpler case of

(standard) network flows, the constraint matrix is totally unimodular, while the combined matrix does

not have this property.)

We present two initialization methods. Our first approach in Section 5 uses a ‘big-𝑀’ method, as in

[VY96]. Let us create a negative copy of each variable with a large penalty cost. That is, one can replace

the primal system using variables (𝑥, 𝑥′, 𝑥′′) ∈ R3𝑛
in the form

min ⟨𝑐, 𝑥⟩ +𝑀 ⟨1𝑛 , 𝑥′⟩ s.t. A𝑥 −A𝑥′ = 𝑏 , 𝑥 + 𝑥′′ = 2𝑀1𝑛 , 𝑥, 𝑥′, 𝑥′′ ≥ 0 . (4)

Here, 𝑥′ represents a negative copy of each variable and 𝑥′′ corresponds to a slack variable for the box

constraint 0 ≤ 𝑥 ≤ 2𝑀1𝑛 . Such a system, along with its dual, is easy to initialize for sufficiently large

𝑀. Moreover, the constraint matrix remains ‘nice’, e.g., it can be still interpreted as a (capacitated)

generalized flow problem, where the 𝑥′ variables correspond to expensive reverse arcs. As long as there

exists a pair of primal and dual optimal solutions (𝑥★, 𝑠★) to (LP) with ∥𝑥★∥∞ , ∥𝑠★∥∞ < 𝑀1𝑛 , then these

will also be optimal solutions to the extended formulation.

However, finding a suitable large 𝑀 becomes challenging. In [VY96], such a bound is derived based

on �̄�A. This is hard to compute in general; one could use a repeated guessing of this condition number,

but this would lead to a log log �̄�A running time dependence. Bounds on the norms of optimal solutions

are routinely derived using bit-complexity arguments, see e.g. [GLS88]; however, this is also not possible

in the strongly polynomial model.

In Section 5, we use the deterministic combinatorial algorithms of e.g., [OV20] and [HN94] to solve

up to 𝑛 primal and dual feasibility problems to first obtain maximum support primal and dual solutions

available. We then reduce the problem to a system with a pair of strictly positive primal and dual

solutions. The reduction is achieved by deleting some variables and projecting out some others. In

the generalized flow problem, these amount to graphical operations of deletions and contractions, and

thus preserve the generalized flow structure. Given the strictly positive primal and dual solutions (�̂� , 𝑠),
choosing𝑀 larger than ⟨�̂� , 𝑠⟩ divided by the smallest entry of (�̂� , 𝑠) guarantees that ∥𝑥★∥∞ , ∥𝑠★∥∞ < 𝑀1𝑛
for any pair of primal and dual optimal solutions.

Whereas the above approach can implement the big-𝑀 method, it is only applicable to the particular

minimum-cost generalized flow setting as it requires feasibility solvers. Also, it needs to solve 2𝑛 systems

as preprocessing. In Section 7, we develop a more principled, multistage initialization strategy that is

applicable to general LP, preserves straight line complexity, and only requires solving four IPM problems.

Since we will need to solve different LPs derived from (LP), one needs to clarify what ‘preserving straight

7

line complexity’ means. We define SLC�(A) as the maximum value of SLC(𝑥𝔪
𝑖
) for any variable 𝑖 ∈ [𝑛]

in any LP of the form (LP) with constraint matrix A, but taking any possible right hand side 𝑏 ∈ R𝑚 and

cost 𝑐 ∈ R𝑛 . All our auxiliary LPs will have SLC bounded by SLC�(B), where B =

(
A −A 0𝑚×𝑛
I𝑛 0𝑛×𝑛 I𝑛

)
is

the matrix also used in the big-M formulation (4).

Our strategy can be interpreted as a facial reduction strategy, where we carefully fix or project out

variables that yield an equivalent LP to the original one, and where strictly feasible primal and dual

solutions in fact exist. Throughout the process, the solutions from a previous stage provide a starting

point near the central path.

1.4.3 Implementation in the Turing model

As discussed in Section 1.3, to obtain a strongly polynomial algorithm in the Turing model, one needs

to avoid the square-root computations in [ADL
+
23], and also devise a new rounding approach, as

the previous ones rely on bit-complexity information and rounding that are not implementable in the

strongly polynomial model.

In Appendix B, we present a version of the SLLS IPM only using basic arithmetic operations and

comparisons, and where every iteration can be carried out in strongly polynomial time. Theorem 6.10

presents the version of Theorem 1.3 proved here. For the sake of strong polynomiality and simplicity, the

IPM is slower by a factor of 𝑛 in terms of iteration count when compared to Theorem 1.3. This additional

factor is immaterial for our general results, as we do not aim to optimize the running times. At a technical

level, the slowdown in the above IPM is entirely due to the use of a strongly polynomial 2
𝑂(𝑛)

-approximate

singular value decomposition (SVD) that we present in Appendix B.7. This SVD algorithm is very simple:

it corresponds to a single Gram–Schmidt orthogonalization applied to a suitable permutation of the

columns of the input matrix. By using more sophisticated strongly polynomial SVD algorithms, such as

the randomized SVD by Diakonikolas, Tzamos and Kane [DTK23] or a recent deterministic “bicriteria”

SVD of Dadush and Ramachandran [DR24], this additional factor of 𝑛 can be removed. These algorithms

are relatively complicated , and thus, for the sake of being self contained and easily verifiable, we prefer

to rely on a weaker SVD subroutine in the present paper.

The second main ingredient is a general strongly polynomial technique to keep the bit-complexity of

all iterations polynomially bounded in the input encoding length. This technique is not particular to the

SLLS algorithm but can be used for any path-following method. The main subroutine takes an iterate

(𝑥, 𝑠) in the central path neighborhood, and computes (�̃� , 𝑠) that is in a slightly larger neighborhood, may

have slightly worse optimality gap, but its size is polynomially bounded in the input encoding length.

To argue about the encoding length, we ‘anchor’ the point (�̃� , 𝑠) to vertices of the primal and dual

polytopes. In strongly polynomial time, we can write a Minkowski–Weyl decomposition of 𝑥 and 𝑠 using

vertices and extreme rays. However, we cannot simply round the coefficients. In particular, it is possible

that 𝑥 is written as a ‘highly unstable’ convex combination of primal and dual vertices such that either

⟨𝑣, 𝑢⟩ < ⟨𝑥, 𝑠⟩ /2𝑛 or ⟨𝑣, 𝑢⟩ < 2
𝑛 ⟨𝑥, 𝑠⟩ for each pair of primal and dual vertices (𝑣, 𝑢). We proceed in two

stages. First, we try to find a value �★ ≈ ⟨𝑥, 𝑠⟩ /𝑛 such that �★
has small encoding length. This is easy

as long as the combination contains primal and dual vertices (𝑣, 𝑢) with ⟨𝑥, 𝑠⟩ /2𝑛 ≤ ⟨𝑣, 𝑢⟩ ≤ 2
𝑛 ⟨𝑥, 𝑠⟩.

In the ‘highly unstable’ situation as above, it turns out that the direction from (𝑥, 𝑠) pointing towards

a pair of primal and dual vertices (𝑣, 𝑢) with much better gap is a very good movement direction of

the IPM. Hence, we can replace (𝑥, 𝑠) during the rounding step by a much better iterate that is also

numerically more stable. In the second stage, we add a cost bound to our feasible region according to

�★
. On this bounded polytope, we can now find a Minkowski–Weyl decomposition and simply round

the coefficients. The guarantees of this rounding are based on the near-monotonocity property of the

central path.

Organization. The rest of the paper is structured as follows. Section 2 introduces some necessary

background, in particular, regarding straight line complexity and circuits. Section 2.1 proves the straight

line complexity bound in terms of the circuit imbalance�A. Section 4 analyzes the straight line complexity

of minimum cost generalized flows. Section 5 gives the simpler initialization method for generalized

flows, using existing feasibility solvers. Section 6 introduces some necessary concepts and results for

interior point methods. Section 7 presents the general initialization procedure, starting with a high level

overview. Section 8 describes the rounding procedure needed to control the bit-complexity. Appendix B

describes a variant of the SLLS IPM needed for our purposes, with a simple new SVD procedure in

Section B.7.

8

2 Preliminaries
Notation. We let R++ denote the set of positive reals, and R+ the set of nonnegative reals; similarly

for Z++ ,Z+ ,Q++ and Q+. For 𝑛 ∈ N, we let [𝑛] B {1, 2, . . . , 𝑛}. We let 0𝑛 , 1𝑛 ∈ R𝑛 denote the all 0s

and all 1s vectors, respectively. For 𝑥 ∈ R𝑛 , we let supp(𝑥) ⊆ [𝑛] denote its support. For 𝛼 ∈ R, we let

𝛼+ = max{𝛼, 0} and 𝛼− = max{−𝛼, 0}; for a vector 𝑥 ∈ R𝑛 , we use 𝑥+ and 𝑥− coordinatewise. We let

supp
+(𝑥) = supp(𝑥+) and supp

−(𝑥) = supp(𝑥−). For functions 𝑓𝑖 : R𝑛 → R𝑚 , 𝑖 ∈ ℐ, we let

∨
𝑖∈ℐ 𝑓𝑖 denote

the pointwise maximum.

We let ker(A) denote the kernel of the matrix A ∈ R𝑚×𝑛 . The standard inner product of the two

vectors 𝑥, 𝑦 ∈ R𝑛 is denoted as ⟨𝑥, 𝑦⟩ = 𝑥⊤𝑦. For 𝑥, 𝑦 ∈ R𝑛 , we let 𝑥 ◦ 𝑦 = (𝑥1𝑦1 , . . . , 𝑥𝑛𝑦𝑛) denote the

Hadamard-product, and if 𝑦 ∈ R𝑛++, we let 𝑥/𝑦 = (𝑥1/𝑦1 , . . . , 𝑥𝑛/𝑦𝑛).
We let

𝒫 B {𝑥 ∈ R𝑛 | A𝑥 = 𝑏, 𝑥 ≥ 0} , 𝒟 B {𝑠 ∈ R𝑛 | ∃𝑦 : A⊤𝑦 + 𝑠 = 𝑐 , 𝑠 ≥ 0}
denote the primal and dual feasible regions of (LP). We let 𝒫++ B 𝒫 ∩ R𝑛++ and 𝒟++ B 𝒟 ∩ R𝑛++
denote the strictly feasible regions. Interior point methods require 𝒫++ ,𝒟++ ≠ ∅. We do not make this

assumption in general. In Section 7, we show how one can use a sequence of reductions to simpler IPM

problems to first either find a suitable initial point (𝑥0 , 𝑠0), or conclude infeasibility or unboundedness

of the input LP.

The sublevel sets. Assume 𝒫 ,𝒟 ≠ ∅, in which case (LP) admits a pair of primal and dual optimal

solutions (�̄� , �̄� , 𝑠) with optimum value ⟨𝑐, �̄�⟩ = ⟨𝑏, �̄�⟩ = 𝑣★. Recall that this holds precisely if these two

solutions are complementary: ⟨�̄� , 𝑠⟩ = 0; in particular, �̄�𝑖𝑠𝑖 = 0 for all 𝑖 ∈ [𝑛].
Recall the definitions of the sublevel sets 𝒫𝑔 , 𝒟𝑔 in (1) as the set of primal and dual solutions with

objective value within 𝑔 from the optimum value 𝑣★.

The duality gap of any pair (𝑥, 𝑦, 𝑠) of primal-dual feasible points of (LP) fulfills ⟨𝑐, 𝑥⟩−⟨𝑏, 𝑦⟩ = ⟨𝑥, 𝑠⟩.
In particular, we have ⟨𝑥, 𝑠⟩ = ⟨𝑐, 𝑥⟩ − 𝑣★ and ⟨�̄� , 𝑠⟩ = 𝑣★ − ⟨𝑏, 𝑦⟩. Thus, the two sets 𝒫𝑔 and 𝒟𝑔 are

equivalently given by

𝒫𝑔 = {𝑥 ∈ 𝒫 : ⟨𝑥, 𝑠⟩ ≤ 𝑔} and 𝒟𝑔 = {𝑠 ∈ 𝒟 : ⟨�̄� , 𝑠⟩ ≤ 𝑔} .

These expressions are in fact independent of the choice of optimal solutions (�̄� , �̄� , 𝑠). The following is

immediate.

Proposition 2.1. Assume that 𝒫++ and𝒟++ are nonempty. Then, for all 𝑔 ≥ 0, the sets 𝒫𝑔 and𝒟𝑔 are bounded.

In (2), we defined the primal and dual max central path for the strictly feasible case. We extend the

definition of the max central path 𝑥𝔪
𝑖
(𝑔) for the case when max{𝑥𝑖 : 𝑥 ∈ 𝒫𝑔} is unbounded. It is easy to

see that this is equivalent to the existence of an unbounded direction 𝑣 ∈ ker(A), ⟨𝑐, 𝑣⟩ ≤ 0, 𝑣𝑖 > 0. If such

a direction exists, then the program is unbounded for all values, including the set of optimal solutions

for 𝑔 = 0. In this case, we define 𝑥𝔪
𝑖
(𝑔) = ∞ for all 𝑔 ≥ 0, and use the convention that SLC�(𝑥𝔪𝑖) = 1

for all � ∈ (0, 1). Note that whenever 𝑥𝔪
𝑖
(𝑔) = ∞, then either ⟨𝑐, 𝑣⟩ < 0 for the above vector 𝑣 in which

case the dual program is infeasible; or ⟨𝑐, 𝑣⟩ = 0 in which case 𝑠𝑖 = 0 for every dual feasible 𝑠 ∈ 𝒟, and

therefore 𝑠𝔪
𝑖
(𝑔) = 0 for all 𝑔 ≥ 0. We use a similar convention for defining 𝑠𝔪

𝑖
(𝑔) and SLC�(𝑠𝔪𝑖).

The following lemma asserts that column rescalings do not affect the straight line complexity bounds.

Lemma 2.2. Given an instance of (LP) with data (A, 𝑏, 𝑐), let D ∈ R𝑛×𝑛 be a positive diagonal matrix, and

consider the LP with data (AD, 𝑏,D𝑐). Let (𝑥𝔪 , 𝑠𝔪) and (�̄�𝔪 , 𝑠𝔪) denote the max central paths of the two LPs.

Then, SLC�(𝑥𝔪𝑖) = SLC�(�̄�𝔪𝑖) and SLC�(𝑠𝔪𝑖) = SLC�(𝑠𝔪𝑖) for any � ∈ (0, 1) and 𝑖 ∈ [𝑛].
Proof. We only prove for the primal max central paths; the proof for the dual case is analogous. Note

that there is a one-to-one mapping 𝑥 → D−1𝑥 between the feasible solutions of the two systems, with

⟨𝑐, 𝑥⟩ =
〈
D𝑐,D−1𝑥

〉
. This implies that �̄�𝔪(𝑔) = D−1𝑥𝔪(𝑔) for all 𝑔 ≥ 0. It is now easy to see that the two

functions 𝑥𝔪
𝑖

and �̄�𝔪
𝑖

have the same straight line complexities. □

Elementary vectors and conformal circuit decompositions.

Definition 2.3 (Elementary vectors and circuits). Let A ∈ R𝑚×𝑛 and assume ker(A) ≠ {0𝑛}. A vector

𝑧 ∈ ker(A) is an elementary vector in ker(A) if 𝑧 is a support-minimal nonzero vector in ker(A). We let

ℰ(A) denote the set of all elementary vectors. A set 𝐶 ⊆ [𝑛] is a circuit of A if it is the support of some

elementary vector; we let 𝒞(A) ⊆ 2
[𝑛]

denote the set of circuits.

9

We say that a vector 𝑦 ∈ R𝑛 conforms to 𝑥 ∈ R𝑛 if 𝑥𝑖𝑦𝑖 > 0 whenever 𝑦𝑖 ≠ 0. A conformal circuit

decomposition of a vector 𝑧 ∈ ker(A) is a decomposition of the form

𝑧 =

ℓ∑
𝑖=1

𝑔(𝑖) ,

where 𝑔(1) , . . . , 𝑔(ℓ) ∈ ℰ(A), ℓ ≤ 𝑛, and each 𝑔(𝑖) conforms to 𝑧. This notion can be seen as a generalization

of cycle decompositions of circulations of networks flows. The existence of such a decomposition is well-

known, see e.g., [Ful68, Roc69].

Proposition 2.4. For every A ∈ R𝑚×𝑛 , every vector 𝑧 ∈ ker(A) admits a conformal circuit decomposition.

2.1 Straight line complexity and circuits
In this section, we establish an intimate connection between the SLC of an LP and its circuits. Recall the

definition (2) of the max-central path (𝑥𝔪 , 𝑠𝔪) from the introduction.

Definition 2.5 (ℎ-curve). Let �̄� be a primal optimal solution to (LP). Given a vector ℎ ∈ ker(A) where

⟨𝑐, ℎ⟩ ≥ 0, the ℎ-curve from �̄� is the function �̄�ℎ : R+ → (R+ ∪ {∞})𝑛 that maps �̄�ℎ(𝑔) to �̄� + 𝛼ℎ, for

𝛼 ∈ R+ ∪ {∞} chosen maximally such that �̄� + 𝛼ℎ ≥ 0 and ⟨𝑐, 𝛼ℎ⟩ ≤ 𝑔.

Note that �̄�ℎ = �̄�𝛽ℎ for all 𝛽 > 0. It is easy to see that

�̄�ℎ(𝑔) = �̄� +min

(
𝑔

⟨𝑐, ℎ⟩ , min

𝑗∈supp
−(ℎ)

�̄� 𝑗

|ℎ 𝑗 |

)
ℎ , (5)

with the convention that we omit the first term from the minimum if ⟨𝑐, ℎ⟩ = 0 (�̄�ℎ is a constant function

in this case). We will call functions of this form — linear on some interval starting from 0, and then

constant — 1-simple functions, a notion we will expand on in Section 4.2. The next lemma shows that for

every 𝑖 ∈ [𝑛] and 𝑔 ≥ 0, the 𝑖th coordinate of the max-central path at 𝑔 is upper bounded by a circuit

augmentation from an optimal solution, up to a factor 𝑛.

Lemma 2.6. Let �̄� be a primal optimal solution to (LP) and 𝑖 ∈ [𝑛]. For every 𝑔 ≥ 0 where 𝑥𝔪
𝑖
(𝑔) > �̄�𝑖 , there exists

an elementary vector ℎ ∈ ℰ(A) such that ⟨𝑐, ℎ⟩ ≥ 0, ℎ𝑖 > 0, ℎ 𝑗 ≥ 0 whenever �̄� 𝑗 = 0, and �̄�ℎ
𝑖
(𝑔) ≥ 𝑥𝔪

𝑖
(𝑔)/𝑛.

Proof. Let �̂� be a primal feasible solution to (LP) such that �̂�𝑖 = 𝑥𝔪
𝑖
(𝑔). Consider a conformal circuit

decomposition of �̂� − �̄� =
∑ℓ
𝑗=1

ℎ(𝑗) as in Proposition 2.4. Note that ⟨𝑐, ℎ(𝑗)⟩ ≥ 0 for all 𝑗 ∈ [ℓ] because

�̄� is a primal optimal solution to (LP). Let 𝑘 ∈ arg max𝑗∈[ℓ] ℎ
(𝑗)
𝑖

. Then, ℎ
(𝑘)
𝑖

> 0 due to �̂�𝑖 > �̄�𝑖 . Since〈
𝑐, �̄� + ℎ(𝑘)

〉
≤ ⟨𝑐, �̄�⟩ + ⟨𝑐, �̂� − �̄�⟩ = ⟨𝑐, �̂�⟩ ≤ 𝑔, we obtain

�̄�ℎ
(𝑘)
𝑖 (𝑔) ≥ �̄�𝑖 + ℎ

(𝑘)
𝑖
≥ �̄�𝑖 +

∑ℓ
𝑗=1

ℎ
(𝑗)
𝑖

ℓ
≥ �̂�𝑖

ℓ
≥ �̂�𝑖

𝑛
=
𝑥𝔪
𝑖
(𝑔)
𝑛

.

Note also that ℎ
(𝑘)
𝑗
≥ 0 whenever �̄� 𝑗 = 0 since �̄� + ℎ(𝑘) ≥ 0. □

Definition 2.7 (Dominance). Let �̄� be a primal optimal solution to (LP). Let 𝑖 ∈ [𝑛] and 𝛼 ≥ 0. Given

vectors ℎ, ℎ′ ∈ ker(A) where ⟨𝑐, ℎ⟩ , ⟨𝑐, ℎ′⟩ ≥ 0, we say that ℎ 𝛼-dominates ℎ′ on 𝑖 with respect to �̄� if

�̄�ℎ
𝑖
≥ 𝛼�̄�ℎ

′
𝑖

. More generally, given sets 𝑆, 𝑆′ ⊆ 𝑊 , we say that 𝑆 𝛼-dominates 𝑆′ on 𝑖 with respect to �̄� if

⟨𝑐, ℎ⟩ ≥ 0 for all ℎ ∈ 𝑆, and for every ℎ′ ∈ 𝑆′ with ⟨𝑐, ℎ′⟩ ≥ 0, there exists ℎ ∈ 𝑆 such that ℎ 𝛼-dominates

ℎ′ on 𝑖 with respect to �̄�.

Definition 2.8 (Circuit cover). Let �̄� be a primal optimal solution to (LP). Let 𝑖 ∈ [𝑛] and 𝛼 ≥ 0. An

𝛼-primal circuit cover of 𝑖 with respect to �̄� is a set 𝑆 ⊆ ker(A)which 𝛼-dominates ℰ(A) on 𝑖 with respect to

�̄�.

The utility of a circuit cover is illustrated by the following lemma. Note that 𝑥𝔪
𝑖
(0) is the maximum of

the 𝑖-th coordinate of an optimal solution. Assuming 𝑥𝔪
𝑖
(0) < ∞, there exists a (basic) optimal solution

�̄� such that 𝑥𝔪
𝑖
(0) = �̄�𝑖 .

Lemma 2.9. Fix 𝑖 ∈ [𝑛] such that 𝑥𝔪
𝑖
(0) < ∞, and let �̄� be a primal optimal solution to (LP) such that �̄�𝑖 = 𝑥𝔪

𝑖
(0).

If 𝑆 is a 𝛼-primal circuit cover of 𝑖 with respect to �̄�, then SLC𝛼/𝑛(𝑥𝔪𝑖) ≤ |𝑆 | + 1.

10

Proof. We may assume that 𝑥𝔪
𝑖

is not constant, as otherwise SLC𝛼/𝑛(𝑥𝔪𝑖) = 1. Consider the function

�̄�𝑆
𝑖

: R+ → R+ defined by �̄�𝑆
𝑖
(𝑔) B maxℎ∈𝑆 �̄�ℎ𝑖 (𝑔). It is piecewise-linear with at most 2|𝑆 | pieces, and its

upper convex envelope has at most |𝑆 | + 1 pieces. So, it is left to show that 𝛼𝑥𝔪
𝑖
/𝑛 ≤ �̄�𝑆

𝑖
≤ 𝑥𝔪

𝑖
. The upper

bound is immediate by Definition 2.5. For the lower bound, let 𝑔 > 0. By Lemma 2.6, there exists an

elementary vector ℎ′ ∈ ℰ(A) such that ⟨𝑐, ℎ′⟩ ≥ 0 and �̄�ℎ
′
𝑖
(𝑔) ≥ 𝑥𝔪

𝑖
(𝑔)/𝑛. Since 𝑆 is an 𝛼-primal circuit

cover of 𝑖 with respect to �̄�, there exists a vector ℎ ∈ 𝑆 such that ⟨𝑐, ℎ⟩ ≥ 0 and

�̄�𝑆𝑖 (𝑔) ≥ �̄�
ℎ
𝑖 (𝑔) ≥ 𝛼�̄�ℎ

′
𝑖 (𝑔) ≥

𝛼
𝑛
𝑥𝔪𝑖 (𝑔). □

2.2 Reducing 2VPI LPs to generalized flows
As already noted, solving 2VPI linear programs strongly polynomially reduces to solving minimum-

cost generalized flow problems. We observe that the reduction by Hochbaum [Hoc04] also preserves

the straight line complexities up to a constant factor. Hence, our straight line complexity bound for

generalized flows is directly applicable to 2VPI linear programs. We first state Hochbaum’s reduction.

Theorem 2.10 ([Hoc04]). Given an instance of (LP) with data (A, 𝑏, 𝑐), A ∈ R𝑚×𝑛 such that every column of

A contains at most two nonzero entries, one can in strongly polynomial time construct another instance of (LP)

with data (Ā, 𝑏, 𝑐) such that Ā ∈ R(2𝑚)×(2𝑛), 𝑐 = (𝑐, 𝑐), and every column of Ā contains at most one positive and

at most one negative entry such that the following hold: For every feasible solution 𝑥 ∈ R𝑛 to the original system,

�̄� = (𝑥, 𝑥) ∈ R2𝑛
is a feasible solution to the new system with ⟨𝑐, 𝑥⟩ = ⟨𝑐, �̄�⟩; and for every feasible solution

�̄� = (�̄�′, �̄�′′) to the modified system, (�̄�′′, �̄�′) is also a feasible solution to the modified system, while 𝑥 = (�̄�′+ �̄�′′)/2
is a feasible solution to the original system with ⟨𝑐, 𝑥⟩ = ⟨𝑐, �̄�⟩.

After rescaling the columns in the new system (Ā, 𝑏, 𝑐), we obtain a minimum-cost generalized flow

problem (with possible loops). According to Lemma 2.2, rescaling columns does not affect the SLC�(𝑥𝔪𝑖)
values. The reduction immediately shows that the SLC values of the two systems are within a factor

two. Thus, we obtain:

Lemma 2.11. Given (A, 𝑏, 𝑐) and (Ā, 𝑏, 𝑐) as in Theorem 2.10, let 𝑥𝔪
𝑖

and �̄�𝔪
𝑖

denote the respective max central

path curves. Then,

𝑥𝔪𝑖 ≤ �̄�
𝔪
𝑖 = �̄�𝔪𝑛+𝑖 ≤ 2𝑥𝔪𝑖 ∀𝑖 ∈ [𝑛] .

Consequently, SLC�/2(𝑥𝔪𝑖) ≤ SLC�(�̄�𝔪𝑖), for any � ∈ (0, 1) and 𝑖 ∈ [𝑛].

3 Straight line complexity in terms of the circuit imbalance measure
In this section, we show how the straight-line complexities can be bounded for (LP) in terms of the circuit

imbalance �A. While this is not needed for our main result on generalized flows, where �A may be

arbitrarily large, it gives a simple demonstration of our approach using circuit covers. Let us start with

the definition of �A.

Definition 3.1 (Circuit imbalances). Let A ∈ R𝑚×𝑛 . If ker(A) = {0𝑛} we define the circuit imbalance of A
as �A = 1. Otherwise, we let

�A B max

{���� ℎ𝑖ℎ 𝑗
���� : ℎ ∈ ℰ(A) , 𝑖 , 𝑗 ∈ supp(ℎ)

}
.

Theorem 3.2. Assume 𝒫 ,𝒟 ≠ ∅ for an instance of (LP) given by (A, 𝑏, 𝑐). For each 𝑖 ∈ [𝑛], we have

SLC�(𝑥𝔪𝑖) ≤ min{𝑚, 𝑛 − 𝑚} + 1 for � = 1/(𝑛2�2

A).

Using Lemma 2.9, the theorem follows from the following lemma.

Lemma 3.3. Fix 𝑘 ∈ [𝑛] with 𝑥𝔪
𝑘
(0) < ∞ and let �̄� be a primal optimal solution to (LP) with �̄�𝑘 = 𝑥𝔪

𝑘
(0). Then,

there exists an 1/(𝑛�2

A)-primal circuit cover 𝑆 of 𝑘 with respect to �̄� with |𝑆 | ≤ min{𝑚, 𝑛 − 𝑚} + 1.

Proof. Let us denote � = �A. We can clearly pick the primal optimal solution �̄� as in the statement to

be a basic solution.let 𝑠 be any dual basic optimal solution. Thus, supp(�̄�) ≤ 𝑚 and supp(𝑠) ≤ 𝑛 − 𝑚.

By the complementarity of �̄� and 𝑠, we can reorder the index set such that �̄�1 ≥ �̄�2 ≥ · · · ≥ �̄�𝑛 and

𝑠1 ≤ 𝑠2 ≤ · · · ≤ 𝑠𝑛 . Let 𝑝 B max{𝑖 ∈ [𝑛] : �̄�𝑖 > 0} and 𝑑 B min{𝑖 ∈ [𝑛] : 𝑠𝑖 > 0}. Clearly, 𝑝 < 𝑑. By the

basic choice of �̄� and 𝑠, 𝑝 ≤ 𝑚 and 𝑑 ≥ 𝑛 − 𝑚 + 1.

11

We now construct the circuit cover 𝑆 of 𝑘. Note that for any circuit 𝐶 ∈ 𝒞(A) and any elementary

vector ℎ ∈ ℰ(A) such that ⟨𝑐, ℎ⟩ ≥ 0 and supp(ℎ) = 𝐶, the ℎ-curve �̄�ℎ is the same. Given a circuit 𝐶 ∈ 𝒞′,
we define ℎ𝐶 ∈ ℰ(A) as a fixed elementary vector with supp(ℎ𝐶) = 𝐶 normalized such that ℎ𝑘 ∈ {0, 1}.
Further, let

𝒞′ B {𝐶 ∈ 𝒞(A) :

〈
𝑐, ℎ𝐶

〉
≥ 0 , ℎ𝐶

𝑘
= 1 , ℎ𝐶𝑗 ≥ 0 ∀𝑝 < 𝑗 ≤ 𝑛} .

Note that if 𝒞′ = ∅ then Lemma 2.6 implies 𝑥𝔪
𝑘
(𝑔) = 𝑥𝔪

𝑘
(0) for every 𝑔 ≥ 0 and hence SLC1(𝑥𝔪𝑘) = 1. For

the rest, we assume 𝒞′ ≠ ∅.
We will define the cover 𝑆 in terms of the support circuits. As the first step, let us define a ‘combina-

torial signature’ of circuits. Given a circuit 𝐶 ∈ 𝒞′, let

𝐼𝑝(𝐶) B max{1 ≤ 𝑖 ≤ 𝑝 : ℎ𝐶𝑖 < 0} and 𝐼𝑑(𝐶) B max{𝑑 ≤ 𝑗 ≤ 𝑛 : ℎ𝐶𝑗 > 0}.

We define 𝐼𝑝(𝐶) = 0 if the first set is empty and 𝐼𝑑(𝐶) = 0 if the second set is empty. We say that a circuit

𝐶 ∈ 𝒞′ is dominated if there exists a circuit 𝐶′ ∈ 𝒞′ such that

𝐼𝑝(𝐶) ≥ 𝐼𝑝(𝐶′) and 𝐼𝑑(𝐶) ≥ 𝐼𝑑(𝐶′) ,

and at least one of the two inequalities above is strict. Let𝒟 ⊆ 𝒞′ be a maximal collection of undominated

circuits with distinct (𝐼𝑝(𝐶), 𝐼𝑑(𝐶)), and define

𝑆 B {ℎ𝐶 : 𝐶 ∈ 𝒟} .

Clearly, |𝑆 | = |𝒟| ≤ min(𝑝 + 1, 𝑛 − 𝑑+ 2) ≤ min{𝑚, 𝑛 −𝑚} + 1. We show that 𝑆 is an 1/(𝑛�2)-circuit cover

of 𝑖 with respect to �̄�.

To see this, consider any ℎ ∈ ℰ(A) with ⟨𝑐, ℎ⟩ ≥ 0. After normalization, either ℎ = ℎ𝐶 or ℎ = −ℎ𝐶
for a circuit 𝐶 ∈ 𝒞(A). We can assume the first case, as in the latter case �̄�ℎ

𝑘
(𝑔) ≤ �̄�𝑘 for 𝑔 ≥ 0. Hence,

�̄�ℎ would be 1-dominated by ℎ𝐶 on 𝑘 for any 𝐶 ∈ 𝒞′. Moreover, we can assume 𝐶 ∈ 𝒞′, as otherwise

�̄�ℎ
𝑘
(𝑔) = �̄�𝑘 for all 𝑔 ≥ 0.

By definition, there is a 𝐶′ ∈ 𝒟 such that 𝐼𝑝(𝐶) ≥ 𝐼𝑝(𝐶′) and 𝐼𝑑(𝐶) ≥ 𝐼𝑑(𝐶′). For ℎ = ℎ𝐶 and ℎ′ = ℎ𝐶
′
,

our goal is to show that

�̄�ℎ
𝑘
(𝑔) ≤ 𝑛�2 �̄�ℎ

′

𝑘
(𝑔) ∀𝑔 ≥ 0 . (6)

Let 𝑖′ = 𝐼𝑝(𝐶′) ≤ 𝐼𝑝(𝐶) = 𝑖 and 𝑗′ = 𝐼𝑑(𝐶′) ≤ 𝐼𝑑(𝐶) = 𝑗. By the definition of � = �A, we have

1

�
≤ |ℎℓ |, |ℎ′ℓ | ≤ � , ∀ℓ ∈ [𝑛] . (7)

Noting that ⟨𝑐, ℎ⟩ = ⟨𝑠, ℎ⟩ and ⟨𝑐, ℎ′⟩ = ⟨𝑠, ℎ′⟩ because of ℎ, ℎ′ ∈ ker(A) and 𝑐 − 𝑠 ∈ ker(A)⊥. Using

ℎ𝑘 = ℎ′
𝑘
= 1, we can write

�̄�ℎ
𝑘
(𝑔) = �̄�𝑘 +min

(
𝑔

⟨𝑠, ℎ⟩ , min

ℓ∈supp
−(ℎ)

�̄�ℓ

|ℎℓ |

)
and �̄�ℎ

′

𝑘
(𝑔) = �̄�𝑘 +min

(
𝑔

⟨𝑠, ℎ′⟩ , min

ℓ∈supp
−(ℎ′)

�̄�ℓ

|ℎ′
ℓ
|

)
.

We show that

⟨𝑠, ℎ′⟩ ≤ 𝑛�2 ⟨𝑠, ℎ⟩ and min

ℓ∈supp
−(ℎ)

�̄�ℓ

|ℎℓ |
≤ 𝑛�2

min

ℓ ′∈supp
−(ℎ′)

�̄�ℓ ′

|ℎ′
ℓ ′ |
. (8)

Let us start by showing the first inequality. If 𝑗′ = 0, then ⟨𝑠, ℎ′⟩ = 0 and this trivially holds.Otherwise,

by the definition of 𝑗 = 𝐼𝑑(𝐶) ≥ 𝑗′ = 𝐼𝑑(𝐶′) ≥ 𝑑 and using (7), we get

⟨𝑠, ℎ′⟩ ≤
𝑗′∑
ℓ=𝑑

𝑠ℓ ℎ
′
ℓ ≤ 𝑛�𝑠 𝑗′ ≤ 𝑛�

2𝑠 𝑗ℎ 𝑗 ≤ 𝑛�2 ⟨𝑠, ℎ⟩

whenever 𝑗′ ≥ 𝑑; the last inequality follows since ℎℓ ≥ 0 for all ℓ > 𝑝 since 𝐶 ∈ 𝒞′.
Let us now verify the second inequality in (8). Let ℓ and ℓ ′ denote the minimizers, respectively. Since

𝐶 ∈ 𝒞, it follows that either 𝑖 = 0, that is, supp
−(ℎ) = ∅ or 1 ≤ ℓ ≤ 𝑖 = 𝐼𝑝(𝐶); similarly for ℎ′. If 𝑖′ = 0

then the expression for ℎ′ is∞. Hence, we can assume 1 ≤ ℓ ′ ≤ 𝑖′ ≤ 𝑖. We get

𝑥ℓ ′

|ℎℓ ′ |
≥ 𝑥ℓ ′

�
≥ 𝑥𝑖

�
≥ 1

�2

· 𝑥𝑖|ℎ𝑖 |
≥ 1

�2

· �̄�ℓ|ℎℓ |
,

where the first inequality uses (7); the second inequality uses ℓ ′ ≤ 𝑖 and the ordering of the indices; the

third inequality uses again (7); and the last inequality uses the choice of ℓ as the minimizer, noting that

ℎ𝑖 < 0. □

12

Remark 3.4. We note that, together with Theorem 1.3, we obtain a bound𝑂(min{𝑚, 𝑛−𝑚}𝑛1.5
log(�A+𝑛))

on the number of iterations of the SLLS Algorithm in [ADL
+
23]. In comparison, the crossover analysis

in [VY96] yields an 𝑂(𝑛3.5
log(�A + 𝑛)) iteration bound. In [DHNV23], an amortized version of the

crossover analysis yields an 𝑂(𝑛2.5
log(𝑛) log(�A + 𝑛)) bound; this is also applicable to earlier LLS

algorithms such as the one in [VY96]. Thus, our iteration bound improves on the state of the art,

even if the time complexity per iteration of the SLLS steps is higher than for the LLS steps. Further,

using the scale-invariance of straight line complexities (Lemma 2.2), the bound immediately becomes

𝑂(min{𝑚, 𝑛 − 𝑚}𝑛1.5
log(�★A + 𝑛)), where �★A is the smallest value of �AD taken over positive diagonal

matrices D ∈ R𝑛×𝑛 .

4 Minimum-cost generalized flow
Let 𝐺 = (𝑉, 𝐸) be a directed multigraph with arc capacities 𝑢 ∈ (R++ ∪ {∞})𝐸 and gain factors 𝛾 ∈ R𝐸++.
A flow in 𝐺 is any nonnegative vector 𝑥 ∈ R𝐸+. Note that a flow is allowed to violate arc capacities. For a

node 𝑖 ∈ 𝑉 , we denote 𝛿in(𝑖) and 𝛿out(𝑖) as the set of incoming and outgoing arcs of 𝑖 respectively. The

net flow of 𝑥 at node 𝑖 is defined as

∇𝑖𝑥 B
∑

𝑒∈𝛿in(𝑖)
𝛾𝑒𝑥𝑒 −

∑
𝑒∈𝛿out(𝑖)

𝑥𝑒 .

A flow 𝑥 is a circulation if ∇𝑖𝑥 = 0 for all 𝑖 ∈ 𝑉 . For 𝑖 , 𝑗 ∈ 𝑉 , we denote by 𝐸𝑖 , 𝑗 ⊆ 𝐸 the subset of arcs with

tail 𝑖 and head 𝑗.
An instance of the minimum-cost generalized flow problem is given by a directed multigraph 𝐺 = (𝑉, 𝐸)

with node demands 𝑏 ∈ R𝑉 , arc costs 𝑐 ∈ R𝐸, capacities 𝑢 ∈ (R++ ∪ {∞})𝐸 and gain factors 𝛾 ∈ R𝐸++. It

can be formulated as the following LP:

min ⟨𝑐, 𝑥⟩
∇𝑖𝑥 = 𝑏𝑖 ∀𝑖 ∈ 𝑉

0 ≤ 𝑥 ≤ 𝑢 .
(MGF)

Throughout this section, we will use 𝑛 for the number of nodes of 𝐺 and 𝑚 for the number of arcs; note

that applied to (MGF), this is the reverse of the convention used for general LPs. Let 𝐸𝑐 ⊆ 𝐸 denote the subset

of arcs with finite capacities. We define 𝑚𝑐 := |𝐸𝑐 | for the number of finite capacity arcs.

We assume that (MGF) has a finite optimum, since otherwise the max central path does not exist. Let

𝑟 and 𝑠 be the dual slack variables corresponding to the upper bound and nonnegativity constraints in

(MGF) respectively. For every � ≥ 0, the primal max central path is given by

∀𝑒 ∈ 𝐸, 𝑥𝔪𝑒 (�) B max 𝑥𝑒

∇𝑖𝑥 = 𝑏𝑖 ∀𝑖 ∈ 𝑉
0 ≤ 𝑥 ≤ 𝑢

⟨𝑟∗ , 𝑢𝐸𝑐 − 𝑥𝐸𝑐 ⟩ + ⟨𝑠∗ , 𝑥⟩ ≤ �

∀𝑒 ∈ 𝐸𝑐 , 𝑥𝔪←
𝑒
(�) B max 𝑢𝑒 − 𝑥𝑒

∇𝑖𝑥 = 𝑏𝑖 ∀𝑖 ∈ 𝑉
0 ≤ 𝑥 ≤ 𝑢

⟨𝑟∗ , 𝑢𝐸𝑐 − 𝑥𝐸𝑐 ⟩ + ⟨𝑠∗ , 𝑥⟩ ≤ � ,

(MCP-Flow)

where (𝑟∗ , 𝑠∗) ≥ 0 is any dual optimal solution to (MGF). Our goal in this section is to prove the following

bound on the SLC of each coordinate of the primal max-central path.

Theorem 4.1. Given an instance of minimum-cost generalized flow with a finite optimum,

SLC�(𝑥𝔪𝑒) = 𝑂(𝑚(𝑚𝑐 + 𝑛)) for every arc 𝑒 ∈ 𝐸

and

SLC�(𝑥𝔪←
𝑒
) = 𝑂(𝑚(𝑚𝑐 + 𝑛)) for every arc 𝑒 ∈ 𝐸𝑐

for some � = Ω(1/(𝑚2𝑛)).

13

We can reduce to the case where 𝑥∗𝑒 = 𝑢𝑒 for all supp
−(𝑐) and 𝑥∗𝑒 = 0 for all 𝑒 ∈ supp

+(𝑐), for every

primal optimal solution 𝑥∗ to (MGF). This is achieved by replacing 𝑐 with 𝑐𝑒 = 𝑠∗𝑒 − 𝑟∗𝑒 for all 𝑒 ∈ 𝐸𝑐 , and

𝑐𝑒 = 𝑠∗𝑒 for all 𝑒 ∈ 𝐸 \ 𝐸𝑐 , where (𝑟∗ , 𝑠∗) is any dual optimal solution to (MGF). Note that ⟨𝑟∗ , 𝑠∗
𝐸𝑐
⟩ = 0.

This has no impact on 𝑥𝔪 because (𝑟∗ , 𝑠∗) remains a dual optimal solution. Summarizing, without loss

of generality we assume the following going forward.

Assumption 4.2. Every primal optimal solution 𝑥∗ to (MGF) satisfies 𝑥∗𝑒 = 𝑢𝑒 for all 𝑒 ∈ supp
−(𝑐) and 𝑥∗𝑒 = 0

for all 𝑒 ∈ supp
+(𝑐).

4.1 Reduction to the generalized circulation problem
It will be convenient for our purposes to work not with the original minimum cost generalized flow

problem, but a derived instance of minimum-cost generalized circulation. The latter problem is a special

case of the former problem in which all the node demands are zero. The goal is to find a minimum-cost

circulation, which has net flow zero everywhere, satisfying the capacities.

min ⟨𝑐, 𝑥⟩
∇𝑖𝑥 = 0 ∀𝑖 ∈ 𝑉

0 ≤ 𝑥 ≤ 𝑢 .
(MGC)

For our purposes, we will convert to a trivial instance of the minimum-cost generalized circulation

problem where all costs are nonnegative, meaning that the optimal solution is 𝑥∗ = 0. The straight line

complexity of the max-central path cannot decrease, however. We will make use of the residual graph:

Definition 4.3 (Residual graph). Let 𝑥∗ be any primal feasible solution to (MGF). The residual graph with

respect to 𝑥∗ is the multigraph 𝐺𝑥∗ with vertex set 𝑉 and arc set {𝑒 ∈ 𝐸 : 𝑥∗𝑒 < 𝑢𝑒} ∪ {←𝑒 : 𝑒 ∈ supp(𝑥∗)},
where

←
𝑒 is an arc from 𝑗 to 𝑖 whenever 𝑒 ∈ 𝐸𝑖 , 𝑗 . Every arc 𝑒 ∈ 𝐸(𝐺𝑥∗) ∩ 𝐸 retains the same gain factor

𝛾𝑒 and cost 𝑐𝑒 , but has capacity 𝑢𝑒 − 𝑥∗𝑒 . For every 𝑒 ∈ supp(𝑥∗), its reverse arc
←
𝑒 receives gain factor

𝛾←
𝑒
B 1/𝛾𝑒 , cost 𝑐←

𝑒
B −𝑐𝑒/𝛾𝑒 , and capacity 𝑢←

𝑒
B 𝛾𝑒𝑥∗𝑒 .

Note that given an instance of (MGF) satisfying Assumption 4.2, and choosing 𝑥∗ to be a primal

optimal solution, the resulting instance of (MGC) on 𝐺𝑥∗ has the property that all costs are nonnegative,

and 0 is an optimal solution. The proof is deferred to Appendix A.

Lemma 4.4. Let (𝐺 = (𝑉, 𝐸), 𝛾, 𝑐, 𝑢, 𝑏) be an instance of minimum-cost generalized flow as given by (MGF)

satisfying Assumption 4.2, and let 𝑥∗ be any primal optimal solution. Let 𝑥𝔪 be the corresponding primal max-

central path as given by (MCP-Flow). Consider the instance of minimum-cost generalized circulation on the

residual graph 𝐺𝑥∗ , and let �̂�𝔪 be the corresponding primal max-central path. For any 𝑒 ∈ 𝐸 and � ∈ (0, 1),

(i) If 𝑥∗𝑒 = 𝑢𝑒 , then SLC�(𝑥𝔪𝑒) = 1.

(ii) If 𝑥∗𝑒 < 𝑢𝑒 , then SLC�/2(𝑥𝔪𝑒) ≤ SLC�(�̂�𝔪𝑒).

(iii) If 𝑒 ∈ 𝐸𝑐 and 𝑥∗𝑒 > 0, then SLC�/2(𝑥𝔪←
𝑒
) ≤ SLC�(�̂�𝔪←

𝑒
).

(iv) If 𝑒 ∈ 𝐸𝑐 and 𝑥∗𝑒 = 0, then SLC�(𝑥𝔪←
𝑒
) = 1.

We consider the generalized circulation problem obtained from the described reduction from now

on. As such, we use (𝐺 = (𝑉, 𝐸), 𝛾, 𝑐, 𝑢) to refer to this instance, which has nonnegative costs and where

0 is an optimal solution. As already mentioned, we write 𝑛 = |𝑉 | and 𝑚 = |𝐸 |. Let 𝐹 denote the set of

finite capacity arcs in this instance, and define �̄� B |𝐹 |. Note that if we begin with an instance of (MGF)

with 𝑚𝑐 finite capacity arcs, and apply the reduction using a basic optimal solution 𝑥∗ to (MGF), then

| supp(𝑥∗)| ≤ |𝑉 |, and so �̄� ≤ 𝑚𝑐 + 𝑛.

4.2 Simple functions
Recalling the definition of an ℎ-curve, and particularly (5), we see that these curves have a particularly

simple form: they are linear for some interval starting at 0, and then constant for the remainder. The

following definition is a multivariate extension of this simple functional form.

14

Definition 4.5. Fix some 𝑛 ≥ 1. We say that a function 𝑓 : R𝑛+ → R+ is 1-simple if it can be written as

𝑓 (𝑥) = min(𝑣0 , 𝑣1𝑥1 , 𝑣2𝑥2 , . . . , 𝑣𝑛𝑥𝑛)

for some 𝑣0 , 𝑣1 , . . . , 𝑣𝑛 ∈ R+ ∪ {∞}. Say that 𝑓 is 𝑘-simple if it is the maximum of at most 𝑘 1-simple

functions (and just “simple” if it is 𝑘-simple for some 𝑘).

Let us connect univariate 𝑘-simple functions to the general approach discussed in Section 2.1. Given

an optimal primal solution �̄�, coordinate 𝑖, and an 𝛼-primal circuit cover 𝑆 of 𝑖 with respect to �̄�,

consider the function �̄�𝑆 :=
∨
ℎ∈𝑆 �̄�

ℎ
; this is a |𝑆 |-simple function by construction. Lemma 2.9 shows

that (𝛼/𝑛)𝑥𝔪
𝑖
≤ �̄�𝑆 ≤ 𝑥𝔪

𝑖
. The bound on SLC𝛼/𝑛(𝑥𝔪𝑖) that results is abstractly a consequence of �̄�𝑆 being

|𝑆 |-simple.

The primary reason we introduce the notion of simple functions here is that we will make use of the

following “composition” lemma. It shows that a bivariate simple function composed with a univariate

simple function in a certain way yields another univariate simple function. We will later apply this with

simple functions obtained from dominating collections of walks and other objects.

Lemma 4.6. Suppose 𝑓 : R2

+ → R+ is 𝑘1-simple and 𝑔 : R+ → R+ is 𝑘2-simple. Then ℎ : R+ → R+ defined by

ℎ(𝑥) = 𝑓 (𝑥, 𝑔(𝑥)) is 𝑂(𝑘1 + 𝑘2)-simple.

We postpone the proof of this statement, and the further basic statements about simple functions that

follow, to Appendix A.

Lemma 4.7. Given 𝑓1 , . . . , 𝑓𝑟 : R𝑛+ → R+, with 𝑓𝑖 being 𝑘𝑖-simple for each 𝑖, then

∨
𝑖 𝑓𝑖 is (𝑘1+𝑘2+. . .+𝑘𝑟)-simple.

Proof. Immediate. □

Lemma 4.8. Given 𝑓1 , . . . , 𝑓𝑟 : R+ → R+, with 𝑓𝑖 being 𝑘𝑖-simple for each 𝑖, then

∧
𝑖 𝑓𝑖 is (𝑘1+𝑘2+. . .+𝑘𝑟)-simple.

The following essentially says that there is a unique minimal description of any simple function as the

maximum of 1-simple functions.

Lemma 4.9. Suppose 𝑓 : R𝑛+ → R+ is 𝑘-simple but not (𝑘 − 1)-simple, with 𝑓 =
∨
𝑖≤𝑘 𝑓

(𝑖)
for 1-simple functions

𝑓 (𝑖). Then for any description of 𝑓 as 𝑓 =
∨
𝑖≤ℓ 𝑔

(𝑖)
for 1-simple functions 𝑔(𝑖), there is a set 𝑆 ⊆ {1, 2, . . . , ℓ } with

|𝑆 | = 𝑘 so that { 𝑓 (𝑖) : 𝑖 ≤ 𝑘} = {𝑔(𝑖) : 𝑖 ∈ 𝑆}.

4.3 Some flow-related definitions
Definition 4.10 (Walk, trail, path and cycle). A walk is a sequence 𝑊 = (𝑣0 , 𝑒1 , . . . , 𝑒ℓ , 𝑣ℓ) where 𝑒𝑖 is an

arc from 𝑣𝑖−1 to 𝑣𝑖 for all 𝑖 ∈ [ℓ]. It is closed if 𝑣0 = 𝑣ℓ , and open otherwise. If 𝑒𝑖 ≠ 𝑒 𝑗 for all 𝑖 ≠ 𝑗, then it is

called a trail. If 𝑣0 = 𝑣ℓ and 𝑣𝑖 ≠ 𝑣 𝑗 for all 0 ≤ 𝑖 < 𝑗 ≤ ℓ , then it is called a cycle at 𝑣0.

The gain of𝑊 is

𝛾(𝑊) B
ℓ∏
𝑖=1

𝛾𝑒𝑖 ,

with the convention 𝛾(𝑊) B 1 if ℓ = 0. We call 𝑊 flow-generating if 𝛾(𝑊) > 1, conservative if 𝛾(𝑊) = 1,

and flow-absorbing if 𝛾(𝑊) < 1.

For an 𝑟-𝑠 walk𝑄 and an 𝑠-𝑡 walk𝑊 , we denote𝑄 ⊕𝑊 as the concatenated 𝑟-𝑡 walk. If𝑊 ′ is a prefix

or suffix of𝑊 , we denote𝑊 \𝑊 ′ as the subwalk obtained by removing𝑊 ′ from𝑊 .

Definition 4.11 (Objects). A flow-generating object at 𝑡 ∈ 𝑉 is a pair (𝐶,𝑊)where 𝐶 is a flow-generating 𝑠-𝑠
walk for some 𝑠 ∈ 𝑉 and𝑊 is an 𝑠-𝑡 walk. It is simple if 𝐶 is a cycle,𝑊 is a path, and𝑉(𝐶) ∩𝑉(𝑊) = {𝑠}.

A flow-absorbing object at 𝑠 ∈ 𝑉 is a pair (𝑊, 𝐷) where 𝑊 is an 𝑠-𝑡 walk for some 𝑡 ∈ 𝑉 and 𝐷 is a

flow-absorbing 𝑡-𝑡 walk. It is simple if𝑊 is a path, 𝐷 is a cycle, and 𝑉(𝑊) ∩𝑉(𝐷) = {𝑡}.
A conservative object is a triple (𝐶,𝑊, 𝐷)where either

(i) for some 𝑠, 𝑡 ∈ 𝑉 , 𝐶 is a flow-generating 𝑠-𝑠 walk, 𝑊 is an 𝑠-𝑡 walk, and 𝐷 is a flow-absorbing 𝑡-𝑡
walk; or

(ii) 𝐶 is a conservative closed 𝑠-𝑠-walk for some 𝑠,𝑊 is the trivial path at 𝑠, and 𝐷 = 𝐶.

The object is simple in case (ii) if 𝐶 is a cycle, and in case (i) if (𝐶,𝑊) and (𝑊, 𝐷) are simple, and

15

- 𝑉(𝐶) ∩𝑉(𝐷) = ∅ in the case that 𝐸(𝑊) ≠ ∅; or

- the intersection of 𝐶 and 𝐷 is a path, in the case that 𝐸(𝑊) = ∅.

(Case (ii) for a conservative object may look somewhat strange, but it essentially views a conservative

cycle as a degenerate bicycle; this will be convenient in covering all cases with a single argument.)

We extend the concatentation operator ⊕ to objects in the natural way. For a flow-generating object

𝑈1 = (𝐶1 ,𝑊1) at 𝑠 and an 𝑠-𝑡 walk𝑄, we use𝑈1 ⊕𝑄 to denote the flow-generating object at 𝑡 obtained by

combining𝑈1 and 𝑄, i.e., the object (𝐶1 ,𝑊1 ⊕ 𝑄). Similarly, for a flow-absorbing object𝑈2 = (𝑊2 , 𝐶2) at

𝑡, 𝑄 ⊕ 𝑈2 := (𝑄 ⊕𝑊2 , 𝐶2). And if 𝑈1 = (𝐶1 ,𝑊1) and 𝑈2 = (𝐶2 ,𝑊2) are respectively flow-generating and

flow-absorbing objects at the same node 𝑠, then𝑈1 ⊕𝑈2 is the conservative object (𝐶1 ,𝑊1 ⊕𝑄 ⊕𝑊2 , 𝐶2).

Definition 4.12 (Recurrence). A walk 𝑊 is called 𝑘-recurrent if every arc appears at most 𝑘 times as a

step in 𝑊 . Similarly, an object 𝑈 is 𝑘-recurrent if every arc appears at most 𝑘 times in total as a step in

some constituent walk of𝑈 .

Note that 𝑘-recurrent only upper bounds the number of repetitions of an arc; for 𝑘 ≤ ℓ , any 𝑘-recurrent

walk is also ℓ -recurrent. When considering flows supported on the arc set of a walk, it will be important

to be able distinguish between flow on different “steps” of the walk that involve the same arc of the

graph. We do this formally by defining the “splitting” of a walk, which simply makes parallel copies of

arcs to turn the walk into a corresponding trail.

Definition 4.13 (Splitting). Let �̃� = (𝑉, �̃�) be the directed multigraph with the same node set as 𝐺, but

with 10𝑛 parallel copies of each arc, each with the same gain factor, cost and capacity as the corresponding

arc in 𝐺. (The choice of 10𝑛 is just to be sufficiently large for our purposes.) For each 𝑒 ∈ 𝐸, we use

𝑒1 , 𝑒2 , . . . , 𝑒10𝑛
to index the corresponding copies in �̃�.

Given a 10𝑛-recurrent walk 𝑊 = (𝑣0 , 𝑒1 , 𝑣1 , 𝑒2 , . . . , 𝑒𝑟 , 𝑣𝑟) in 𝐺, we define a splitting of 𝑊 to be a trail

�̃� = (𝑣0 , 𝑒
𝜎1

1
, 𝑣2 , 𝑒

𝜎2

2
, . . . , 𝑒

𝜎𝑟
𝑟 , 𝑣𝑟) in �̃�, where for each 𝑖 ≠ 𝑗 with 𝑒𝑖 = 𝑒 𝑗 , 𝜎𝑖 ≠ 𝜎𝑗 .

Given an object𝑈 , a splitting of𝑈 is a tuple of trails in �̃�, each being a splitting of the corresponding

walk in𝑈 , and where in addition the trails are arc-disjoint.

Note that up to trivial relabelling of copies of arcs, the splitting of a walk or object is unique.

For an object or walk 𝑈 , we use 𝑉(𝑈) and 𝐸(𝑈) to denote its node set and arc set respectively, and

also use 𝐸(�̃�) ⊆ �̃� to denote the arc set of a splitting �̃� .

Definition 4.14 (Induced flows). Given an 𝑠-𝑡-walk 𝑊 with splitting �̃� , we say that �̃� ∈ R�̃�+ is a flow

induced by �̃� if �̃� is nonzero, supported on 𝐸(�̃�), and 𝛾𝑒 �̃�𝑒 = �̃� 𝑓 for any pair of consecutive arcs

𝑒 , 𝑓 ∈ 𝐸(�̃�)where 𝑒 comes before 𝑓 in �̃� . We say that �̄� ∈ R𝐸+ is a flow induced by𝑊 if �̄� is the projection

onto 𝐺 of a flow �̃� induced by a splitting of𝑊 , that is, �̄�𝑒 =
∑
𝑗 �̃�𝑒 𝑗 .

Given a flow-generating object 𝑈 = (𝐶,𝑊) at 𝑡, a flow induced by a splitting �̃� = (�̃� , �̃�) is a vector

�̃� ∈ R�̃�+ that can be written as a sum of a flow induced by �̃� and a flow induced by �̃� , and where in

addition ∇𝑣 �̃� = 0 for all 𝑣 ≠ 𝑡. The definition for flow-absorbing objects is completely analogous; and

for a conservative object 𝑈 = (𝐶,𝑊, 𝐷), �̃� should satisfy ∇�̃� = 0, and be a sum of flows induced by the

components of a splitting of𝑈 .

We remark that all flows induced by an object are the same up to scaling3.

Induced flows have no particular scaling. The following will be a crucial notion: it is the largest

possible flow induced by a walk (or object), with the property that on each step of the walk or object,

the flow does not exceed the capacity of the arc, and the cost of that step (flow times arc cost) does not

exceed a given bound �.

Definition 4.15. Let 𝑊 be a walk, with �̃� a splitting of 𝑊 and �̃� a flow induced by �̃� . Define

𝑥�̃� : R+ → R�̃�+ to be the function that maps 𝑥�̃� (�) to the largest scaling of �̃� so that �̃�𝑎 ≤ 𝑢𝑎 and 𝑐𝑎 �̃�𝑎 ≤ �

for each 𝑎 ∈ 𝐸(�̃�). Then let 𝑥𝑊 : R+ → R𝐸+ be the projection of 𝑥�̃� onto 𝐺, i.e., 𝑥𝑊𝑒 (�) =
∑
𝑗 𝑥

�̃�
𝑒 𝑗
(�).

We define 𝑥�̃� (�) and 𝑥𝑈 (�) for an object𝑈 with splitting �̃� in identical fashion.

Note that 𝑥𝑊 (�) and 𝑥𝑈 (�) do not depend on the choice of splitting, and so are well-defined.

3Specifically for the case of a conservative object𝑈 = (𝐶, {𝑠}, 𝐶) for a conservative 𝑠-𝑠-walk 𝐶, a flow �̃� induced by a splitting �̃�
is exceptionally not unique up to scaling, in that flow can be arbitrarily shifted between the two copies of 𝐶. But this is unimportant,

and moreover the flow induced by𝑈 is still unique up to scaling.

16

Remark 4.16. This definition is closely related to the definition of ℎ-curves for general LPs provided in

Definition 2.5. It is more general, in that we define 𝑥𝑈 for objects that are not conservative, and hence

which do not lie in the kernel. If we consider a conservative object 𝑈 , and take ℎ to be a flow induced

by 𝑈 , then 𝑥𝑈 and the ℎ-curve 0ℎ are “close”: if 𝑈 is 𝑘-recurrent, then
1

𝑘𝑚
𝑥𝑈 (�) ≤ 0ℎ(�) ≤ 𝑥𝑈 (�). The

reason that they are not identical, only within a factor 𝑘𝑚, is simply because of the per-step nature of the

capacity bounds (meaning 𝑥𝑈 (�) might overload an arc by a factor 𝑘) and cost bounds (meaning 𝑥𝑈 (�)
could have total cost 𝑘𝑚�, given each arc could in principle contribute a cost of 𝑘�).

4.4 SLC bounds via domination
We will follow exactly the general plan discussed in Section 2.1: we demonstrate the existence of a small

primal circuit cover. Recall the notion of an elementary vector from Definition 2.3. The following is

precisely this same notion, in the context of generalized circulations.

Definition 4.17 (Elementary circulation). A nonzero circulation 𝑓 in𝐺 is elementary if supp(𝑓) is inclusion-

wise minimal, i.e., there is no nonzero circulation 𝑓 ′ in 𝐺 with supp(𝑓 ′) ⊊ supp(𝑓).

The following motivates our definitions of simple objects, and in particular simple conservative

objects. We postpone the proof to the appendix.

Lemma 4.18. A flow is an elementary circulation if and only if it is induced by a simple conservative object.

Let ℰ denote the collection of simple conservative objects. For any 𝑒 ∈ 𝐸 and collection 𝒰 of

conservative objects, we define 𝑥𝒰𝑒 :=
∨
𝑈∈𝒰 𝑥

𝑈
𝑒 . The following is essentially Lemma 2.9 for this setting,

taking into account the scaling necessary to make 𝑥𝑈 (�) feasible for cost bound �.

Lemma 4.19. Fix any edge 𝑒 ∈ 𝐸. Suppose that𝒟 is a collection of 𝑘-recurrent conservative objects that dominate

ℰ at 𝑒, in that 𝑥𝒟𝑒 ≥ 𝛼𝑥ℰ𝑒 for some constant 𝛼. Then SLC𝛼/(𝑚2𝑘)(𝑥𝔪𝑒) ≤ |𝒟|.

Proof. Consider the collection 𝒟 guaranteed by the previous theorem. For any �, 𝑥𝔪(�) can be decom-

posed into at most 𝑚 elementary circulations: 𝑥𝔪(�) = ∑𝑟
𝑖=1

𝑥(𝑖), for some 𝑟 ≤ 𝑚. Each elementary

circulation 𝑥(𝑖) is a flow induced by a simple object 𝐶(𝑖) ∈ ℰ, and 𝑥(𝑖) ≤ 𝑥𝐶(𝑖)(�) (it is an inequality rather

than an equality due to the ℓ∞ cost bound in the definition of 𝑥𝐶
(𝑖)(�)). Hence 𝑥ℰ𝑒 ≥ 𝑥𝔪𝑒 /𝑚. Since all

circuits in𝒟 are 𝑘-recurrent, 𝑥𝐶(�)/(𝑚𝑘) is a feasible generalized circulation of cost at most �, for every

𝐶 ∈ 𝒟. Thus
1

𝑚𝑘
𝑥𝒟𝑒 (�) ≤ 𝑥𝔪𝑒 (�) for all �.

So

𝛼

𝑚2𝑘
𝑥𝔪𝑒 ≤

𝛼
𝑚𝑘

𝑥ℰ𝑒 ≤
1

𝑚𝑘
𝑥𝒟𝑒 ≤ 𝑥𝔪𝑒 ,

showing that SLC𝛼/(𝑚2𝑘)(𝑥𝔪𝑒) ≤ |𝒟| + 1. □

As such, our goal is now to demonstrate such a dominating collection 𝒟; we will do this with

|𝒟| = 𝑂(𝑚�̄�) and 𝑘 = 𝑂(𝑛).

4.5 Path domination
The results in this section are the core of our analysis. They concern a strong “bivariate” notion of

domination.

Definition 4.20. Given two distinct nodes 𝑠 and 𝑡, and an 𝑠-𝑡-walk𝑊 , let

®𝑓𝑊 (�, 𝑟) := min

(
∇𝑡𝑥𝑊 (�), 𝛾(𝑊)𝑟

)
. (9)

In other words,
®𝑓𝑊 (�, 𝑟) is the maximum amount of flow that can be sent to 𝑡 with a flow induced by𝑊 ,

given that each step respects the cost and capacity bounds, and that there are only 𝑟 units available at 𝑠
to be sent.

Similarly, let

←
𝑓𝑊 (�, 𝑟) := min

(
−∇𝑠𝑥𝑊 (�), 𝛾(𝑊)−1𝑟

)
;

this is the maximum amount of flow we can send from 𝑠 subject to the cost and capacity bounds, given

that at most 𝑟 units arrive at 𝑡.

17

The function
®𝑓𝑊 for a given 𝑠-𝑡-walk𝑊 is a 1-simple function. We can write

®𝑓𝑊 (�, 𝑟) = min{�/cost(𝑊), 𝛾(𝑊)𝑟, limit(𝑊)},

where cost(𝑊) is the largest cost of a step of the walk per unit of flow measured at 𝑡; 𝛾(𝑊) is the gain of

the walk; and limit(𝑊) is the maximum amount of flow that can arrive at 𝑡 given that each step respects

the capacity. Similarly,

←
𝑓𝑊 is 1-simple.

Definition 4.21. We say that an 𝑠-𝑡-walk𝑊 ′ dominates an 𝑠-𝑡-walk𝑊 if 𝛾(𝑊 ′) ≥ 𝛾(𝑊) and∇𝑡𝑥𝑊
′ ≥ ∇𝑡𝑥𝑊 .

We say that𝑊 ′ strongly dominates𝑊 if in addition, −∇𝑠𝑥𝑊
′ ≤ −∇𝑠𝑥𝑊 .

If𝑊 ′ dominates𝑊 , then by (9), clearly
®𝑓𝑊′ ≥ ®𝑓𝑊 ; indeed this is equivalent.

Write 𝒫(𝑠, 𝑡) for the set of all 𝑠-𝑡-paths for any distinct 𝑠, 𝑡 ∈ 𝑉 . Given a collection𝒲 of 𝑠-𝑡-walks,

define

®𝑓𝒲 :=
∨
𝑊∈𝒲

®𝑓𝑊 ,

and similarly for

←
𝑓𝒲 . The main theorem of this section is the following. It shows that the collection of

𝑠-𝑡-paths can be dominated by a small collection of 𝑛-recurrent 𝑠-𝑡-walks: for any 𝑠-𝑡-path 𝑃, any cost

bound �, and any amount of flow 𝑟 available at 𝑠, there is a walk in the collection that does a better job

at sending flow to 𝑡 under the same cost and flow restrictions.

Theorem 4.22. Fix distinct nodes 𝑠 and 𝑡. Then there is an 𝑂(𝑚�̄�)-sized collection𝒲 of 𝑛-recurrent 𝑠-𝑡-walks

such that for every 𝑃 ∈ 𝒫(𝑠, 𝑡), there is a walk𝑊 ∈ 𝒲 that strongly dominates 𝑃. Hence

®𝑓𝒲 ≥ ®𝑓𝒫(𝑠,𝑡).

The additional strength of strong domination over domination is not needed to deduce
®𝑓𝒲 ≥ ®𝑓𝒫(𝑠,𝑡)

in the above, but will be of utility in Section 4.8.

We also have the following complementary statement; this will follow easily from Theorem 4.22.

Theorem 4.23. Fix distinct nodes 𝑠 and 𝑡. Then there is an 𝑂(𝑚�̄�)-sized collection𝒲 of 𝑛-recurrent 𝑠-𝑡-walks

such that ←
𝑓𝒲 ≥

←
𝑓𝒫(𝑠,𝑡).

The remainder of this subsection will be devoted to proving Theorem 4.22 and Theorem 4.23.

Definition 4.24 (Bottlenecks, signature and backbone of a walk). Consider an 𝑠-𝑡 walk 𝑊 with at least

one step, and let �̃� be a flow induced by a splitting �̃� .

Define the cost bottleneck step of �̃� to be the arc 𝑎c ∈ 𝐸(�̃�) for which 𝑐𝑎c
�̃�𝑎c

is maximal, breaking ties

towards steps closer to 𝑡. The cost bottleneck of𝑊 is then the arc 𝑒c ∈ 𝐸 that corresponds to 𝑎c. Similarly,

define the flow bottleneck step of �̃� to be the arc 𝑎f ∈ 𝐸(�̃�) for which �̃�𝑎
f
/𝑢𝑎

f
is maximal, breaking ties

towards arcs closer to 𝑡; exceptionally, if all arcs of 𝑊 have infinite capacity, set 𝑎f = 𝑎c. Again the flow

bottleneck of𝑊 is the arc 𝑒f ∈ 𝐸 that corresponds to 𝑎f.

The signature of𝑊 is

𝜎(𝑊) B
{
(𝑒c , 𝑒f , ⪯), if 𝑎c is earlier in the walk than 𝑎f, or 𝑎c = 𝑎f

(𝑒c , 𝑒f , ≻), otherwise.

The backbone of 𝑊 , denoted 𝛽(𝑊), is the subwalk of 𝑊 that starts and ends with the bottleneck steps

(including the bottleneck steps). We also write 𝜏(𝑊) for the subwalk of𝑊 before 𝛽(𝑊), and �(𝑊) for the

subwalk after 𝛽(𝑊); that is,

𝑊 = 𝜏(𝑊) ⊕ 𝛽(𝑊) ⊕ �(𝑊).
If �̃� is a splitting of𝑊 , we also define the precisely corresponding partition into subtrails,

�̃� = 𝜏(�̃�) ⊕ 𝛽(�̃�) ⊕ �(�̃�).

For any walk𝑊 , it is easy to verify that 𝜎(𝛽(𝑊)) = 𝜎(𝑊).

Definition 4.25. We say that a path 𝑃 is 𝜎-capped if 𝜎(𝑃) = 𝜎 and 𝛽(𝑃) = 𝑃.

18

For each signature 𝜎, let 𝑆(𝜎) be any highest gain path amongst all 𝜎-capped paths.

Given an 𝑠-𝑡-walk 𝑊 with signature 𝜎, define patch(𝑊) to be the 𝑠-𝑡-walk obtained from 𝑊 by

replacing 𝛽(𝑊) with 𝑆(𝜎). (Note that we do not care about computing patch(𝑊); all of this is purely

existential.)

Lemma 4.26 (Patching a walk). Suppose 𝑊 is an 𝑠-𝑡 walk whose backbone 𝛽(𝑊) is a path, and let 𝑊 ′ =
patch(𝑊). Then𝑊 ′ strongly dominates𝑊 . Furthermore, if 𝜎(𝑊 ′) ≠ 𝜎(𝑊), then �(𝑊 ′) is a strict suffix of �(𝑊).

Proof. Let 𝜎 = 𝜎(𝑊), and suppose that 𝜎 = (𝑒c , 𝑒f , ⪯); the case 𝜎 = (𝑒c , 𝑒f , ≻)will be completely analogous,

swapping the roles of the cost and flow bottlenecks. We may assume that 𝑒c ≠ 𝑒f, since otherwise there

is a unique path with first arc 𝑒c and final arc 𝑒f, ensuring that 𝑆(𝜎) = 𝛽(𝑊) and hence𝑊 ′ =𝑊 , meaning

that there is nothing to prove. Recalling that 𝑒f = 𝑒c whenever there is no finite capacity arc, we in

particular can assume that𝑊 contains a finite capacity arc going forward.

Let �̃� be a splitting of 𝑊 , and �̃� ′ a corresponding splitting of 𝑊 ′, in the sense that each step of 𝑊
not on the backbone is represented by the same arc in �̃� and �̃� ′. Let �̃� = �̃� ⊕ �̃� ⊕ �̃ and �̃� ′ = �̃� ⊕ �̃� ⊕ �̃,

where �̃, �̃�, �̃� and �̃� are splittings of �(𝑊), 𝜏(𝑊), 𝛽(𝑊) and 𝑆(𝜎) respectively. Write 𝑎c and 𝑎f for the cost

and flow bottleneck steps of �̃� (so 𝑎c is a copy of 𝑒c in �̃�, and 𝑎f a copy of 𝑒f). Similarly, let 𝑎′
c

and 𝑎′
f
be the

cost and flow bottleneck steps of �̃� ′. Since 𝑆(𝜎) has signature 𝜎, 𝑎′
c
∉ 𝐸(�̃�) \ {𝑎c} and 𝑎′

f
∉ 𝐸(�̃�) \ {𝑎f}. As

𝛽(𝑊) is a 𝜎-capped path, the definition of 𝑆(𝜎) implies that 𝛾(𝑆(𝜎)) ≥ 𝛾(𝛽(𝑊)), and hence 𝛾(𝑊 ′) ≥ 𝛾(𝑊).
Consider some fixed � ≥ 0. Let �̃� := 𝑥�̃� (�) and �̃� := 𝑥�̃�

′(�). We wish to show that ∇𝑡 �̃� ≥ ∇𝑡 �̃� and

−∇𝑠 �̃� ≤ −∇𝑠 �̃�. Since �̃� and �̃� ′ have identical trails from 𝑠 to 𝑎c, and from 𝑎f to 𝑡, it suffices to show that

�̃�𝑎
f
≥ �̃�𝑎

f
and �̃�𝑎c

≤ �̃�𝑎c
. (10)

Define �̃� to be the flow induced by �̃� ′ scaled so that �̃�𝑎
f
= �̃�𝑎

f
. Since 𝛾(�̃�) ≥ 𝛾(�̃�), �̃�𝑎c

≤ �̃�𝑎c
. This

means that in addition �̃�𝑎 ≤ �̃�𝑎 for all 𝑎 ∈ 𝐸(�̃� ′) \ 𝐸(�̃�). In particular this holds on 𝑎′
c

and 𝑎′
f
, and so

𝑐𝑎′
c

�̃�𝑎′
c

≤ 𝑐𝑎′
c

�̃� ≤ � and �̃�𝑎′
f

≤ �̃�𝑎′
f

≤ 𝑢𝑎′
f

. Hence �̃� ≤ �̃�; �̃� satisfies the capacity and cost bounds, so �̃� can only

be an induced flow with larger scaling.

We consider two cases:

• Suppose �̃� is constrained by the flow bottleneck 𝑎f, i.e., �̃�𝑎
f
= 𝑢𝑎

f
. Then since �̃� ≥ �̃� and �̃�𝑎

f
= 𝑢𝑎

f
,

�̃� = �̃�. So (10) holds: �̃�𝑎
f
= �̃�𝑎

f
and �̃�𝑎c

≤ �̃�𝑎c
. Further, 𝑎f must be the flow bottleneck step of �̃� ′; it

is at capacity, and �̃�𝑎 = �̃�𝑎 < 𝑢𝑎 for all arcs 𝑎 ∈ 𝐸(�̃).

• Suppose �̃� is constrained by the cost bottleneck 𝑎c, i.e., 𝑐𝑎c
�̃�𝑎c

= �. Since 𝑐𝑎c
�̃�𝑎c
≤ �, �̃�𝑎c

≤ �̃�𝑎c
. We

also have �̃�𝑎
f
≥ �̃�𝑎

f
= �̃�𝑎

f
. So (10) holds. Further, 𝑎′

c
cannot be an arc of �̃�, since 𝑐𝑎 �̃�𝑎 ≤ 𝑐𝑎 �̃�𝑎 ≤ � for

all 𝑎 ∈ 𝐸(�̃�), with a strict inequality if 𝑐𝑎c
�̃�𝑎c

< � (since then �̃�𝑎 < �̃�𝑎 for all 𝑎 ∈ �̃�).

The first of the above cases must occur for sufficiently large �, since𝑊 has a finite capacity arc. Thus

𝑎′
f
= 𝑎f. If at least one arc of 𝑊 has strictly positive cost, then for sufficiently small positive �, the cost

bottleneck constrains the flow, and the second case occurs. Then we have the claim that 𝑎′
c
∈ 𝐸(�̃) ∪ {𝑎c}.

But if all arcs of 𝑊 have zero cost, then all arcs of 𝑊 ′ also have zero cost, and so 𝑒′
c

and 𝑒c are both

the last arcs in 𝑊 and 𝑊 ′, and hence the same. Either way, we deduce that if 𝜎(𝑊 ′) ≠ 𝜎(𝑊), then

𝜎(𝑊 ′) = (𝑎′
c
, 𝑎f , ≻), and hence �(𝑊 ′) is a strict suffix of �(𝑊). □

Proof of Theorem 4.22. For any signature 𝜎, say that a walk �̄� is a left 𝜎-extension if it starts from 𝑠, contains

𝑆(𝜎) as a suffix, has signature 𝜎, and �̄� = 𝜏(�̄�) ⊕ 𝑆(𝜎). In other words, if we consider a splitting �̃� of �̄�, it

contains a splitting �̃� of 𝑆(𝜎) as its suffix, and the cost and flow bottleneck steps are the first and last arcs

of �̃� (in the order specified by the signature). We similarly define a walk �̄� to be a right 𝜎-extension if it

ends at 𝑡, contains 𝑆(𝜎) as a prefix, has signature 𝜎, and �̄� = 𝑆(𝜎) ⊕ �(�̄�).
Now define, for any signature 𝜎, 𝐿(𝜎) to be a highest-gain (𝑛−2)-recurrent walk such that 𝐿(𝜎) ⊕ 𝑆(𝜎)

is a left 𝜎-extension, as long as at least one such walk exists; if not, 𝐿(𝜎) is undefined. Similarly, let 𝑅(𝜎)
be a highest-gain path such that 𝑆(𝜎) ⊕ 𝑅(𝜎) is a right 𝜎-extension, or undefined if there are none such.

Let Σ be the collection of all signatures for which 𝐿(𝜎) and 𝑅(𝜎) are both defined; note that

Σ ⊆ (𝐸 × 𝐹 × {⪯, ≻}) ∪ {(𝑒 , 𝑒 , ⪯) : 𝑒 ∈ 𝐸 \ 𝐹},

taking into account the possibility of walks consisting only of infinite capacity arcs.

Now define

𝑊(𝜎) := 𝐿(𝜎) ⊕ 𝑆(𝜎) ⊕ 𝑅(𝜎) for each 𝜎 ∈ Σ, (11)

19

and

𝒲 := {𝑊(𝜎) : 𝜎 ∈ Σ}.
It is easy to see that 𝜎(𝑊(𝜎)) = 𝜎. Clearly, |𝒲| ≤ |Σ| ≤ 𝑚(2�̄� + 1).

Call an 𝑠-𝑡-walk𝑊 stable if �(𝑊) is a path and 𝜎(patch(𝑊)) = 𝜎(𝑊).
Claim 4.27. Let 𝑊 be a stable 𝑠-𝑡 walk, with 𝜏(𝑊) being (𝑛 − 3)-recurrent. Then there exists a walk 𝑊 ′ ∈ 𝒲
which strongly dominates𝑊 .

Proof. Let 𝜎 = 𝜎(𝑊). Since 𝜏(𝑊)⊕𝛽(𝑊) = 𝜏(𝑊)⊕𝑆(𝜎) is itself a left 𝜎-extension, and similarly 𝛽(𝑊)⊕�(𝑊)
a right 𝜎-extension, 𝜎 ∈ Σ. So choose 𝑊 ′ = 𝑊(𝜎); note that 𝜎(𝑊 ′) = 𝜎. Let 𝑄 = patch(𝑊); since 𝑄
strongly dominates 𝑊 by Lemma 4.26, it suffices to show that 𝑊 ′ strongly dominates 𝑄. Since 𝜏(𝑊) is

(𝑛 − 3)-recurrent, 𝜏(𝑄) is (𝑛 − 2)-recurrent, and since𝑊 is stable, 𝜎(𝑄) = 𝜎.

Comparing 𝑄 to 𝑊 ′, we observe that 𝛾(𝜏(𝑊 ′)) ≥ 𝛾(𝜏(𝑄)), 𝛾(�(𝑊 ′)) ≥ 𝛾(�(𝑄)), and they share 𝑆(𝜎).
This all follows by the definition of 𝑊(𝜎), the definition of patching, and the fact that 𝜏(𝑄) is (𝑛 − 2)-
recurrent and �(𝑄) is a path. Let �̃� and �̃� ′ be splittings of 𝑄 and 𝑊 ′ respectively, chosen so that their

common part 𝑆(𝜎) has the same splitting �̃�.

Fix any �, and consider the flows �̃� := 𝑥�̃�(�) and �̃� := 𝑥�̃�
′(�). Then �̃�𝑎 = �̃�𝑎 for all 𝑎 ∈ 𝐸(�̃�),

given that the bottleneck steps are identical and form the endpoints of the common path �̃�. Since

𝛾(�(�̃� ′)) ≥ 𝛾(�(�̃�)), ∇𝑡 �̃� ≥ ∇𝑡 �̃�. Since 𝛾(𝜏(�̃� ′)) ≥ 𝛾(𝜏(�̃�)), −∇𝑠 �̃� ≤ −∇𝑠 �̃�. So 𝑊 ′ strongly dominates 𝑄,

and hence𝑊 . □

Now consider any path 𝑊 (1) ∈ 𝒫(𝑠, 𝑡). If 𝛽(𝑊 (1)) has at most 2 arcs, then necessarily 𝑆(𝜎(𝑊 (1))) =
𝛽(𝑊 (1)), since there is a unique 𝜎(𝑊 (1))-capped path. So in this case, 𝑊 (1) is stable. Otherwise,

|𝐸(�(𝑊 (1)))| ≤ 𝑛 − 4. Construct the sequence 𝑊 (1) ,𝑊 (2) , . . . ,𝑊 (ℓ) by setting 𝑊 (𝑖+1) = patch(𝑊 (𝑖)), stop-

ping once we reach a stable walk. If 𝑊 (𝑖) is not stable, then �(𝑊 (𝑖+1)) is a strict subwalk of �(𝑊 (𝑖)); this

means that we maintain the property that �(𝑊 (𝑖)) is a path, and furthermore, |𝐸(�(𝑊 (𝑖)))| ≤ 𝑛 − 𝑖 − 3. So

we must reach a stable walk, and in fact ℓ ≤ 𝑛 − 3.

If 𝜏(𝑊 (𝑖)) is 𝑘-recurrent, then 𝜏(𝑊 (𝑖+1)) is (𝑘 + 1)-recurrent, since it is obtained by appending some

part of 𝛽(𝑊 (𝑖)) to 𝜏(𝑊 (𝑖)). Since 𝜏(𝑊 (1)) is 1-recurrent and ℓ ≤ 𝑛 − 3, 𝜏(𝑊 (ℓ)) is (𝑛 − 3)-recurrent.

By Claim 4.27 applied to 𝑊 (ℓ), the walk 𝑊 ′ = 𝑊(𝜎(𝑊 (ℓ))) ∈ 𝒲 strongly dominates 𝑊 (ℓ). By

Lemma 4.26, 𝑊 (𝑖+1)
strongly dominates 𝑊 (𝑖) for each 𝑖 < ℓ . Strong domination is clearly transitive, and

so𝑊 ′ does indeed strongly dominate𝑊 (1).

For each 𝑃 ∈ 𝒫(𝑠, 𝑡), there is a𝑊 ∈ 𝒲 which dominates 𝑃, meaning
®𝑓𝑊 ≥ ®𝑓𝑃 . Hence

®𝑓𝒲 ≥ ®𝑓𝒫(𝑠,𝑡). □

Finally, we deduce the complementary version.

Proof of Theorem 4.23. Let

←
𝐺 be the instance obtained from 𝐺 by replacing each arc 𝑒 with the reverse arc

←
𝑒, where 𝛾←

𝑒
= 1/𝛾𝑒 , 𝑢←𝑒 = 𝛾𝑒𝑢𝑒 and 𝑐←

𝑒
= 𝑐𝑒/𝛾𝑒 ; note that we do not flip the sign of the costs, which remain

nonnegative. Now apply Theorem 4.22 to

←
𝐺 and the collection

←
𝒫 of paths from 𝑡 to 𝑠 in

←
𝐺, obtaining a

dominating collection

←
𝒲; let𝒲 consist of the reversals of all walks in

←
𝒲.

Then for every 𝑃 ∈ 𝒫(𝑠, 𝑡), its reversal

←
𝑃 ∈

←
𝒫 is dominated by some

←
𝑊 ∈

←
𝒲. Let 𝑊 be the reversal

of

←
𝑊 . Then

𝛾(𝑊) = 𝛾(
←
𝑊)−1 ≤ 𝛾(

←
𝑃)−1 = 𝛾(𝑃).

Further, it is easy to see that 𝑥
←
𝑊
←
𝑒
(�) = 𝛾𝑒𝑥𝑊𝑒 (�) for every 𝑒 and �. Thus

∇𝑠𝑥𝑊 (�) = −∇𝑠𝑥
←
𝑊 (�) ≤ −∇𝑠𝑥

←
𝑃(�) = ∇𝑠𝑥𝑃(�)

for every �. So

←
𝑓𝑊 ≥

←
𝑓𝑃 , from the definition of

←
𝑓 , and hence

←
𝑓𝒲 ≥

←
𝑓𝒫(𝑠,𝑡). □

4.6 Weak domination bounds for non-conservative objects
While our goal is to dominate simple conservative objects, we build up to this in stages. Our next

step will be building small collections that dominate flow-generating objects and flow-absorbing objects;

these will become building blocks in the next section.

20

Given𝑈 , a flow-generating object at 𝑡, we will be interested in ∇𝑥𝑈𝑡 (�), the maximum amount of flow

that can be generated at 𝑡 using𝑈 , subject to the cost and capacity bounds. So define

𝑓 +𝑈 (�) := ∇𝑥𝑈𝑡 (�) for all � ≥ 0,

and as usual, 𝑓 +𝒰 :=
∨
𝑈∈𝒰 𝑓 +

𝑈
for a collection of flow-generating objects at 𝑡. Given two flow-generating

objects at 𝑡,𝑈 and𝑈′, we will say that𝑈′ dominates𝑈 if 𝑓 +
𝑈′ ≥ 𝑓 +

𝑈
; and similarly for collections of objects.

For𝑈 a flow-absorbing object at 𝑠 and𝒰 a collection of such, we define the analogous notion

𝑓 −𝑈 (�) := −∇𝑥𝑈𝑠 (�) and 𝑓 −𝒰 :=
∨
𝑈∈𝒰

𝑓 −𝑈 .

Flow-generating cycles through 𝑠. Given an 𝑠-𝑠-walk𝑊 , define 𝑓 +
𝑊
(�) := ∇𝑥𝑊𝑠 (�); that is, 𝑓 +

𝑊
= 𝑓 +(𝑊,{𝑠}).

Define 𝑓 +𝒲 for a collection of 𝑠-𝑠-walks𝒲 in the usual way as 𝑓 +𝒲 :=
∨
𝑊∈𝒲 𝑓 +

𝑊
. Let 𝒞+(𝑠) denote the

collection of flow-generating cycles at 𝑠.

Theorem 4.28. There is an 𝑂(𝑚�̄�)-sized collection𝒲 of (𝑛 + 1)-recurrent flow-generating 𝑠-𝑠-walks such that

𝑓 +𝒲 ≥ 𝑓 +𝒞+(𝑠).

Proof. Let 𝐺′ be the instance obtained from 𝐺 by adding a new node 𝑠′ and redirecting all the incoming

arcs of 𝑠 to 𝑠′; so 𝑉(𝐺′) = 𝑉(𝐺) ∪ {𝑠}, and we can identify 𝐸(𝐺′)with 𝐸(𝐺). The latter provides a natural

correspondence between 𝑠-𝑠 walks in 𝐺 and 𝑠-𝑠′ walks in 𝐺′.
By Theorem 4.22 applied to 𝐺′ and the collection 𝒫′ of 𝑠-𝑠′ paths, there exists an 𝑂(𝑚�̄�)-sized

collection𝒲′
of (𝑛 + 1)-recurrent 𝑠-𝑠′ walks that strongly dominate 𝒫′ in 𝐺′. Let𝒲 be the collection of

(𝑛 + 1)-recurrent 𝑠-𝑠 walks in 𝐺 corresponding to𝒲′
.

Given any 𝐶 ∈ 𝒞+(𝑠), consider the path 𝑃 ∈ 𝒫′ corresponding to 𝐶. Choosing𝑊 ′ ∈ 𝒲′
that strongly

dominates 𝑃, we have that ∇𝑠′𝑥𝑊
′ ≥ ∇𝑠′𝑥𝑃 and −∇𝑠𝑥𝑊

′ ≤ −∇𝑠𝑥𝑃 (all flows viewed in 𝐺′). With 𝑊 ∈ 𝒲
corresponding to𝑊 ′, it follows that

∇𝑠𝑥𝑊 = ∇𝑠′𝑥𝑊
′ + ∇𝑠𝑥𝑊

′ ≥ ∇𝑠′𝑥𝑃 + ∇𝑠𝑥𝑃 = ∇𝑠𝑥𝐶 ,

and so 𝑓 +
𝑊
≥ 𝑓 +

𝐶
. □

Flow-generating objects at 𝑡. For given nodes 𝑠 and 𝑡, let 𝒢(𝑠, 𝑡) denote the collection of simple flow-

generating objects at 𝑡 consisting of a flow-generating cycle through 𝑠, followed by an 𝑠-𝑡-path. Let

𝒢(𝑡) :=
⋃
𝑠∈𝑉 𝒢(𝑠, 𝑡), be the collection of all simple flow-generating objects at 𝑡.

Lemma 4.29. For any 𝑠, 𝑡 ∈ 𝑉 , there is an 𝑂(𝑚�̄�)-sized collectionℋ of 𝑂(𝑛)-recurrent objects, each consisting

of a flow-generating cycle at 𝑠 along with an 𝑠-𝑡 walk, such that

𝑓 +ℋ ≥ 𝑓 +𝒢(𝑠,𝑡).

Proof. Assume 𝑠 ≠ 𝑡, since otherwise the claim is immediate from Theorem 4.28.

Let ℛ be the collection of flow-generating 𝑠-𝑠 walks guaranteed by Theorem 4.28. Let 𝒲 be the

collection of 𝑠-𝑡-walks guaranteed by Theorem 4.22, applied to 𝒫(𝑠, 𝑡). Let 𝒰 := {(𝑅,𝑊) : 𝑅 ∈ ℛ ,𝑊 ∈
𝒲} be the collection of flow-generating objects obtained by taking all possible combinations; so |𝒰 | =
𝑂(𝑚2�̄�2).

We now observe that for any flow-generating 𝑠-𝑠-walk 𝑅 and any 𝑠-𝑡-walk 𝑊 , if we define the

flow-generating object𝑈 = (𝑅,𝑊)we have

𝑓 +𝑈 (�) = ®𝑓𝑊 (�, 𝑓
+
𝑅 (�)).

As a consequence,

𝑓 +𝒢(𝑠,𝑡)(�) = ®𝑓𝒫(𝑠,𝑡)
(
�, 𝑓 +𝒞+(𝑠)(�)

)
and 𝑓 +𝒰 (�) = ®𝑓𝒲

(
�, 𝑓 +ℛ (�)

)
.

It follows that 𝑓 +𝒰 ≥ 𝑓 +𝒢(𝑠,𝑡).

This shows a |𝒰 | = 𝑂(𝑚2�̄�2)-sized dominating set. We now improve this to 𝑂(𝑚�̄�). By Lemma 4.6,

using that
®𝑓𝒲 and 𝑓 +ℛ are both𝑂(𝑚�̄�)-simple, 𝑓 +𝒰 is𝑂(𝑚�̄�)-simple. The existence of the desiredℋ ⊆ 𝒰

follows by Lemma 4.9. Note that since the objects in ℛ and𝒲 are (𝑛 + 1)-recurrent and 𝑛-recurrent

respectively, the objects inℋ are (2𝑛 + 1)-recurrent. □

21

This immediately gives us a dominating set of size 𝑂(𝑛𝑚�̄�) for 𝒢(𝑡).

Theorem 4.30. For any 𝑡 ∈ 𝑉 , there is an 𝑂(𝑛𝑚�̄�)-sized collectionℋ of 𝑂(𝑛)-recurrent flow-generating objects

at 𝑡 such that

𝑓 +ℋ ≥ 𝑓 +𝒢(𝑡).

Proof. Immediate from the previous theorem; simply take the union of the dominating collections for

𝒢(𝑠, 𝑡) for each 𝑠 (or in other words, apply Lemma 4.7). □

The above, along with the next section, suffices to obtain a polynomial SLC bound for 𝑥𝔪𝑒 , but not for

the claimed 𝑂(𝑚�̄�) bound. For this we need the following stronger result, the proof of which we delay

until Section 4.8.

Theorem 4.31. For any 𝑡 ∈ 𝑉 , there is an 𝑂(𝑚�̄�)-sized collectionℋ of 𝑂(𝑛)-recurrent flow-generating objects

at 𝑡 such that

𝑓 +ℋ ≥ 𝑓 +𝒢(𝑡).

Absorbing versions. A completely symmetric version of the above concerns, instead of the maximum

excess we can generate at 𝑡, the maximum deficit we can create at 𝑡. Let𝒜(𝑡) the collection of all simple

flow-absorbing objects at 𝑡.

Theorem 4.32. For any 𝑡 ∈ 𝑉 , there is an 𝑂(𝑛𝑚�̄�)-sized collection ℬ of 𝑂(𝑛)-recurrent flow-absorbing objects

at 𝑡 such that

𝑓 −ℬ ≥ 𝑓 −𝒜(𝑡).

Proof. Just as with the proof of Theorem 4.23, the claim can be obtained simply by applying Theorem 4.30

to the reversed instance

←
𝐺. □

4.7 Dominating simple conservative objects
We are now ready to prove the main domination theorem for an arc.

Theorem 4.33. Suppose that 𝐾 is such that for every node 𝑠, there exist dominating collections of 𝑂(𝑛)-recurrent

flow-generating objects at 𝑠, and 𝑂(𝑛)-recurrent flow-absorbing objects at 𝑠, each of size at most 𝐾.

Then for any arc 𝑒, there is an 𝑂(𝑚�̄� +𝐾)-sized collection𝒟 of 𝑂(𝑛)-recurrent conservative objects such that

𝑥𝒟𝑒 ≥ 𝑥ℰ𝑒 /8.

Combined with Theorem 4.30 and Theorem 4.32 this gives a bound of 𝑂(𝑛𝑚�̄�) on the SLC. The final

ingredient for the stronger 𝑂(𝑚�̄�) follows in the next section.

Before giving the full proof, let us give a high-level overview, only discussing what is needed to get

a strongly polynomial bound.

Fix an arc 𝑒, with tail 𝑠 and head 𝑡. Consider first the collection ℰ𝑝 ⊆ ℰ of simple conservative

objects 𝐶 = (𝐶𝑔 , 𝐶𝑝 , 𝐶𝑎) in which 𝑒 ∈ 𝐸(𝐶𝑝). Then 𝐶 can be viewed as the composition of a flow-

generating object 𝑈𝑔 = (𝐶𝑔 , 𝑃1) at 𝑠, the arc 𝑒, and a flow-absorbing object 𝑈𝑎 = (𝑃2 , 𝐶𝑎) at 𝑡 (so

𝐶𝑝 = 𝑃1 ⊕ 𝑒 ⊕ 𝑃2). But this suggests a straightforward choice of a dominating collection: take ℋ to

be a small collection of flow-generating objects at 𝑠 dominating all simple flow-generating objects at

𝑠; similarly take ℬ to be a small collection of flow-absorbing objects at 𝑡 dominating (in the sense of

Theorem 4.32) all simple flow-absorbing objects at 𝑡; and define a collection 𝒬(1) of conservative objects

by 𝒬(1) = {𝑈′𝑔 ⊕ 𝑒 ⊕𝑈′𝑎 : 𝑈′𝑔 ∈ ℋ , 𝑈′𝑎 ∈ ℬ}. This does the job; for any cost bound �, there is some𝑈′𝑔 ∈ ℋ
that can create at least as much excess at 𝑠 as 𝑈𝑔 ; similarly some 𝑈′𝑎 ∈ ℬ can get rid of at least as much

flow at 𝑡 as𝑈𝑎 ; and so𝑈′𝑔 ⊕ 𝑒 ⊕𝑈′𝑎 ∈ 𝒬(1) can send at least as much flow through 𝑒 as 𝐶.

The case where 𝑒 lies on the flow-generating or flow-absorbing cycle is more involved. In general,

the flow-generating and flow-absorbing cycles of a circuit may overlap (recall Definition 4.11), but let us

ignore this complication here. Further, the place where the flow-generating cycle and connecting path

of a conservative object meet turns out not to be too important. So just for concreteness, let ℰ𝑔 ⊆ ℰ be

the collection of simple conservative objects 𝐶 = (𝐶𝑔 , 𝐶𝑝 , 𝐶𝑎) in which 𝑒 ∈ 𝐸(𝐶𝑔), 𝑒 ∉ 𝐸(𝐶𝑎), and 𝐶𝑝 and

𝐶𝑔 overlap at 𝑠. We consider how to dominate ℰ𝑔 .
The dominating set 𝒬(1) described above does not suffice, for the following reason. Suppose 𝐶 =

(𝐶𝑔 , 𝐶𝑝 , 𝐶𝑎) ∈ ℰ𝑔 has the property that the flow-generating cycle 𝐶𝑔 has gain very close to 1. Then,

for some value of �, it may be possible to send a very large amount of flow through 𝑒 using 𝐶𝑔 , while

22

creating only a very small amount of excess at 𝑠. Perhaps getting rid of excess is very expensive: we can

only get rid of some small amount of flow at 𝑠, far less than the amount of flow 𝐶𝑔 sends through 𝑒. So

we cannot hope to dominate 𝐶 by an object that generates lots of excess at 𝑠, sends it through 𝑒, and then

gets rid of it.

Instead, let us look more carefully at cycles through 𝑒. If we remove 𝑒 from any cycle through 𝑒,
what remains is a 𝑡-𝑠 path 𝑃. Theorem 4.22 provides us with a small dominating collection𝒲1 of 𝑡-𝑠

walks — dominating in the sense that
®𝑓𝒲1
≥ ®𝑓𝒫(𝑡 ,𝑠). The complementary version Theorem 4.23 provides

us with a second collection𝒲2 of 𝑡-𝑠 walks that dominate 𝒫(𝑡 , 𝑠) in the sense that

←
𝑓𝒲2
≥
←
𝑓𝒫(𝑡 ,𝑠). We can

construct a collection of closed walks through 𝑒 by adding 𝑒 to each of the walks in𝒲1 and𝒲2. Some

of these may be flow-generating walks; we can collect all these together into a small collection ℋ2 of

flow-generating objects at 𝑠. We can also collect together those that are flow-absorbing walks, and hence

construct a small collection ℬ2 of flow-absorbing objects at 𝑡. Some could also yield conservative cycles;

these turn out to be even better for us, so assume there are none.

Now for our fixed 𝐶 = (𝐶𝑔 , 𝐶𝑝 , 𝐶𝑎) ∈ ℰ𝑔 , with 𝐶𝑔 = 𝑒 ⊕ 𝑃, two things can happen. If we are

lucky, the walk 𝑊2 ∈ 𝒲2 with

←
𝑓𝑊2
≥
←
𝑓𝑃 has the property that 𝑅2 := 𝑒 ⊕𝑊2 is a flow-generating cycle.

Complementary domination works perfectly for us; it tells us that on𝑊2, can always send flow such that

the same amount of flow arrives at the head 𝑠 of the path as with a flow on 𝑃, but the same or more leaves

from 𝑡 compared to the flow on 𝑃. This yields the same amount of flow on 𝑒, but with less excess at 𝑡 to

dispose of. This excess we can dispose of using one of our flow-absorbing objects in ℬ2.

The more difficult case is that 𝑅2 is a flow-absorbing cycle. In this case, we look also at the walk

𝑊1 ∈ 𝒲1 with
®𝑓𝑊1
≥ ®𝑓𝑃 ; then 𝑅1 := 𝑒 ⊕𝑊1 is certainly a flow-generating cycle, since 𝛾(𝑊1) ≥ 𝛾(𝑃). It

turns out that the conservative object (𝑅1 , {𝑠}, 𝑅2) does the job.

We now proceed with the detailed proof.

Proof of Theorem 4.33. Let 𝑒 ∈ 𝐸, with tail 𝑠 and head 𝑡, and ℰ′ ⊆ ℰ the collection of simple conservative

objects containing 𝑒. We will proceed in two stages. In the first stage, we will construct an𝑂((𝐾+𝑚�̄�)2)-
sized collection 𝒬 of 𝑂(𝑛)-recurrent conservative objects that dominates ℰ, in that 𝑥𝒬𝑒 ≥ 𝑥ℰ𝑒 /4. In the

second stage, we will choose a smaller 𝑂(𝑚�̄�)-sized collection𝒟 ⊆ 𝒬, and show that 𝑥𝒟𝑒 ≥ 𝑥𝒬𝑒 /2.

We first describe 𝒬. We will construct an 𝑂(𝐾 +𝑚�̄�)-sized collectionℋ of flow-generating objects at

𝑠, an 𝑂(𝐾 +𝑚�̄�)-sized collection ℬ of flow-absorbing objects at 𝑡, and an 𝑂(𝐾 +𝑚�̄�)-sized collection 𝒬2

of conservative cycles through 𝑒. The collection 𝒬 is constructed from 𝒬2, along with all possible ways

of combining an object inℋ with arc 𝑒 and an object in ℬ to obtain a conservative object.

The collections ℋ and ℬ each consist of two parts. For ℋ , the first part ℋ1 is a 𝐾-sized collection

of 𝑂(𝑛)−recurrent flow-generating objects dominating 𝒢(𝑠), as we assume to exist. Similarly, ℬ1 is a

𝐾-sized collection of 𝑂(𝑛)−recurrent flow-absorbing objects dominating𝒜(𝑡).
To describe the second parts of these collections, we proceed as follows. Let𝒲1 be a collection of 𝑛-

recurrent walks of size𝑂(𝑚�̄�) that dominate𝒫(𝑡 , 𝑠), in that
®𝑓𝒲1
≥ ®𝑓𝒫(𝑡 ,𝑠), as guaranteed by Theorem 4.22.

(Note that we consider 𝑡-𝑠-paths, not 𝑠-𝑡-paths.) Similarly, let𝒲2 be a collection of 𝑛-recurrent walks of

size 𝑂(𝑚�̄�) for which

←
𝑓𝒲2
≥
←
𝑓𝒫(𝑡 ,𝑠). Now define

𝒲+
:= {𝑊 ∈ 𝒲1 ∪𝒲2 : 𝛾(𝑒 ⊕𝑊) > 1},

𝒲−
:= {𝑊 ∈ 𝒲1 ∪𝒲2 : 𝛾(𝑒 ⊕𝑊) < 1}, and

𝒲=
:= {𝑊 ∈ 𝒲1 ∪𝒲2 : 𝛾(𝑒 ⊕𝑊) = 1}.

Then

ℋ2 := {(𝑒 ⊕𝑊+ , {𝑠}) : 𝑊+ ∈ 𝒲+} and ℬ2 = {({𝑡},𝑊− ⊕ 𝑒) : 𝑊− ∈ 𝒲−},
withℋ := ℋ1 ∪ℋ2 and ℬ := ℬ1 ∪ ℬ2.

Define

𝒬1 := {𝑈𝑔 ⊕ 𝑒 ⊕𝑈𝑎 : 𝑈𝑔 ∈ ℋ , 𝑈𝑎 ∈ ℬ}.
Also define

𝒬2 := {(𝑒 ⊕𝑊, {𝑠}, 𝑒 ⊕𝑊) : 𝑊 ∈ 𝒲=},
and finally, 𝒬 := 𝒬1 ∪ 𝒬2.

We now show that 𝑥𝒬𝑒 ≥ 𝑥ℰ
′

𝑒 /4, already providing a polynomial-sized collection dominating ℰ. Fix

any 𝐶 ∈ ℰ′ and � ≥ 0. Our goal is to find some𝑈 ∈ 𝒬 for which 𝑥𝑈𝑒 (�) ≥ 𝑥𝐶𝑒 (�)/4.

23

Write 𝐶 = (𝐶𝑔 , 𝐶𝑝 , 𝐶𝑎), where 𝐶𝑔 is a flow-generating cycle, 𝐶𝑎 a flow-absorbing cycle, and 𝐶𝑝 a path

(or possibly 𝐶𝑔 = 𝐶𝑎 is a conservative cycle), with 𝐶𝑔 intersecting 𝐶𝑝 in a single node, and 𝐶𝑝 intersecting

𝐶𝑎 in a single node. Let �̄� = 𝑥𝐶(�). We can split �̄� as

�̄� = �̄�𝑔 + �̄�𝑝 + �̄�𝑎 ,

where �̄�𝑔 , �̄�𝑝 and �̄�𝑎 are flows induced by 𝐶𝑔 , 𝐶𝑝 and 𝐶𝑎 respectively, all appropriately scaled.

Either 𝑒 ∈ 𝐸(𝐶𝑝), or 𝑒 lies on one or both of 𝐶𝑔 and 𝐶𝑎 . We consider three cases: 𝑒 ∈ 𝐸(𝑃), �̄�𝑔𝑒 ≥ 1

2
�̄�𝑒 ,

and �̄�𝑎𝑒 >
1

2
�̄�𝑒 .

Case 1: 𝑒 ∈ 𝐸(𝐶𝑝). Write 𝐶𝑝 = 𝑃1 ⊕ 𝑒 ⊕ 𝑃2. Then 𝑈𝑔 := (𝐶𝑔 , 𝑃1) ∈ 𝒢(𝑠), and 𝑈𝑎 := (𝑃2 , 𝐶𝑎) ∈ 𝒜(𝑡).
Choose 𝑈′𝑔 ∈ ℋ with 𝑓 +

𝑈′𝑔
(�) ≥ 𝑓 +

𝑈𝑔
(�), and 𝑈′𝑎 ∈ ℬ with 𝑓 −

𝑈′𝑎
(�) ≥ 𝑓 −

𝑈𝑎
(�). Then let 𝑍 := 𝑈′𝑔 ⊕ 𝑒 ⊕ 𝑈′𝑎 ; this

is in 𝒬. Observe that

�̄�𝑒 = 𝑥𝐶𝑒 (�) = min{ 𝑓 +𝑈𝑔
(�), 𝑓 −𝑈𝑎

(�)/𝛾𝑒 , 𝑢𝑒 ,�/𝑐𝑒}; (12)

the largest a flow induced by 𝐶 can be scaled, while satisfying the capacity and cost bounds, is either

determined by the step over 𝑒 itself, or by the amount we can generate at 𝑠, or the amount we can destroy

at 𝑡. Similarly,

𝑥𝑍𝑒 (�) = min{ 𝑓 +
𝑈′𝑔
(�), 𝑓 −

𝑈′𝑎
(�)/𝛾𝑒 , 𝑢𝑒 ,�/𝑐𝑒}. (13)

Since each term in (13) is at least as large as its corresponding term in (12), 𝑥𝑍𝑒 (�) ≥ �̄�𝑒 , as needed.

Case 2: �̄�𝑔𝑒 ≥ 1

2
�̄�𝑒 . In this case, 𝑒 ∈ 𝐸(𝐶𝑔) (𝑒 might lie on 𝐶𝑎 as well). Let 𝑖 be the common node of 𝐶𝑔

and 𝐶𝑝 ., from the definition of Let 𝐶𝑔 = 𝑃1 ⊕ 𝑒 ⊕ 𝑃2, where 𝑃1 is the path in 𝐶𝑔 from 𝑖 to 𝑠, and 𝑃2 the

path in 𝐶𝑔 from 𝑡 to 𝑖.
Also let 𝑃 := 𝑃2 ⊕ 𝑃1, i.e., the 𝑡-𝑠-path obtained by removing 𝑒 from 𝐶𝑔 . Let 𝑊1 ∈ 𝒲1 dominate 𝑃,

i.e.,
®𝑓𝑊1
≥ ®𝑓𝑃 . Similarly let𝑊2 ∈ 𝒲2 with

←
𝑓𝑊2
≥
←
𝑓𝑃 . Let 𝑅1 := 𝑒 ⊕𝑊1 and 𝑅2 := 𝑒 ⊕𝑊2.

Since 𝑊1 dominates 𝑃, 𝛾(𝑊1) ≥ 𝛾(𝑃), and so 𝛾(𝑅1) ≥ 𝛾(𝐶𝑔) ≥ 1. Similarly, 𝛾(𝑅2) ≤ 𝛾(𝐶𝑔). We

distinguish a few subcases.

• 𝛾(𝑅1) = 1 or 𝛾(𝑅2) = 1. Suppose 𝛾(𝑅1) = 1. If 𝑥
𝑅1

𝑒 (�) = 𝑢𝑒 or 𝑐𝑒𝑥
𝑅1(�) = �, then of course 𝑥

𝑅1

𝑒 (�) ≥
�̄�
𝑔
𝑒 . Otherwise, 𝑥

𝑅1

𝑎 (�) = 𝑥
𝑊1

𝑎 (�) for all 𝑎 ∈ 𝐸(𝑊1). Domination tells us that ∇𝑠𝑥𝑊1(�) ≥ ∇𝑠𝑥𝑃(�).
All flow in 𝑥𝑅1(�) arriving at 𝑠 through𝑊1 enters 𝑒, and so 𝑥

𝑅1

𝑒 (�) ≥ �̄�
𝑔
𝑒 .

Similarly, if 𝛾(𝑅2) = 1, using that ∇𝑡𝑥𝑊2(�) ≥ ∇𝑡𝑥𝑃(�), one obtains 𝑥𝑅2

𝑒 (�) ≥ �̄�
𝑔
𝑒 . So choosing 𝑗 such

that 𝛾(𝑅 𝑗) = 1 and defining the conservative object 𝑍 := (𝑅 𝑗 , {𝑠}, 𝑅 𝑗) ∈ 𝒬, we have that

𝑥𝑍𝑒 (�) = 𝑥
𝑅 𝑗
𝑒 (�) ≥ �̄�

𝑔
𝑒 ≥ �̄�𝑒/2.

• 𝛾(𝑅1) ≥ 𝛾(𝑅2) > 1. First, if 𝐶𝑔 and 𝐶𝑎 overlap, so that 𝐶𝑔 and 𝐶𝑎 are both cycles at 𝑖, we may

choose 𝑖 to be any common vertex of 𝐶𝑔 and 𝐶𝑖 ; this has no effect on the flows induced by 𝐶. So if

𝑒 lies on both 𝐶𝑔 and 𝐶𝑎 , we may assume that 𝑖 = 𝑠; and otherwise, that 𝑖 is the last node on the

path on which 𝐶𝑔 and 𝐶𝑎 overlap.

Consider the flow-absorbing object𝑈𝑎 := (𝑃2 ⊕ 𝐶𝑝 , 𝐶𝑎). We observe that this object is simple. This

is clear if 𝐶𝑔 and 𝐶𝑎 are disjoint, given that 𝐶 is simple. If on the other hand they overlap, then 𝑃2

only shared the vertex 𝑖 with 𝐶𝑎 , by our choice of 𝑖.

Since 𝑈𝑎 ∈ 𝒜(𝑡), we can choose 𝑈′𝑎 = (𝑃′𝑎 , 𝐶′𝑎) ∈ ℬ dominating 𝑈𝑎 . Then 𝑍 := (𝑅2 , 𝑒 ⊕ 𝑃′𝑎 , 𝐶′𝑎) ∈ 𝒬.

We claim that 𝑥𝑍𝑒 (�) ≥ �̄�
𝑔
𝑒 .

First, we split �̄�𝑔 further into two parts: �̄�𝑔 = �̄�1 + �̄�2
, where �̄�1

is a flow induced by 𝑃 ⊕ 𝑒, and �̄�2
is

a flow induced by 𝑃2. (Note that 𝑃 ⊕ 𝑒 is the same cycle as 𝐶𝑔 , but at 𝑡 rather than at 𝑖.) The flow �̄�1

has positive excess at 𝑡, and zero excess elsewhere; also �̄�1

𝑒 = �̄�
𝑔
𝑒 , since 𝑒 is not in the support of �̄�2

.

Consider the restriction �̄� of �̄�1
to 𝑃; this has excess �̄�1

𝑒 = �̄�
𝑔
𝑒 at 𝑠, and some deficit −∇𝑡 �̄� ≤ 𝛾𝑒 �̄�

𝑔
𝑒 at

𝑡 (since 𝑃 ⊕ 𝑒 is a flow-generating cycle). Since

←
𝑓𝑊2
(�, �̄�𝑔𝑒) ≥

←
𝑓𝑃(�, �̄�𝑔𝑒), there is a flow �̄�𝑔 induced

by 𝑊2 where ∇𝑠 �̄�𝑔 = �̄�
𝑔
𝑒 , but −∇𝑡 �̄�𝑔 ≥ −∇𝑡 �̄�. Extending �̄�𝑔 to 𝑅2 by setting �̄�

𝑔
𝑒 = �̄�

𝑔
𝑒 , �̄�𝑔 is a flow

induced by 𝑅2, �̄�
𝑔
𝑒 = �̄�1

𝑒 , and ∇𝑡 �̄�𝑔 ≤ ∇𝑡 �̄�1
.

24

Now we consider the flow-absorbing side. �̄�2+ �̄�𝑝+ �̄�𝑎 is a flow induced by𝑈𝑎 . But 𝑓 −
𝑈′𝑎
(�) ≥ 𝑓 −

𝑈𝑎
(�);

thus 𝑈′𝑎 can absorb at least as much flow at 𝑡 as 𝑈𝑎 can. So we can extend �̄�𝑔 to a flow �̄� induced

by 𝑍 and with �̄� ≤ 𝑥𝑍(�).
In conclusion, 𝑥𝑍𝑒 (�) ≥ �̄�

𝑔
𝑒 ≥ �̄�

𝑔
𝑒 ≥ 1

2
�̄�𝑒 .

• 𝛾(𝑅1) > 1 > 𝛾(𝑅2). Then𝑊1 ∈ 𝒲+
and𝑊2 ∈ 𝒲−

. Define the conservative object

𝑍 := (𝑅1 , {𝑠}, 𝑅2) ∈ 𝒬.

We will show that 𝑥𝑍𝑒 (�) ≥ �̄�𝑒/2.

Let �̂�𝑅1
be the flow induced by the flow-generating object 𝑅1, scaled so that the amount of flow

entering 𝑠 is �̄�
𝑔
𝑒 . Note that �̂�𝑅1 ≤ 𝑥𝑅1(�): because

®𝑓𝑊1
(�) ≥ ®𝑓𝑃(�), we can send flow on 𝑊1 so that

the same amount of flow arrives at 𝑠, with the same or less flow entering 𝑡, and still satisfying

the capacity and cost bounds. The amount of flow entering 𝑠 in �̄�𝑔 is at least �̄�
𝑔
𝑒 just from flow

conservation at 𝑠. Similarly, let �̂�𝑅2
be the flow induced by the flow-absorbing object 𝑅2, scaled to

that �̂�𝑅2 = �̄�
𝑔
𝑒 (equivalently, so that �̂�𝑅2

has 𝛾𝑒 �̄�
𝑔
𝑒 units of flow leaving 𝑡). Again, since

←
𝑓𝑊2
(�) ≥

←
𝑓𝑃(�),

�̂�𝑅2 ≤ 𝑥𝑅2(�).
Now let �̂� = ��̂�𝑅1 + (1 − �)�̂�𝑅2

be the convex combination of �̂�𝑅1
and �̂�𝑅2

for which ∇�̂� = 0. Since

�̂�𝑅1
has zero net flow everywhere except for a positive net flow at 𝑠 (since 𝛾(𝑅1) > 1), and �̂�𝑅2

the

same with a negative net flow at 𝑠 (since 𝛾(𝑅2) < 1), such a convex combination exists. Further,

𝑥𝑍(�) = 𝛼�̂� for some 𝛼 ≥ 1, since �̂� is a flow induced by 𝑍, and it does not violate any capacity or

cost bounds (since it is a convex combination of flows that satisfy these bounds). So it suffices to

show that �̂�𝑒 ≥ 1

4
�̄�𝑒 .

If� ≥ 1/2, then observe that the amount of flow in �̂� arriving at 𝑠 is at least
1

2
�̄�
𝑔
𝑒 , by the construction of

�̂�𝑅1
. All of this flow leaves along 𝑒, so �̂�𝑒 ≥ 1

2
�̄�𝑔 . On the other hand if� < 1/2, then �̂�𝑒 ≥ 1

2
�̂�𝑅2

𝑒 ≥ 1

2
�̄�
𝑔
𝑒 .

So in either case, �̂�𝑒 ≥ 1

2
�̄�
𝑔
𝑒 ≥ 1

4
�̄�𝑒 .

Case 3: �̄�𝑎𝑒 > 1

2
�̄�𝑒 . This is essentially identical to the case �̄�

𝑔
𝑒 ≥ 1

2
�̄�𝑒 , with the roles of flow-generating

objects and flow-absorbing objects exchanged. Formally, one can obtain the result by considering the

reversed graph

←
𝐺, which flips the role of flow-generating and flow-absorbing cycles in a conservative

object, and turns this case into the previous one.

Reducing the size of the dominating collection to𝑂(𝐾+𝑚�̄�). It remains to define an𝑂(𝐾+𝑚�̄�)-sized

collection𝒟 of 𝑂(𝑛)-recurrent conservative objects for which 𝑥𝒟𝑒 ≥ 𝑥𝒬𝑒 /2. We will in fact choose𝒟 ⊆ 𝒬.

The collection 𝒬2 already has size 𝑂(𝐾 + 𝑚�̄�), so we will include all of these objects. Consider any

𝐶 ∈ 𝒬1, which we can write as𝑈𝑔 ⊕ 𝑒 ⊕𝑈𝑎 for some𝑈𝑔 ∈ ℋ and𝑈𝑎 ∈ ℬ. Let 𝑥𝐶(�) = 𝑥𝐶,𝑔(�)+𝑥𝐶,𝑎(�) be

the splitting of 𝑥𝐶 into the appropriately scaled flows induced by 𝑈𝑔 and 𝑈𝑎 . Define, for any collection

𝒞 ⊆ 𝒬1, 𝑥
𝒞 ,𝑔
𝑒 :=

∨
𝐶∈𝒞 𝑥

𝐶,𝑔
𝑒 , and 𝑥𝒞 ,𝑎𝑒 :=

∨
𝐶∈𝒞 𝑥

𝐶,𝑎
𝑒 .

Claim 4.34. 𝑥𝒬1 ,𝑔
𝑒 and 𝑥

𝒬1 ,𝑎
𝑒 are both 𝑂(𝐾 + 𝑚�̄�)-simple.

Given this, by Lemma 4.9 there are collections 𝒟+ and 𝒟−, both subsets of 𝒬1 and both of size

𝑂(𝑚�̄�), so that 𝑥
𝒟+ ,𝑔
𝑒 = 𝑥𝒬1 ,𝑔

and 𝑥𝒟
− ,𝑎

𝑒 = 𝑥𝒬1 ,𝑎
. Then

𝑥𝒟
+∪𝒟−

𝑒 ≥ max(𝑥𝒟
+ ,𝑔

𝑒 , 𝑥𝒟
− ,𝑎

𝑒) ≥ max(𝑥𝒬1 ,𝑎
𝑒 , 𝑥

𝒬1 ,𝑔
𝑒) ≥ 1

2
𝑥
𝒬1

𝑒 .

Hence𝒟 := 𝒟+ ∪ 𝒟− ∪ 𝒬2 is our desired collection. It remains only to prove the claim.

Proof of Claim 4.34. For 𝐶 = 𝑈𝑔 ⊕ 𝑒 ⊕ 𝑈𝑎 ∈ 𝒬1, with 𝑈𝑔 ∈ ℋ and 𝑈𝑎 ∈ ℬ, define the following two

functions:

• ℎ𝐶(�, 𝑟) is the maximum flow on 𝑒 in a flow induced by 𝑈𝑔 ⊕ 𝑒 that satisfies the capacity and cost

constraints, and has an excess of at most 𝑟 at 𝑡. Then ℎ𝐶 is a 1-simple function:

ℎ𝐶(�, 𝑟) = min(𝑥𝑈𝑔⊕𝑒
𝑒 (�), 𝐾𝐶𝑟)

for some constant 𝐾𝐶 that measures the ratio between the flow through 𝑒 and the excess at 𝑡 in an

induced flow.

25

• 𝑔𝐶(�) := 𝑓 −
𝑈𝑎
(�). This is again 1-simple (it grows linearly with � until possibly reaching some

threshold where it remains constant).

The functions ℎ :=
∨
𝐶∈𝒬1

ℎ𝐶 and 𝑔 :=
∨
𝐶∈𝒬1

𝑔𝐶 are then both 𝑂(𝐾 +𝑚�̄�)-simple. Now observe that we

can write

𝑥
𝒬1 ,𝑔
𝑒 (�) = ℎ(�, 𝑔(�));

we pick the flow-absorbing part of 𝐶 to accept the maximum amount of flow at 𝑡, and the flow-generating

part that has as much flow through 𝑒 as possible, given the usual capacity and cost constraints, as well as

the constraint on how much flow can arrive at 𝑡. It follows by Lemma 4.6 that 𝑥
𝒬1 ,𝑔
𝑒 is𝑂(𝐾+𝑚�̄�)-simple.

The proof for 𝑥
𝒬1 ,𝑎
𝑒 is analogous, exchanging the roles of the flow-generating and flow-absorbing

objects in the above argument. □

□

4.8 Strong domination bounds for non-conservative objects
In this section, we prove the following theorem, strengthening the previous Theorem 4.30 by a factor of

𝑛.

Theorem 4.35. For any 𝑡 ∈ 𝑉 , there is an 𝑂(𝑚�̄�)-sized collectionℋ of 𝑂(𝑛)-recurrent flow-generating objects

at 𝑡 such that

𝑓 +ℋ ≥ 𝑓 +𝒢(𝑡).

The corresponding absorbing version follows in precisely the same way as Theorem 4.32 follows from

Theorem 4.30. Combined with Theorem 4.33 and Lemma 4.19, this completes the proof of Theorem 4.1.

At a high level, the proof is based on the same patching approach used for path domination. We

define a dominating collection of flow-generating objects based on a small set of possible signatures; the

signatures are now more complicated, as they include information about where in the flow-generating

object 𝑈 = (𝐶,𝑊) each bottleneck should reside; in the “cycle” part 𝐶, or the “path” part 𝑃. In order to

show that the dominating collection does the job, we consider an arbitrary simple flow-generating object

at 𝑡, and replace some part of the object in a way that can only increase the amount of flow that can be

generated at 𝑡, for any cost bound �. We do this at most three times; each time, either the signature

“stabilizes”, and in this case we can show domination from an object in our collection, or if not, the

signature changes in a way that increases the number of bottlenecks in the path part.

We now define analogous notions of various concepts that we defined previously for walks to flow-

generating objects.

Definition 4.36 (Bottlenecks, signature and backbone of a flow-generating object). Consider a flow-

generating object𝑈 = (𝐷,𝑊) at 𝑡, and let �̃� be a flow induced by a splitting �̃� = (�̃�, �̃�).
Define the cost bottleneck step of �̃� to be the arc 𝑎c ∈ 𝐸(�̃�) for which 𝑐𝑎c

�̃�𝑎c
is maximal, breaking ties

towards arcs closer to 𝑡 according to the order in the trail �̃� ⊕ �̃� . The cost bottleneck of 𝑈 is then the arc

𝑒c ∈ 𝐸 that corresponds to 𝑎c. Similarly, define the flow bottleneck step of �̃� to be the arc 𝑎f ∈ 𝐸(�̃�) for

which �̃�𝑎
f
/𝑢𝑎

f
is maximal, breaking ties towards arcs closer to 𝑡; exceptionally, if all arcs of𝑈 have infinite

capacity, set 𝑎f = 𝑎c. Again the flow bottleneck of 𝑈 is the arc 𝑒f ∈ 𝐸 that corresponds to 𝑎f. We define the

cost of𝑈 as 𝑐𝑎c
�̃�𝑎c
/∇𝑡 �̃�, and the congestion of𝑈 as �̃�𝑎

f
/(𝑢𝑎

f
∇𝑡 �̃�).

The signature of𝑈 is 𝜎(𝑈) B (𝑒c , 𝑒f ,□, 𝑞), where 𝑒c and 𝑒f are the cost and flow bottlenecks, □ ∈ {⪯, ≻}
describes the relative ordering of 𝑎c and 𝑎f on the trail �̃�⊕�̃� , and 𝑞 ∈ {0, 1, 2} is the number of bottleneck

steps that lie on �̃� . We say that 𝜎(𝑈) is of cycle type if 𝑞 = 0, of mixed type if 𝑞 = 1, and of path type if

𝑞 = 2. We also say that an object is of cycle, mixed or path type if its signature is.

The backbone of 𝑈 , denoted 𝛽(𝑈), is the subwalk of 𝐷 ⊕𝑊 that starts and ends with the bottleneck

steps (including the bottleneck steps). We write 𝜏(𝑈) for the subwalk of 𝐷 ⊕𝑊 before 𝛽(𝑈), and �(𝑈)
for the subwalk after 𝛽(𝑈); that is

𝐷 ⊕𝑊 = 𝜏(𝑈) ⊕ 𝛽(𝑈) ⊕ �(𝑈).

We also define the corresponding partition of the trail �̃� ⊕ �̃� into subtrails 𝜏(�̃�), 𝛽(�̃�) and �(�̃�).

Let Σ𝑔
be the collection of all possible signatures for flow-generating objects, with Σ

𝑔

0
, Σ

𝑔

1
and Σ

𝑔

2

being the signatures of cycle, mixed and path type respectively. We will construct a set 𝒟 of 𝑂(𝑚�̄�)
flow-generating objects at 𝑡 which dominates the set of simple flow-generating objects at 𝑡. It consists of

26

3 parts 𝒟 = 𝒟0 ∪ 𝒟1 ∪ 𝒟2, such that 𝒟2 dominates those with signature from Σ
𝑔

2
, 𝒟1 ∪ 𝒟2 dominates

those with signature from Σ
𝑔

1
, and𝒟0 ∪ 𝒟1 ∪ 𝒟2 dominates those with signature from Σ

𝑔

0
.

For a signature 𝜎 = (𝑒1 , 𝑒2 ,□, 𝑞) ∈ Σ𝑔
, let 𝜎∗ B (𝑒1 , 𝑒2 ,□). Let 𝑆(𝜎) := 𝑆(𝜎∗), that is, a highest gain

𝜎∗-capped path.

4.8.1 Dominating objects of path type

For any signature 𝜎 ∈ Σ
𝑔

2
, let 𝑄2(𝜎) be any (2𝑛 + 3)-recurrent flow-generating object at the first node of

𝑆(𝜎), such that 𝑄2(𝜎) ⊕ 𝑆(𝜎) has signature 𝜎. Let 𝑅(𝜎) := 𝑅(𝜎∗); recall that it is a highest gain path from

the last node of 𝑆(𝜎∗) to 𝑡, such that 𝑆(𝜎∗) ⊕ 𝑅(𝜎∗) has signature 𝜎∗. We define

𝑈2(𝜎) := 𝑄2(𝜎) ⊕ 𝑆(𝜎) ⊕ 𝑅(𝜎) for each 𝜎 ∈ Σ𝑔

2
,

and

𝒟2 := {𝑈2(𝜎) : 𝜎 ∈ Σ𝑔

2
}.

We claim that𝒟2 dominates all simple flow-generating objects at 𝑡 of cycle type. In fact, we will dominate

a larger collection; this will be useful later in order to dominate objects of mixed and cycle type as well.

Lemma 4.37. Let 𝑈 be a flow-generating object at 𝑡 with signature 𝜎 ∈ Σ
𝑔

2
. If 𝑈 is (𝑛 + 3)-recurrent and

𝛽(𝑈) ⊕ �(𝑈) is a path, then there exists an object �̄� ∈ 𝒟2 which dominates𝑈 , in that 𝑓 +
�̄�
≥ 𝑓 +

𝑈
.

Proof. Let 𝑃 = 𝛽(𝑈) ⊕ �(𝑈) and let 𝑠 be the starting node of 𝑃. Let 𝑍 be the flow-generating object at 𝑠
such that𝑈 = 𝑍 ⊕ 𝑃. By Theorem 4.22, there exists an 𝑛-recurrent 𝑠-𝑡 walk𝑊 which strongly dominates

the path 𝑃. From the proof of Theorem 4.22 (see (11)), we know that 𝛽(𝑊) = 𝑆(𝜎′) and �(𝑊) = 𝑅(𝜎′) for

some signature 𝜎′ ∈ Σ𝑔

2
.

Let𝑈′ = 𝑍 ⊕𝑊 . Then𝑈′ dominates𝑈 : for any �, and given whatever excess the object 𝑍 can create

at 𝑠,𝑊 manages to send at least as much to 𝑡 as 𝑃. Formally,

𝑓 +𝑈′(�) = ®𝑓𝑊 (�, 𝑓
+
𝑍 (�)) ≥ ®𝑓𝑃(�, 𝑓

+
𝑍 (�)) = 𝑓 +𝑈 (�) for any � ∈ R+.

Now observe that for any � ∈ R+,

−∇𝑠𝑥𝑊 (�) ≤ −∇𝑠𝑥𝑃(�) ≤ ∇𝑠𝑥𝑍(�).

The first inequality follows from the strong dominance of 𝑊 over 𝑃, while the second inequality is due

to 𝜎 ∈ Σ𝑔

2
. This shows that 𝑍 can generate at least as much excess at 𝑠 as 𝑊 manages to absorb. Hence,

the cost and flow bottlenecks of𝑈′ are realized in𝑊 , implying that 𝜎(𝑈′) = 𝜎′.
Finally, we show that �̄� := 𝑈2(𝜎′) ∈ 𝒟2 dominates 𝑈′. Note that 𝑈2(𝜎′) exists because 𝑍 is one such

candidate — it has recurrence 2𝑛 + 3. The point is that since 𝑈2(𝜎′) and 𝑈′ have the same signature 𝜎′,
and are identical on the part that contains both bottleneck arcs, the maximum flow that can be sent to 𝑡
is the same in both objects:

∇𝑡𝑥𝑈2(𝜎′)(�) = 𝛾(𝑅(𝜎′))∇𝑠𝑥𝑆(𝜎
′)(�) = ∇𝑡𝑥𝑈

′(�) for all �. □

4.8.2 Dominating objects of mixed type

Before constructing the dominating collection𝒟1, we first need a few definitions.

For a flow-generating object 𝑈 = (𝐷,𝑊) of mixed type, the core of 𝑈 is (𝐷,𝑊 \ �(𝑈)). Given a

signature 𝜎, we say that𝑈 is a 𝜎-core if 𝜎(𝑈) = 𝜎 and 𝐸(�(𝑈)) = ∅.
For any signature 𝜎 of mixed type, let 𝑌(𝜎) be a (𝑛 + 2)-recurrent 𝜎-core chosen to have smallest

possible cost in the case that 𝜎 is of the form (𝑒c , 𝑒f , ⪯, 1), or of smallest possible congestion if 𝜎 is of the

form (𝑒c , 𝑒f , ≻, 1).
For any signature 𝜎 ∈ Σ

𝑔

1
, let 𝑅1(𝜎) be a highest-gain path from the last node of 𝑌(𝜎) to 𝑡, such that

𝑌(𝜎) ⊕ 𝑅1(𝜎) has signature 𝜎. We define

𝑈(𝜎) := 𝑌(𝜎) ⊕ 𝑅1(𝜎) for each 𝜎 ∈ Σ𝑔

1

and

𝒟1 := {𝑈(𝜎) : 𝜎 ∈ Σ𝑔

1
.}

27

Lemma 4.38. Let 𝑈 be a flow-generating object at 𝑡 with signature 𝜎 ∈ Σ
𝑔

1
. Let 𝑒 be the bottleneck arc of 𝛽(𝑈)

that is closer to 𝑡. If 𝑈 is (𝑛 + 2)-recurrent and 𝑒 ⊕ �(𝑈) is a path, then there exists an object in 𝒟1 ∪ 𝒟2 which

dominates𝑈 .

Proof. Let 𝑠 be the first node of �(𝑈) (so 𝑒 has head 𝑠). Define 𝑈′ := 𝑌(𝜎) ⊕ �(𝑈); we replace everything

up until 𝑠 with 𝑌(𝜎).
Claim 4.39. 𝑓 +

𝑈′ ≥ 𝑓 +
𝑈

. Furthermore, if 𝜎(𝑈′) ≠ 𝜎(𝑈), then𝑈′ is of path type, and 𝛽(𝑈′) ⊕ �(𝑈′) is a path.

Proof. Suppose that 𝜎 := 𝜎(𝑈) = (𝑒c , 𝑒f , ⪯, 1); the case 𝜎 = (𝑒c , 𝑒f , ≻, 1) will be completely analogous,

swapping the roles of the cost and flow bottlenecks. Note that𝑈 contains a finite capacity arc because 𝜎
is of mixed type. Let 𝑗 be the head of 𝑒f, and let 𝑅 be the core of𝑈 . Write �̃� and �̃� for splittings of 𝑅 and

𝑌(𝜎) respectively, chosen so that an arc 𝑎c ∈ �̃� is the cost bottleneck step for both, and an arc 𝑎f ∈ �̃� the

flow bottleneck step for both.

To show that 𝑓 +
𝑈′ ≥ 𝑓 +

𝑈
, it clearly suffices to show that 𝑥�̃�𝑎

f

(�) ≥ 𝑥�̃�𝑎
f

(�) (or equivalently, ∇𝑗𝑥�̃�(�) ≥
∇𝑗𝑥�̃�(�)) for all �, given that 𝑈′ and 𝑈 share �(𝑈). So fix any � ≥ 0, and let �̃� := 𝑥�̃�(�), �̃� := 𝑥�̃�(�).
If �̃�𝑎

f
= 𝑢𝑒

f
, then clearly the claim holds. If not, then 𝑐𝑒c �̃�𝑎c

= � ≥ 𝑐𝑒c �̃�𝑎c
. Since 𝑌(𝜎) has minimum

cost amongst (𝑛 + 2)-recurrent 𝜎-cores, it has cost no larger than 𝑅; that is, 𝑐𝑒c �̃�𝑎c
/∇𝑗 �̃� ≤ 𝑐𝑒c �̃�𝑎c

/∇𝑗 �̃�.

Combining, ∇𝑗 �̃� ≥ ∇𝑗 �̃� as required.

Finally, we observe that if the cost bottleneck step of 𝑈′ is not 𝑎c, then it cannot be any other arc of

�̃�, since 𝑎c is the cost bottleneck step of �̃�; so in this case, the cost bottleneck must be an arc of �(𝑈). On

the other hand, the flow bottleneck step of𝑈′ remains 𝑎f — it cannot be any other arc of �̃� and 𝑎f ⊕ �(�̃�)
because 𝑎f is the flow bottleneck step of �̃� and 𝑎f⊕�(�̃�). So if 𝜎(𝑈′) ≠ 𝜎(𝑈), then 𝛽(𝑈′)⊕�(𝑈′) = 𝑒f⊕�(𝑈),
which is a path. □

Let us first consider the case where 𝜎(𝑈′) = 𝜎(𝑈). We claim that 𝑈(𝜎) ∈ 𝒟1 dominates 𝑈′. Fix any

� ∈ R+. Since 𝜎(𝑈(𝜎)) = 𝜎(𝑈′) = 𝜎 ∈ Σ𝑔

1
, we obtain

∇𝑡𝑥𝑈(𝜎)(�) = 𝛾(𝑅1(𝜎))∇𝑠𝑥𝑌(𝜎)(�) ≥ 𝛾(�(𝑈))∇𝑠𝑥𝑌(𝜎)(�) = ∇𝑡𝑥𝑈
′(�),

where the inequality is due to our choice of 𝑅1(𝜎) and the fact that �(𝑈′) = �(𝑈) is a path.

Next, consider the case where 𝜎(𝑈′) ≠ 𝜎(𝑈). According to Claim 4.39, 𝑈′ is of path type and

𝛽(𝑈′) ⊕ �(𝑈′) is a path. Since 𝑈′ is (𝑛 + 3)-recurrent, by Lemma 4.37, there exists an object in 𝒟2 which

dominates𝑈′.
So, there is an object in𝒟1∪𝒟2 which dominates𝑈′, and𝑈′ dominates𝑈 , completing the proof. □

4.8.3 Dominating objects of cycle type

For any signature 𝜎 ∈ Σ
𝑔

0
, let 𝐿0(𝜎) be an (𝑛 + 1)-recurrent walk from the last node of 𝑆(𝜎) to the first

node of 𝑆(𝜎), and let 𝑅0(𝜎) be a 2-recurrent walk from the last node of 𝑆(𝜎) to 𝑡, such that 𝑈(𝜎) B
(𝐿0(𝜎) ⊕ 𝑆(𝜎), 𝑅0(𝜎)) is a flow-generating object with signature 𝜎, 𝜏(𝑈) = 𝐿0(𝜎) and maximizes the net

flow at 𝑡. Formally, it maximizes (
1 − 1

𝛾(𝐿0(𝜎))𝛾(𝑆(𝜎))

)
𝛾(𝑅0(𝜎)).

The dominating collection is defined as

𝒟0 := {𝑈(𝜎) : 𝜎 ∈ Σ𝑔

0
}.

Lemma 4.40. Let 𝑈 be a flow-generating object at 𝑡 with signature 𝜎 ∈ Σ
𝑔

0
. If 𝑈 is simple, then there exists an

object in𝒟0 ∪ 𝒟1 ∪ 𝒟2 which dominates𝑈 .

Proof. Denote𝑈 = (𝐶, 𝑃), where 𝐶 is a flow-generating cycle and 𝑃 is a path. Let 𝑠 be the unique common

node of 𝐶 and 𝑃. By Theorem 4.28, there exists an (𝑛 + 1)-recurrent flow-generating 𝑠-𝑠 walk 𝐶′ which

dominates 𝐶. From the proof, we know that 𝛽(𝐶′) = 𝑆(𝜎′) for some signature 𝜎′ ∈ Σ
𝑔

0
, and �(𝐶′) is a

path. In the exceptional case where 𝛽(𝐶′) = 𝐶′, it is a highest gain cycle with signature 𝜎′. Note that the

first and last arcs of 𝐶′ are its bottlenecks. For such a signature 𝜎′, in this proof we redefine 𝑆(𝜎′) as a

highest gain cycle with signature 𝜎′. Then, 𝛽(𝐶′) = 𝑆(𝜎′) for this case as well.

28

Now, consider the (𝑛 + 2)-recurrent flow-generating object 𝑈′ = (𝐶′, 𝑃) at 𝑡. Since 𝐶′ dominates 𝐶,

for any � ∈ R+
∇𝑡𝑥𝑈

′(�) = ®𝑓𝑊 (�, 𝑓 +𝐶′(�)) ≥ ®𝑓𝑊 (�, 𝑓
+
𝐶 (�)) = ∇𝑡𝑥

𝑈 (�).
This shows that𝑈′ dominates𝑈 .

We first consider the case where 𝜎(𝑈′) = 𝜎′. Let 𝑟 be the last node of 𝛽(𝐶′). Let𝐶′′ be the cycle obtained

by rerouting 𝐶′ to start and end at 𝑟, and define the flow-generating object𝑈′′ = (𝐶′′, �(𝐶′) ⊕ 𝑃). Clearly,

𝑈′′ is (𝑛 + 3)-recurrent. Let �̃�′ = (𝐶′, �̃�) be a splitting of𝑈′, and let𝑈′′ = (𝐶′′, �̃ ⊕ �̃�) be a corresponding

splitting of 𝑈′′, in the sense that 𝐶′ is a rerouting of 𝐶′′ to start and end at 𝑟. Write 𝑎c and 𝑎f as the cost

bottleneck step and flow bottleneck step of �̃�′ respectively. Let �̃� be a flow induced by �̃�′, and let �̃� be a

flow induced by 𝑈′′, scaled so that ∇𝑡 �̃� = ∇𝑡 �̃�. Then, �̃�𝑒 = �̃�𝑒 for all 𝑒 ∈ 𝐸(𝜏(𝐶′)) ∪ 𝐸(𝛽(𝐶′)) ∪ 𝐸(�̃�). On

�(𝐶′), every arc 𝑒 satisfies �̃�𝑒 = �̃�𝑒 + �̃�𝑒 , where 𝑒 is its corresponding arc in �̃. Since 𝑎c , 𝑎f ∈ 𝐸(𝛽(𝐶′)), it

follows that 𝜎(𝑈′′) = 𝜎′ and ∇𝑡𝑥𝑈
′′
= ∇𝑡𝑥𝑈

′
.

We claim that𝑈(𝜎′) dominates𝑈′′. For any � ∈ R+,

∇𝑡𝑥𝑈(𝜎
′)(�) =

(
1 − 1

𝛾(𝐿0(𝜎′))𝛾(𝑆(𝜎′))

)
𝛾(𝑅0(𝜎′))∇𝑠𝑥𝑆(𝜎

′)(�)

≥
(
1 − 1

𝛾(𝜏(𝑈′′))𝛾(𝑆(𝜎′))

)
𝛾(�(𝐶′))𝛾(𝑃)∇𝑠𝑥𝑆(𝜎

′)(�) = ∇𝑡𝑥𝑈
′′(�),

where the inequality is due to our choice of 𝐿0(𝜎), 𝑅0(𝜎) and the fact that 𝜏(𝑈′′) is (𝑛 + 1)-recurrent and

�(𝑈′′) = �(𝐶′) ⊕ 𝑃 is 2-recurrent.

Next, we consider the case where 𝜎(𝑈′) ≠ 𝜎′. Then, 𝜎(𝑈′) ∈ Σ
𝑔

1
∪ Σ

𝑔

2
. Since 𝑈′ is (𝑛 + 2)-recurrent,

we are done by Lemma 4.38 or Lemma 4.37, depending on whether 𝜎(𝑈′) is in Σ
𝑔

1
or Σ

𝑔

2
. □

Clearly, 𝒟 = 𝒟0 ∪ 𝒟1 ∪ 𝒟2 has size at most |Σ𝑔 | = 𝑂(𝑚�̄�). By Lemmas 4.37, 4.38 and 4.40,

Theorem 4.35 is proved.

5 Initialization for generalized flows
In this section, we show that (LP) can be solved using the SLLS IPM after a preprocessing relying on

primal and dual feasibility oracles for the generalized flow problem. Our input problem is

min ⟨𝑐, 𝑥⟩ s.t. A𝑥 = 𝑏 , 𝑥 ≥ 0 , (14)

where the variables correspond to arcs and the rows to nodes of a minimum-cost generalized flow

problem as in (MGF). In the preprocessing and initialization stage, we will solve feasibility systems for

any 𝑏′ ∈ R𝑚 , 𝐼 ⊆ [𝑛], and 𝑐′ ∈ R𝐼 , ℓ , 𝑟 ∈ (R ∪ {−∞})𝐼 of the forms

A𝐼𝑥 = 𝑏′ , 𝑥 ≥ ℓ and [A𝐼]⊤𝑦 + 𝑠 = 𝑐′ , 𝑠 ≥ 𝑟 , (15)

Here, A𝐼 is the submatrix correspond to the columns in 𝐼; in these systems, we set all variables outside 𝐼 to

0. Strongly polynomial subroutines are available, as they easily reduce to generalized flow maximization

[Vég17, OV20], and to 2VPI feasibility, e.g., [Meg83, HN94], respectively.

Throughout this section, let us assume both the primal and dual programs in (LP) are feasible. We

can check both primal and dual feasibilities using the oracles above. E.g., if the dual is infeasible, then

the dual feasibility algorithm returns an unbounded direction for the primal.

Finding maximum support solutions. Given an instance of (LP), we first find primal and dual feasible

solutions of maximal support. Namely, we find sets 𝑃★, 𝑄★ ⊆ [𝑛] and primal and dual feasible solutions

(�̄� , 𝑠) ∈ 𝒫 × 𝒟 satisfying the following (i) supp(�̄�) = 𝑃★
, supp(𝑠) = 𝑄★

; (ii) for any 𝑖 ∈ [𝑛] \ 𝑃★
, 𝑥𝑖 = 0

for every 𝑥 ∈ 𝒫, and for 𝑗 ∈ [𝑛] \ 𝑄★
, 𝑠𝑖 = 0 for every 𝑠 ∈ 𝒟. We note that duality theory implies

𝑃★ ∪𝑄★ = [𝑛], see also Lemma 7.2 later.

These can be found by solving at most 𝑛 primal and 𝑛 dual instances of (15) as follows. First, we find

any primal feasible solution �̂� ∈ 𝒫. Then, for any 𝑗 ∈ [𝑛] \ supp(�̂�), we solve the primal LP in (15) of the

form A𝑧 = 0, 𝑧 𝑗 ≥ 1, 𝑧𝑖 ≥ 0 for 𝑖 ∈ [𝑛] \ (supp(�̂�) ∪ { 𝑗}). If this auxiliary LP has a feasible solution 𝑧, then

𝑥(𝑗) B �̂� + 𝛼𝑧 ∈ 𝒫 for a sufficiently small 𝛼 > 0 with 𝑥
(𝑗)
𝑗

> 0; and if it is infeasible then clearly 𝑥 𝑗 = 0

must hold for every 𝑥 ∈ 𝒫. We obtain the desired 𝑃★
as the set of indices in supp(�̂�) and the indices

where the auxiliary LP is feasible, and the desired �̄� as the average of all such solutions. The set 𝑄★
and

vector 𝑠 can be found analogously.

29

Reducing the LP. We obtain an equivalent problem instance by replacing the costs by 𝑠. Let us define

the index sets

𝑅 B 𝑃★ ∩𝑄★ , 𝑆 B 𝑃★ \𝑄★ , 𝑇 B [𝑛] \ 𝑃★ .

Let us first delete all variables 𝑒 ∈ 𝑇, leading to the system

min ⟨𝑠𝑅 , 𝑥𝑅⟩ + ⟨𝑠𝑆 , 𝑥𝑆⟩ s.t. A𝑅𝑥𝑅 +A𝑆𝑥𝑆 = 𝑏 , 𝑥𝑅 , 𝑥𝑆 ≥ 0 , (16)

This clearly has the same optimum value as the original system. In the next step, let us remove the

nonnegativity constraints from all variables in 𝑆. Note that 𝑠𝑒 > 0 for 𝑒 ∈ 𝑅 and 𝑠𝑒 = 0 for 𝑆. Thus, we

obtain the system

min ⟨𝑠𝑅 , 𝑥𝑅⟩ s.t. A𝑅𝑥𝑅 +A𝑆𝑥𝑆 = 𝑏 , 𝑥𝑅 ≥ 0 , (17)

with the guarantee that its optimum value equals the optimum value of (16), and therefore of the original

system (14) (with respect to the modified cost function 𝑠.)
Consider a variable 𝑒 ∈ 𝑃★ \ 𝑄★

that represents an (𝑖 , 𝑗) arc 𝑒 ∈ 𝐸𝑖 , 𝑗 . We can obtain an equivalent

minimum-cost generalized flow instance by contracting this arc. Namely, we replace every arc 𝑒′ ∈ 𝐸𝑘,𝑖
of gain factor 𝛾𝑒′ by a (𝑘, 𝑗)-arc of gain factor 𝛾𝑒′𝛾𝑒 , and replace every arc 𝑒′ ∈ 𝐸𝑖 ,𝑘 by a (𝑗 , 𝑘) arc of gain

factor 𝛾𝑒′/𝛾𝑒 . In both cases we keep the cost 𝑐𝑒′ for the new arc. Further, we replace 𝑏 𝑗 by 𝑏𝑖 + 𝛾𝑖 𝑗𝑏𝑖 , and

delete the node 𝑖. Note that in the matrix form this corresponds to column operations that change the

row of 𝑖 so that it contains −1 in the column corresponding to 𝑒 and 0 in all other entries, followed by

a row operation which adds 𝛾𝑖 𝑗 times the row of 𝑖 to the row of 𝑗. Further, this mapping preserves the

primal solution �̂�𝑅∪𝑆 on the variables in 𝑅 with the same values.

We contract every arc in 𝑆 this way to obtain a minimum-cost generalized flow instance

min ⟨𝑐′, 𝑥′⟩ s.t. A′𝑥′ = 𝑏′, 𝑥′ ≥ 0 . (18)

Moreover, a strictly positive feasible solution is known. Assume we can find primal and dual optimal

solutions (𝑥′, 𝑦′, 𝑠′) to this system. This can be naturally mapped back to primal and dual optimal

solutions (�̃� , �̃� , 𝑠) to the system (17), with 𝑠𝑖 = 0 for 𝑖 ∈ 𝑆. If �̃�𝑆 ≥ 0, then after appending the variables

𝑖 ∈ 𝑇 with �̃�𝑖 = 0, we get an optimal primal solution to the original input instance (14), noting that (14)

and (17) have the same optimum value.

Assume now �̃�𝑆 has some negative coordinates. Observe that (�̃� , 𝑠) is also an optimal dual solution

to (16), because it is feasible to the dual, and because (16) and (17) have the same optimum values. By

complementary slackness, the following system is feasible, and any solution 𝑥 yields an optimal solution

to (16):

A𝑅𝑥𝑅 +A𝑆𝑥𝑆 = 𝑏 , 𝑥𝑅 , 𝑥𝑆 ≥ 0 , 𝑥𝑖 = 0 ∀𝑖 ∈ supp(𝑠) .
We solve this system using the primal oracle in (15). After adding coordinates 𝑥𝑖 = 0 for 𝑖 ∈ 𝑇, we

obtain a primal optimal solution 𝑥★ to the original problem (14). Given 𝑥★, we can obtain a dual optimal

solution 𝑠★ by solving a dual feasibility problem

A⊤𝑦 + 𝑠 = 𝑐 , 𝑠𝑖 = 0 ∀𝑖 ∈ supp(𝑥★).

Initializing the IPM. According to the above reduction, we can focus our attention on solving the

min-cost generalized flow problem (14) under the assumption that 𝑐 > 0 and a strictly positive primal

feasible solution �̂� > 0 is provided. Thus, (�̄� , 0, 𝑐) form a pair of primal and dual feasible solutions with

gap 𝛾 = ⟨𝑐, �̄�⟩. We select 𝑀 such that

𝑀 ≥ max

{
𝛾 max

𝑖∈[𝑛]
max

{
1

�̄�𝑖
,

1

𝑐𝑖

}
,
𝑛2

𝛽
(∥ �̄�∥∞ + ∥𝑐∥∞)

}
.

The first term in the bound guarantees that for any primal and dual optimal solutions (𝑥★, 𝑦★, 𝑠★) to (18)

we have ∥𝑥★∥∞ , ∥𝑠★∥∞ < 𝑀, noting that ⟨𝑐, 𝑥★⟩ ≤ ⟨𝑐, �̄�⟩ = 𝛾 and ⟨�̄� , 𝑠★⟩ ≤ ⟨�̄� , 𝑐⟩ = 𝛾. The second term

will be used to argue for the centrality of the initial solution of the extended system below.

We now write the ‘big-𝑀 system’ (4) of [VY96]. For simplicity, in the following argument we denote

the input to the system (18) (A, 𝑏, 𝑐) as for the original system, and we let �̂� > 0 denote the primal feasible

solution. As noted already, this is still a min-cost generalized flow problem.

min ⟨𝑐, 𝑥′⟩ +𝑀 ⟨1𝑛 , 𝑥′⟩
A𝑥 −A𝑥′ = 𝑏

𝑥 + 𝑥′′ = 2𝑀1𝑛
𝑥, 𝑥′, 𝑥′′ ≥ 0𝑛 ,

max ⟨𝑏, 𝑦⟩ + 2𝑀 ⟨1𝑛 , 𝑦′⟩
A⊤𝑦 + 𝑦′ + 𝑠 = 𝑐

𝑦′ + 𝑠′′ = 0𝑛
−A⊤𝑦 + 𝑠′ = 𝑀1𝑛

𝑠, 𝑠′, 𝑠′′ ≥ 0𝑛 ,

(19)

30

We can initialize with (𝑥, 𝑥′, 𝑥′′) = (𝑀1𝑛 , 𝑀1𝑛 , 𝑀1𝑛 − �̄�) and (𝑠, 𝑠′, 𝑠′′) = (𝑀1𝑛 , 𝑀1𝑛 − 𝑐, 𝑀1𝑛). By the

choice of 𝑀 ≥ 𝑛2

𝛽 (∥ �̄�𝑅∥∞ + ∥𝑠𝑅∥∞), it is easy to check that this point satisfies the initialization condition

in Theorem 1.3.

We claim that any optimal solution to this system is optimal to the original system; that is, all

the auxiliary variables are 0. To see this, note that by the choice of 𝑀, for any primal and dual

optimal solutions (𝑥★, 𝑦★, 𝑠★) to (18), (𝑥★, 0𝑛 , 𝑀1𝑛 − 𝑥★) and (𝑠★, 0𝑛 , 𝑀1𝑛 − 𝑐 − 𝑠★) are optimal to (19) by

complementary slackness. Also by complementary slackness, it follows that the auxiliary variables 𝑥′

and 𝑠′′ must be 0𝑛 for any primal and dual optimal solutions.

Further, we note that (19) is a min-cost generalized flow problem with capacity bounds. This can

be reduced to an uncapacitated min-cost generalized flow problem by adding a new node for each arc.

Hence, the straight line complexity bounds are applicable.

Finally, for the sake of the strongly polynomial model, we need to guarantee that the bit-complexity

of 𝑀 is bounded in terms of the encoding length of the input; the definition of the encoding length is

given in Section 8. Still, we note that it suffices to guarantee that the maximum support solutions �̂� and 𝑠
found in the first step have bounded encoding length. This can be ensured by requiring a basic solution

from each of the feasibility oracle calls, and choosing the maximal possible values of each coefficient 𝛼
if it is bounded, and 𝛼 = 1 if unbounded. Given arbitrary feasible solutions, a basic solution can be

obtained by a simple support reduction procedure in strongly polynomial time.

6 Background on interior point methods
Projections and lifts. Let𝑊 ⊆ R𝑛 be a linear subspace. We define two important operations: projection

to a coordinate subspace, and fixing coordinates to 0. Namely, for 𝐼 ⊆ [𝑛], let

𝜋𝐼(𝑊) B {𝑤𝐼 : 𝑤 ∈𝑊}, 𝜑𝐼(𝑊) B {𝑤𝐼 : 𝑤 ∈𝑊,𝑤[𝑛]\𝐼 = 0} . (20)

It is easy to verify that the coordinate projection of𝑊⊥ is the orthogonal complement of 𝜑𝐼(𝑊).
Lemma 6.1. For any subspace𝑊 ⊆ R𝑛 and 𝐼 ⊆ [𝑛], 𝐼 ≠ ∅, 𝜋𝐼(𝑊⊥) = [𝜑𝐼(𝑊)]⊥

The lifting map can be used to map back elements of 𝜋𝐼(𝑊) to𝑊 .

Definition 6.2. Given a subset 𝐼 ⊆ [𝑛], 𝐼 ∉ {∅, [𝑛]}, and a subspace 𝑊 ⊆ R𝑛 , we define the lifting map

𝐿𝑊
𝐼

: 𝜋𝐼(𝑊) →𝑊 ⊆ R𝑛 as follows:

𝐿𝑊𝐼 (𝑥) B arg min{∥𝑤∥ : 𝑤 ∈𝑊,𝑤𝐼 = 𝑥}. (21)

We further define ℓ𝑊
𝐼

: 𝜋𝐼(𝑊) → 𝜋[𝑛]\𝐼(𝑊) by ℓ𝑊
𝐼
(𝑥) B [𝐿𝑊

𝐼
(𝑥)][𝑛]\𝐼 , i.e., the restriction of the output of

the lifting map to the coordinates in [𝑛] \ 𝐼.
Note that the lifting map is well-defined and is a linear map that can be computed in strongly

polynomial time given a basis of𝑊 . This map plays a key role in LLS IPMs, see e.g. [DHNV23].

Subspace formulation for LP. We now reformulate (LP) in the language of subspaces, a more conve-

nient language for the initialization techniques in Section 7. Give an instance of (LP) with (A, 𝑏, 𝑐), let

𝑊 = ker(A) and 𝑑 ∈ R𝑛 such that A𝑑 = 𝑏. Note that such a 𝑑 can be found in strongly polynomial time

if it exists; if it does not exists, then the LP is infeasible. Thus, we can write the LP as follows:

min ⟨𝑐, 𝑥⟩
𝑥 ∈𝑊 + 𝑑
𝑥 ≥ 0 ,

min ⟨𝑑, 𝑠⟩
𝑠 ∈𝑊⊥ + 𝑐
𝑠 ≥ 0 ,

(LP-subspace)

We repeat the definitions of 𝒫,𝒟, 𝒫++, and𝒟++, also indexing them as we will consider different linear

programs.

𝒫(𝑊, 𝑑) B {𝑥 ∈ R𝑛 | 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0} , 𝒟(𝑊, 𝑐) B {𝑠 ∈ R𝑛 | 𝑠 ∈𝑊⊥ + 𝑐, , 𝑠 ≥ 0}
and the strictly feasible sets 𝒫++(𝑊, 𝑑) = 𝒫(𝑊, 𝑑) ∩ R𝑛++ and 𝒟++(𝑊, 𝑑) = 𝒟(𝑊, 𝑐) ∩ R𝑛++. We simply

use 𝒫 ,𝒟 ,𝒫++ ,𝒟++ when clear from the context. For (𝑥, 𝑠) ∈ 𝒫++ × 𝒟++, the normalized duality gap is

�(𝑥, 𝑠) B ⟨𝑥, 𝑠⟩
𝑛

.

We will use the following simple but useful property.

31

Proposition 6.3. Given 𝑥, 𝑥′ ∈𝑊 + 𝑑, 𝑠, 𝑠′ ∈𝑊⊥ + 𝑐, we have that

⟨𝑥, 𝑠⟩ + ⟨𝑥′, 𝑠′⟩ = ⟨𝑥, 𝑠′⟩ + ⟨𝑥′, 𝑠⟩ .

In particular, if ⟨𝑥′, 𝑠′⟩ = 0, then

⟨𝑥, 𝑠⟩ = ⟨𝑥, 𝑠′⟩ + ⟨𝑥′, 𝑠⟩ .

Proof. This follows since 𝑥 − 𝑥′ ∈𝑊 and 𝑠 − 𝑠′ ∈𝑊⊥ live in orthogonal subspaces. □

We formulate a simple linearity property of the the duality gap; see e.g. [ADL
+
23].

Proposition 6.4 (Linearity of duality gap). Given 𝑥(1) , . . . , 𝑥(𝑘) ∈𝑊 + 𝑑, 𝑠(1) , . . . , 𝑠(𝑘) ∈𝑊⊥ + 𝑐 forming the

sequence 𝑧(1) = (𝑥(1) , 𝑠(1)), . . . , 𝑧(𝑘) = (𝑥(𝑘) , 𝑠(𝑘)) and � ∈ R𝑘 such that

∑𝑘
𝑖=1

�𝑖 = 1, we have that

�

(
𝑘∑
𝑖=1

�𝑖𝑧
(𝑖)

)
=

𝑘∑
𝑖=1

�𝑖�(𝑧(𝑖)) .

The central path and the analytic center. Given (LP-subspace), if 𝒫++ ,𝒟++ ≠ ∅, then for every � > 0

there exists a unique point (𝑥(�), 𝑠(�)) ∈ 𝒫 × 𝒟 with 𝑥𝑖(�)𝑠𝑖(�) = � for every 𝑖 ∈ [𝑛]. The central path

is the algebraic curve formed by the points (𝑥(�), 𝑠(�)) for � ∈ (0,∞). The limit of the central path is a

primal-dual optimal solution pair (𝑥★, 𝑠★) ∈ 𝒫 × 𝒟, such that 𝐵★ = supp(𝑥★) and 𝑁★ = supp(𝑠★) form a

partition of [𝑛].
The SLLS algorithm maintains iterates in the ℓ2-neighborhood of the central path. For the rest of the

paper, we use a fixed value 𝛽 ∈ (0, 1/6].

𝒩2(𝛽) B
{
(𝑥, 𝑠) ∈ 𝒫++ × 𝒟++ :

 𝑥 ◦ 𝑠
𝑛−1 ⟨𝑥, 𝑠⟩

− 1

2

≤ 𝛽

}
, (22)

We let𝒩2(𝛽) denote the closure of the ℓ2 neighborhood. This will correspond to the part of neighborhood

containing the limit optimal solutions on the central path.

We use the following proximity properties. For the first one, see e.g., [Gon92, Lemma 5.4] and [MT03,

Proposition 2.1].

Proposition 6.5. Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩2(𝛽) for 𝛽 ∈ (0, 1/4] and � = �(𝑧), and consider the central path point

𝑧cp(�) = (𝑥cp(�), 𝑠cp(�)). For each 𝑖 ∈ [𝑛],

𝑥𝑖

1 + 2𝛽
≤ 1 − 2𝛽

1 − 𝛽
𝑥𝑖 ≤ 𝑥cp

𝑖
(�) ≤ 𝑥𝑖

1 − 𝛽
, and

𝑠𝑖

1 + 2𝛽
≤ 1 − 2𝛽

1 − 𝛽
𝑠𝑖 ≤ 𝑠cp

𝑖
(�) ≤ 𝑠𝑖

1 − 𝛽
.

We will often use the following proposition which is immediate from the definition of𝒩2(𝛽).

Proposition 6.6. Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩2(𝛽) for 𝛽 ∈ (0, 1/4], and � = �(𝑧). Then for each 𝑖 ∈ [𝑛]

(1 − 𝛽)� ≤ 𝑠𝑖𝑥𝑖 ≤ (1 + 𝛽)� .

The following lemma shows that the choice of parameter � = ⟨𝑥, 𝑠⟩ /𝑛 is essentially optimal for the

purpose of minimizing centrality error at (𝑥, 𝑠).

Lemma 6.7 ([MT03, Lemma 4.4]). For 𝛽 ∈ (0, 1/4], let (𝑥, 𝑠) ∈ 𝒫++×𝒟++ and�′ > 0 satisfy ∥𝑥𝑠/�′−1∥2 ≤ 𝛽.

Then, for � B ⟨𝑥, 𝑠⟩ /𝑛, we have that (𝑥 ◦ 𝑠)�
− 1

2

≤ 𝛽

1 − 𝛽
, and (1 − 𝛽/

√
𝑛)�′ ≤ � ≤ (1 + 𝛽/

√
𝑛)�′ . (23)

A key property of the central path is ‘near monotonicity’, formulated in the following lemma, see

[VY96, Lemma 16].

32

Lemma 6.8. For the central path point 𝑧cp(�) = (𝑥cp(�), 𝑠cp(�)) and any 𝑧 = (𝑥, 𝑠) ∈ 𝒫 × 𝒟, it holds that

𝑧 ≤ 𝑛
(
1 +

�(𝑧)
�

)
𝑧cp(�) .

Moreover, if �(𝑧) ≤ �, then 𝑧 ≤ 𝑛𝑧cp(�).
Proof. We only prove the first part; for the proof of the second statement see [VY96, Lemma 16]. By

Proposition 6.3,

⟨𝑥, 𝑠cp(�)⟩ + ⟨𝑥cp(�), 𝑠⟩ = ⟨𝑥, 𝑠⟩ + ⟨𝑥cp(�), 𝑠cp(�)⟩ = 𝑛�(𝑧) + 𝑛� .

Dividing by �, and using that 𝑥
cp

𝑖
(�)𝑠cp

𝑖
(�) = �, we get

𝑛∑
𝑖=1

(
𝑥𝑖

𝑥
cp

𝑖
(�)
+ 𝑠𝑖

𝑠
cp

𝑖
(�)

)
≤ 𝑛

(
1 +

�(𝑧)
�

)
.

The first part follows since all terms are nonnegative. □

Assuming 𝒫++(𝑊, 𝑑) ≠ ∅ and 𝒫 is bounded, its analytic center is

�̃� B arg max

𝑥∈𝒫++(𝑊,𝑑)

𝑛∑
𝑖=1

log 𝑥𝑖 .

By Lagrangian duality, there exists a unique �̃� ∈ 𝑊⊥ such that �̃�𝑖 �̃�𝑖 = 1 for all 𝑖 ∈ [𝑛]. We define

the analytic center of 𝒟++(𝑊, 𝑐) analogously as the maximizer of

∑𝑛
𝑖=1

log 𝑥𝑖 over 𝒟++(𝑊, 𝑐). This is

equivalent to the existence of 𝑤 ∈ 𝑊 with 𝑠𝑖 �̃�𝑖 = 1 for all 𝑖 ∈ [𝑛]. We note that one of 𝒫++(𝑊, 𝑑) and

𝒟++(𝑊, 𝑑) is always unbounded; hence, the analytic center may only exist for either of them.

It is well-known that the central path limit point (𝑥★, 𝑠★) coincide with the analytic centers of the

primal and dual optimal facets, see e.g., [RTV05, Theorem I.30]. Namely, 𝑥★ is the analytic center of

𝜋𝐵★(𝑊), and 𝑠★ is the analytic center of 𝜋𝑁★(𝑊⊥).
We also use the following step-length estimate. In Appendix B, we show a stronger version Proposi-

tion B.16.

Lemma 6.9 (Step-length estimate for general directions, [ADL
+
23]). Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩2(𝛽), 𝛽 ∈ (0, 1/6].

Consider directions Δ𝑥 ∈𝑊 , Δ𝑠 ∈𝑊⊥ that satisfy ∥Δ𝑥 ◦ Δ𝑠∥ ≤ 𝛽�/4. Let

𝛾 B
∥(𝑥 + Δ𝑥) ◦ (𝑠 + Δ𝑠)∥

�
.

Then (𝑥 + 𝛼Δ𝑥, 𝑠 + 𝛼Δ𝑠) ∈ 𝒩2(2𝛽) and �(𝑥 + 𝛼Δ𝑥, 𝑠 + 𝛼Δ𝑠) ≤ (1 + 3

2
𝛽/
√
𝑛)(1 − 𝛼)�, for all 0 ≤ 𝛼 ≤ 1 − 4𝛾

𝛽 .

6.1 A stronger version of the SLLS IPM
We will require following adapted version of the IPM in Theorem 1.3, which we prove in Appendix B.

The two main differences are that the iterations are implementable in strongly polynomial time, and

the second is that the output guarantees are stronger, namely, it outputs certificates that the returned

optimal solutions are close the analytic centers of the corresponding optimal faces.

Theorem 6.10. Let 𝛽 ∈ (0, 1/6] be a constant, � ∈ (0, 1). Given a point (𝑥, 𝑠) ∈ 𝒩2(𝛽), for (LP-subspace) with

data (𝑊, 𝑑, 𝑐), there exists an IPM, that terminates in

𝑂

(
𝑛1.5

log

(
𝑛

�

) 𝑛∑
𝑖=1

SLC�(𝑥𝔪𝑖)
)

many iterations and returns a quadruple (𝑥★, 𝑠★, 𝑣★, 𝑤★) ∈ R4𝑛
that for 𝐵★ B supp(𝑥★) and 𝑁★ B supp(𝑠★)

has the following properties:

(1) 𝐵★ and 𝑁★
form a partition of [𝑛],

(2) 𝑥★ ∈ 𝒫(𝑊, 𝑑), 𝑠★ ∈ 𝒟(𝑊, 𝑐),
(3) 𝑣★ ∈𝑊⊥ , 𝑣★

𝐵
> 0𝐵 and 𝑤★ ∈𝑊 , 𝑤∗

𝑁
> 0𝑁 .

(4) ∥(𝑥★
𝐵★
◦ 𝑣∗

𝐵★
, 𝑠★
𝑁★ ◦ 𝑤★

𝑁★) − 1𝑛 ∥2 ≤ 𝛽.

Furthermore, each iteration can be implemented by a strongly polynomial algorithm in the Turing model.

33

6.2 Straight-line complexity of a subspace
For a subspace𝑊 ⊆ R𝑛 we define, in a slight overload of notation, the following worst-case straight line

complexity.

Definition 6.11. For a subspace𝑊 ⊆ R𝑛 and � ∈ (0, 1)we let

SLC�(𝑊) B sup

𝑐,𝑑≥0

{
max

𝑖∈[𝑛]
SLC�(𝑥𝔪𝑖) | 𝑥

𝔪
is MCP for (LP-subspace) with data (𝑊, 𝑑, 𝑐)

}
. (24)

Thus, we define the subspace SLC over all possible primal-dual feasible LPs corresponding to the

subspace 𝑊 , i.e., 𝑊 = ker(A) in the matrix formulation (LP). As noted in the introduction, we would

obtain essentially the same bound if using the dual SLC�(𝑠𝔪𝑖) in the definition. The following Lemma,

shown in Section 7.3, asserts that SLC(𝑊) may only go up by one when deleting or projecting out

variables.

Lemma 6.12. Let 𝑊 ⊆ R𝑛 be a subspace and � ∈ (0, 1). Then, for any index set 𝐼 ⊆ [𝑛], SLC�(𝜋𝐼(𝑊)) ≤
SLC�(𝑊) + 1 and SLC�(𝜑𝐼(𝑊)) ≤ SLC�(𝑊) + 1.

7 An initialization framework for general Linear Programs
Section 5 gave an initialization technique for generalized flows. This requires primal and dual feasibility

subroutines that are available for this problem but not in general. Also, it requires solving 2𝑛 feasibility

problems as preprocessing before a single call to the SLLS IPM.

In this section, we present a new, general initialization technique applicable for general instances of

(LP-subspace) with data (𝑊, 𝑑, 𝑐). It only requires four calls to SLLS IPM. Moreover, the running time of

all these IPMs will be upper bounded by the subspace straight-line complexity bound SLC�(�̄�), where

�̄� B {(𝑤,−𝑤, �̄�) : 𝑤 − �̄� ∈ 𝑊}. This subspace also corresponds to the system used in the ‘big-𝑀’

initialization (4); however, we will use a different system. For a generalized flow problem, this still

corresponds to a (capacitated) generalized flow problem. The main result of this section is following

theorem.

Theorem 7.1 (Initialization for LP). Given a subspace 𝑊 ⊆ R𝑛 and 𝑑, 𝑐 ∈ R𝑛 , there exists an algorithm

(Algorithm 1) that either finds primal-dual optimal solutions to (LP-subspace) with data (𝑊, 𝑑, 𝑐) or finds a

certificate of primal or dual infeasibility. The running time of the algorithm is

𝑂

(
poly(𝑛) · min

�∈(0,1]
log

(
1

�

)
SLC�(�̄�)

)
(25)

and it requires space strongly polynomial in size(A, 𝑑, 𝑐), where A is a representation of𝑊 as ker(A) =𝑊 . Here,

�̄� B {(𝑤,−𝑤, �̄�) : 𝑤 − �̄� ∈𝑊}.

The main vehicle of this result is the SLLS IPM in [ADL
+
23], which requires that primal and dual are

strictly feasible and furthermore requires as input an initial point near the central path.

We present a initialization technique with three stages, where the first stage corresponds to a conic

feasibility problem, the second stage corresponds to primal and dual feasibility and the third stage

corresponds to an optimization problem. Compared to the initialization in Section 5, the first two stages

correspond to finding maximum support primal and dual solutions. In the third stage, we similarly

remove variables outside the primal support and project out variables outside the dual support. Using

the stronger output guarantees in Theorem 6.10, the first two stages will provide well-centered starting

solutions to the subsequent stages.

Farkas lemma. To prepare for our initialization technique, we will review the Farkas lemma and a conic

version of it.

Lemma 7.2 (Farkas lemma). Let𝑊 ⊆ R𝑛 and 𝑑, 𝑐 ∈ R𝑛 . Then, exactly one of the following is feasible:

(P1) 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0, or

(P2) 𝑦 ∈𝑊⊥ , 𝑦 ≥ 0, ⟨𝑑, 𝑦⟩ < 0.

Analogously, exactly one of the following is feasible:

34

(D1) 𝑠 ∈𝑊⊥ + 𝑐, 𝑠 ≥ 0, or

(D2) 𝑧 ∈𝑊, 𝑧 ≥ 0, ⟨𝑐, 𝑧⟩ < 0.

Lemma 7.3 (Conic Farkas lemma). Let𝑊 ⊆ R𝑛 be a subspace and 𝑖 ∈ [𝑛]. Then exactly one of the following is

feasible:

(C1) 𝑥 ∈𝑊, 𝑥 ≥ 0, 𝑥𝑖 > 0, or

(C2) 𝑥 ∈𝑊⊥ , 𝑥 ≥ 0, 𝑥𝑖 > 0.

Proof. Clearly, both cannot be feasible: if 𝑦 is feasible for (C1) and 𝑧 is feasible for (𝐶2), then 0 = ⟨𝑦, 𝑧⟩ ≥
𝑦𝑖𝑧𝑖 > 0, a contradiction.

Now assume that (C1) is infeasible. Then, by scaling the system 𝑥 ∈𝑊, 𝑥 ≥ 0, 𝑥𝑖 ≥ 1 is also infeasible,

which is equivalent to the system �̄� ∈𝑊 − 𝑒𝑖 , �̄� ≥ 0. By Lemma 7.2 there exists a certificate of infeasibility

𝑦 ∈ 𝑊⊥ , 𝑦 ≥ 0, ⟨�̄� ,−𝑒𝑖⟩ < 0, which is equivalent to 𝑦 ∈ 𝑊⊥ , 𝑦 ≥ 0, 𝑦𝑖 > 0, giving a feasible solution to

(C2). □

7.1 High level description
Stage I: Conic feasibility. In the first stage, our goal is to find the strictly complementary partition

(𝐵, 𝑁) for the subspace 𝑊 guaranteed by Lemma 7.3. Thus, there exist 𝑥 ∈ 𝑊 ∩ R𝑛+ and 𝑠 ∈ 𝑊⊥ ∩ R𝑛+
such that 𝑥𝑖 > 0 for 𝑖 ∈ 𝐵 and 𝑠𝑖 > 0 for 𝑖 ∈ 𝑁 . We aim for the stronger requirement that these solutions

be the analytic centers of the following (feasible and bounded) regions:

𝑥𝐵 ∈ 𝜑𝐵(𝑊), 0𝐵 ≤ 𝑥𝐵 ≤ 1𝐵 , 𝑠𝑁 ∈ 𝜑𝑁 (𝑊⊥), 0𝑁 ≤ 𝑠𝑁 ≤ 1𝑁 , (26)

where we recall the definition of 𝜑 from (20).

We do so by running the interior point method on the following primal-dual system.

min ⟨1𝑛 , �̂�⟩
�̄� − �̂� ∈𝑊
�̄� + �̌� = 1𝑛
�̄� , �̂� , �̌� ≥ 0𝑛 ,

min ⟨1𝑛 , 𝑠⟩
𝑠 − 𝑠 ∈𝑊⊥

𝑠 − 𝑠 + 𝑠 = 1𝑛
𝑠, 𝑠, 𝑠 ≥ 0𝑛 ,

(27)

The variables �̄� and 𝑠 correspond to the true variables in (LP-subspace). The variable �̂� is auxiliary, and

describes the subspace error in𝑊 in the primal of (27). The variable �̌� is auxiliary and corresponds to the

slack variables �̂� ≤ 1𝑛 in the upper bounds constraints on �̄�. The variables dual to �̌� are the variables

𝑠, which correspond to subspace error in 𝑊⊥. Analogously, 𝑠 functions as an upper bound on the term

𝑠 − 𝑠 and is the dual variable to the primal subspace error variables �̂�.

We will show that (27) is easy to initialize with the primal and dual solutions (1
2
13𝑛 , 13𝑛), both systems

have optimum objective values 0, and the supports of the optimal solutions �̄�c
and 𝑠c

form the partition

(𝐵, 𝑁) as in Lemma 7.3.

In particular, the relative interior of the optimal region of the primal in (27), restricted to the coordi-

nates in 𝐵, corresponds exactly to the relative interior of the primal feasible region in (26). The analogous

statement holds for 𝑠𝑁 on the dual side. We can use the result from Theorem 6.10 to find feasible vectors

�̄�c

𝐵
and 𝑠c

𝑁
that satisfy (26), as well as conic vectors that certify the centrality of these vectors. This

information will be useful for initializing the feasibility systems in Stage II.

Stage II: Primal and dual feasibility. Having obtained the conic maximum support partition (𝐵, 𝑁)
of the subspace 𝑊 , our next goal is to find maximum support primal and dual feasible solutions with

some additional guarantees. First, we note that given any vector 𝑥′ ∈𝑊 + 𝑑 with 𝑥′
𝑁
≥ 0𝑁 , we can find a

feasible 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0𝑛 as 𝑥 = 𝑥′+𝛼�̄�c

𝐵
for a sufficiently large 𝛼 > 0; moreover, supp(𝑥) = supp(𝑥′)∪𝐵.

Hence, we can focus on finding a maximum support primal feasible solution on the subspace 𝜋𝑁 (𝑊)
projected to the coordinates in 𝑁 . We can analogously argue about the dual coordinates in 𝐵.

Thus, we aim to find vectors near the analytic center of the (relative interior of the) optimal facets of

the following region.

𝑠 ∈ 𝜋𝐵(𝑊⊥) + 𝑐𝐵 , 𝑠 ≥ 0𝐵 . (28)

35

The above correspond to the coordinate-projection of the dual feasible region 𝒟(𝑊, 𝑐) onto the coordi-

nates in 𝐵. The analogous primal feasibility problem is

𝑥 ∈ 𝜋𝑁 (𝑊) + 𝑑𝑁 , 𝑥 ≥ 0𝑁 . (29)

Here, the feasible region corresponds to the coordinate-projection of the primal feasible region 𝒫(𝑊, 𝑑)
onto the coordinates in 𝑁 ; as noted above, feasibility on coordinates in 𝐵 can be obtained using the Stage

I solution.

Furthermore, note that the feasible regions in (28) and (29) are bounded, as unboundedness of (28)

would imply the existence of a ray 𝑣 ∈ 𝜋𝐵(𝑊⊥), 𝑣 ≥ 0𝐵 , 𝑣 ≠ 0𝐵, which can not exist, as we already found

a strictly positive vector �̄�c

𝐵
> 0𝐵 in the orthogonal space i.e., �̄�c

𝐵
∈ 𝜋𝐵(𝑊⊥)⊥ = 𝜑𝐵(𝑊) and so we arrive

at the contradiction 0 =
〈
�̄�c

𝐵
, 𝑣

〉
> 0.

We solve dual feasibility (28) by running the interior point in Theorem 6.10 on the following auxiliary

primal-dual system, again noting that 𝜋𝐵(𝑊⊥)⊥ = 𝜑𝐵(𝑊).

min ⟨𝑐𝐵 , �̄�𝐵⟩
�̄�𝐵 ∈ 𝜑𝐵(𝑊)

�̄�𝐵 + �̌�𝐵 = 1𝐵 ,
�̄�𝐵 , �̌�𝐵 ≥ 0𝐵 .

min ⟨1𝐵 , 𝑠𝐵⟩
𝑠𝐵 − 𝑠𝐵 ∈ 𝜋𝐵(𝑊⊥) + 𝑐𝐵 ,
𝑠𝐵 , 𝑠𝐵 ≥ 0𝐵 .

(30)

It will turn out, that we can initialize these systems directly, using the output of Theorem 6.10 under the

Stage I program. Depending on the objective value of this primal-dual system we will be able to either

decide dual infeasibility or find a point near the analytic center of the optimal facet of (28).

An analogous program exists for the variables (�̄�𝑁 , �̂�𝑁) and (𝑠𝑁 , 𝑠𝑁) for primal feasibility (29). In case

that both (29) and (28) are feasible, let �̄�
p

𝑁
and 𝑠d

𝐵
be the corresponding vectors returned by the algorithm.

Stage III: Optimization Finally, we aim to solve the optimization problem. Here, we will need to

restrict the set of variables we are operating on even further. To initialize the IPM for optimization, we

require strictly feasible primal-dual solutions. However, Stage II may have returned feasible solutions

�̄�
p

𝑁
and 𝑠d

𝐵
that are not fully supported on 𝑁 and 𝐵. By the property that these vector are near the

analytic center of the relative interior of the optimal facet, this allows us to conclude that all feasible

primal solutions 𝑥 ∈ 𝒫(𝑊, 𝑑) fulfill that 𝑥�̄� = 0�̄� for �̄� B 𝑁 \ supp(�̄�p

𝑁
). Similarly, all feasible dual

solutions 𝑠 ∈ 𝒟(𝑊, 𝑐) fulfill that 𝑠�̄� = 0�̄� for �̄� B 𝐵\supp(𝑠d

𝐵
). Hence, we are able to delete these variable

sets and only consider the variables 𝐵∗ B supp(𝑠d

𝐵
) and 𝑁 ∗ B supp(�̄�p

𝑁
) for the optimization problem.

The corresponding optimization problem now operates on a subspace 𝑊 ∗ ⊆ R𝐵∗∪𝑁∗ of 𝑊 on which the

coordinates in �̄� are fixed to 0 and the coordinates in �̄� are projected out. That is,

𝑊 ∗ B 𝜋[𝑛]\(�̄�∪�̄�)

(
𝜑[𝑛]\�̄� (𝑊)

)
= 𝜑𝐵∗∪𝑁∗

(
𝜋[𝑛]\�̄�(𝑊)

)
. (31)

Recall from Section 5 that the deletion and projection operations can be interpreted as arc deletions

and contractions for generalized flows, resulting in another generalized flow instance. Again, we can

initialize this new optimization system with the vectors obtained from the algorithm in Theorem 6.10

under the Stage II program.

The output of this last call to an IPM, gives us an optimal solution on the coordinates 𝐵∗ ∪ 𝑁 ∗. Some

extra combinatorial work is necessary to lift these primal and dual optimization vectors to a primal-dual

optimal solution of the original LP (LP-subspace) on the full coordinate set 𝐵 ∪ 𝑁 .

7.2 The algorithm and analysis
The full algorithm is presented in Algorithm 1. We now show that it works correctly, by analyzing the

three stages separately.

7.2.1 Stage I, Strict conic feasibility

In this section we show how to solve the conic feasibility problem. Let data (𝑊, 𝑑, 𝑐) for (LP-subspace)

be given. Our aim is to find the partition 𝐵 ∪ 𝑁 = [𝑛] and corresponding vectors 𝑥 ∈ 𝑊, 𝑥 ≥ 0, 𝑥𝐵 > 0
and 𝑠 ∈ 𝑊⊥ , 𝑠 ≥ 0, 𝑠𝑁 > 0, which exists by Lemma 7.3. Note that for generalized flow problems we are

36

Algorithm 1: LP-Solve

Input : An instance of (LP-subspace) with data (𝑊, 𝑑, 𝑐).
Output: One of the following:

• A pair of primal-dual optimal solutions: (𝑥∗ , 𝑠∗) feasible to (LP-subspace) such that ⟨𝑥∗ , 𝑠∗⟩ = 0.

• A certificate of primal infeasibility: 𝑦 ∈𝑊⊥ ∩ R𝑛+ such that ⟨𝑑, 𝑦⟩ < 0.

• A certificate of dual infeasibility: 𝑦 ∈𝑊 ∩ R𝑛+ such that ⟨𝑐, 𝑦⟩ < 0.

1 𝛽c ← 2
−16 , 𝛽p ← 𝛽d ← 2

−8 , 𝛽∗ ← 2
−4

2 // Stage I: Conic Feasibility

3 𝑊c ← {(�̄�, �̂�, �̌�) ∈ R3𝑛
: �̄� − �̂� ∈𝑊, �̄� = −�̌�}

4 (𝑥c , 𝑠c , 𝑣c , 𝑤c) ← IPM(𝑊c , 1

2
1

3𝑛 , 13𝑛 , 𝛽
c)

5 (�̄�c , �̂�c , �̌�c) ← 𝑥c , (𝑠c , 𝑠c , 𝑠c) ← 𝑠c

6 (�̄�c , �̂�c , �̌�c) ← 𝑤c , (�̄�c , �̂�c , �̌�c) ← 𝑣c

7 𝐵← supp(�̄�c), 𝑁 ← supp(𝑠c)
8 // Stage II: Feasibility
9 // Primal Feasibility

10 𝑊p ← {(�̄�, �̂�) : �̄� ∈ 𝜑𝑁 (𝑊⊥), �̄� + �̂� = 0}
11 𝑑p ← (𝑑𝑁 , 0𝑁) + (𝛽c)−1(∥𝑑𝑁 ∥1 + 1)∥(𝑠c

𝑁
, 𝑠c
𝑁
)∥

1
(�̄�c

𝑁
, �̂�c

𝑁
)

12 (𝑠p , 𝑥p , 𝑤p , 𝑣p) ← IPM(𝑊p , (𝑠c
𝑁
, 𝑠c
𝑁
), 𝑑p , 𝛽p)

13 (𝑠p , 𝑠p) ← 𝑠p , (�̄�p , �̂�p) ← 𝑥p

14 (�̄�p , �̂�p) ← 𝑤p , (�̄�p , �̂�p) ← 𝑣p

15 if �̂�p ≠ 0𝑁 then
16 return (FARKAS, (0𝐵 , 𝑠p))
17 // Dual Feasibility

18 𝑊d ← {(�̄�, �̌�) : �̄� ∈ 𝜑𝐵(𝑊), �̄� + �̌� = 0}
19 𝑐d ← (𝑐𝐵 , 0𝐵) + (𝛽c)−1(∥𝑐𝐵∥1 + 1)∥(�̄�c

𝐵
, �̌�c

𝐵
)∥

1
(�̄�c

𝐵
, �̌�c

𝐵
)

20 (𝑥d , 𝑠d , 𝑣d , 𝑤d) ← IPM(𝑊d , (�̄�c

𝐵
, �̌�c

𝐵
), 𝑐d , 𝛽d)

21 (�̄�d , �̌�d) ← 𝑥d , (𝑠d , 𝑠d) ← 𝑠d

22 (�̄�d , �̌�d) ← 𝑣d , (�̄�d , �̌�d) ← 𝑤d

23 if 𝑠d ≠ 0𝐵 then
24 return (FARKAS, (�̄�d , 0𝑁))
25 // Stage III: Optimization

26 𝐵∗ ← supp(𝑠d), �̄�← 𝐵 \ 𝐵∗
27 𝑁∗ ← supp(𝑥p), �̄� ← 𝑁 \ 𝑁∗

28 𝑊 ∗ ← 𝜋[𝑛]\(�̄�∪�̄�)
(
𝜑[𝑛]\�̄� (𝑊)

)
29 𝑥′← 𝑑𝐵∗∪𝑁∗ + 𝐿𝑊

∗
𝑁∗ (𝑥

p

𝑁∗ − 𝑑𝑁∗)
30 𝑠′← 𝑐𝐵∗∪𝑁∗ + 𝐿(𝑊

∗)⊥
𝐵∗ (𝑠d

𝐵∗ − 𝑐𝐵∗)
31 �0 ← (𝛽c)−1∥𝑥′ ◦ 𝑠′∥

1

32 𝑥0 ← 𝑥′ + �0(𝑤d

𝐵∗ , 0𝑁∗)
33 𝑠0 ← 𝑠′ + �0(0𝐵∗ , 𝑣

p

𝑁∗)
34 (𝑥∗ , 𝑠∗ , •, •) ← IPM(𝑊 ∗ , 𝑥0 , 𝑠0 , 𝛽∗)
35 �̃� ← 𝐿

𝜑[𝑛]\�̄� (𝑊)
𝐵∗∪𝑁∗ (𝑥∗)

36 𝑠 ← 𝐿
𝜑[𝑛]\�̄�(𝑊⊥)
𝐵∗∪𝑁∗ (𝑠∗)

37 𝛼← min{𝛼 ∈ R : �̃��̄� + 𝛼�̄�d

�̄�
≥ 0�̄�}

38 𝑥′′← �̃��̄� + 𝛼�̄�d

�̄�

39 𝛼← min{𝛼 ∈ R : 𝑠�̄� + 𝛼�̄�
p

�̄�
≥ 0�̄� }

40 𝑠′′← 𝑠�̄� + 𝛼�̄�
p

�̄�
41 return

(
(𝑥∗ , 0�̄� , 𝑥′′), (𝑠∗ , 0�̄� , 𝑠′′)

)
42

43 procedure IPM:
Input : data (𝑊 ⊆ R𝑛 , 𝑥 > 0𝑛 , 𝑠 > 0𝑛) for

(LP-subspace), 𝛽 ∈ (0, 1/6)with

∥ 𝑛𝑥𝑠⟨𝑥,𝑠⟩ − 1∥
2
≤ 𝛽.

Output: (𝑥∗ , 𝑠∗ , 𝑣∗ , 𝑤∗) as in Theorem 6.10

able to solve this problem with combinatorial algorithms (e.g., Bellman-Ford). However, using an IPM

we can solve the conic feasibility problem for arbitrary LP with strongly polynomially bounded SLC in

strongly polynomial time. An additional benefit of using an IPM instead of combinatorial methods is

that we are able to find specific conic solutions which will be useful to directly implement later stages of

the initialization procedure.

We consider following the LP of the form (LP-subspace) with data (𝑊c , 𝑑c , 𝑐c), where 𝑑c = 1

2
13𝑛 ,

𝑐c = 13𝑛 and

𝑊c B {(�̄�, �̂�, �̌�) ∈ R3𝑛
: �̄� − �̂� ∈𝑊, �̄� = −�̌�} ,

(𝑊c)⊥ B {(�̄� , �̂� , �̌�) ∈ R3𝑛
: �̄� − �̌� ∈𝑊⊥ , �̌� = �̄� + �̂�} .

(32)

The orthogonality of the two subspaces above can be verified, by noting that dim(𝑊c) = 𝑛+dim(𝑊) and

dim((𝑊c)⊥) = 𝑛 + dim(𝑊⊥) = 2𝑛 − dim(𝑊), hence dim(𝑊c) + dim((𝑊c)⊥) = 3𝑛 and furthermore, for

vectors (�̄�, �̂�, �̌�) and (�̄� , �̂� , �̌�) fulfilling the constraints on the right hand side of (32) we have that

⟨(�̄�, �̂�, �̌�), (�̄� , �̂� , �̌�)⟩ = ⟨�̄�, �̄�⟩ + ⟨�̂�, �̂�⟩ + ⟨�̌�, �̌�⟩ = ⟨�̄�, �̄�⟩ + ⟨�̂�, �̂�⟩ − ⟨�̄�, �̌�⟩
= ⟨�̄�, �̄� − �̌�⟩ + ⟨�̂�, �̂�⟩ = ⟨�̄�, �̄� − �̌�⟩ + ⟨�̂�, �̌� − �̄�⟩ = ⟨�̄� − �̂�, �̌� − �̄�⟩ = 0 .

(33)

The corresponding LP for data (𝑊c , 𝑑c , 𝑐c) is therefore given as

min ⟨𝑐c , 𝑥⟩
𝑥 ∈𝑊c + 𝑑c

𝑥 ≥ 03𝑛 ,

min ⟨𝑑c , 𝑠⟩
𝑠 ∈ (𝑊c)⊥ + 𝑐c

𝑠 ≥ 03𝑛 ,

(Init-Conic-LP)

37

Note that 𝑑c ◦ 𝑐c = 1

2
13𝑛 and therefore, (𝑑c , 𝑐c) is on the central path of (Init-Conic-LP) with parameter

� = 1

2
. In particular, we can call the IPM on this system and obtain a solution (𝑥c , 𝑠c , 𝑣c , 𝑤c) such that the

output guarantees in Theorem 6.10 hold. Let us decompose the output as 𝑥c = (�̄�c , �̂�c , �̌�c), 𝑠c = (𝑠c , 𝑠c , 𝑠c),
𝑣c = (�̄�c , �̂�c , �̌�c) and 𝑤c = (�̄�c , �̂�c , �̌�c). Note that for the vector (�̄�, �̂�, �̌�) B 1

2
(−1𝑛 ,−1𝑛 , 1𝑛) ∈ 𝑊c

, we

obtain that 𝑥′ B 𝑑c + (�̄�, �̂�, �̌�) = (0𝑛 , 0𝑛 , 1𝑛) is feasible to (LP-subspace) and analogously for (�̄� , �̂� , �̌�) B
(−1𝑛 , 0𝑛 ,−1𝑛) ∈ (𝑊c)⊥ we have that 𝑠′ B 𝑐c + (�̄� , �̂� , �̌�) = (0𝑛 , 1𝑛 , 0𝑛) is feasible to the dual. As ⟨𝑥′, 𝑠′⟩ = 0,

they are complementary and so primal-dual optimal solutions to (Init-Conic-LP). The primal optimal

region is therefore given by {(�̄� , �̂� , �̌�) ≥ 03𝑛 : �̄� ∈ 𝑊, �̂� = 0𝑛 , �̌� = 1𝑛 − �̄�} ⊆ 𝒫(𝑊c , 𝑑c) and the dual

optimal region is given by {(𝑠, 𝑠, 𝑠) ≥ 03𝑛 : 𝑠 ∈ 𝑊⊥ , 𝑠 = 1𝑛 − 𝑠} ⊆ 𝒟(𝑊c , 𝑐c). By the output guarantee

of Theorem 6.10 we have that 𝐵 B supp(𝑥c) ∩ [𝑛] and 𝑁 B supp(𝑠c) ∩ [𝑛] form a partition of [𝑛],
which we extract in Line 7 of Algorithm 1. In particular, we have that the relative interior of the

optimal region of the primal of (Init-Conic-LP) is given by {(�̄� , �̂� , �̌�) ≥ 03𝑛 : �̄� ∈ 𝑊, �̂� = 0𝑛 , �̌� =

1𝑛 − �̄� , �̌� > 0𝑛 , �̄�𝐵 > 0𝐵} ⊆ 𝒫(𝑊c , 𝑑c) and the relative interior of the optimal dual region is given by

{(𝑠, 𝑠, 𝑠) ≥ 03𝑛 : 𝑠 ∈𝑊⊥ , 𝑠 = 1𝑛 − 𝑠, 𝑠 > 0𝑛 , 𝑠𝑁 > 0𝑁 }.
The conic vectors 𝑣𝑐 and 𝑤𝑐

fulfill by Theorem 6.10 furthermore the property that

∥(�̄�c

𝐵 ◦ �̄�
c

𝐵 , �̌�
c

𝐵 ◦ �̌�
c

𝐵) − 1
2|𝐵| ∥2 ≤ 𝛽c

and ∥(𝑠c

𝑁 ◦ �̄�
c

𝑁 , 𝑠
c

𝑁 ◦ �̂�
c

𝑁) − 1
2|𝑁 | ∥2 ≤ 𝛽c . (34)

The properties in (34) are required for the initialization of the feasibility systems. Intuitively, the property

above means that the conic vectors are close to the analytic center of the optimal face of the conic feasibility

problem.

We further have by Theorem 6.10 the properties that 𝑣c ∈ (𝑊c)⊥ and 𝑣c

supp(𝑥c) > 0. So, in particular,

(�̄�c

𝐵 , �̌�
c

𝐵) ∈ 𝜋(𝐵,𝐵)((𝑊
c)⊥) ∩ R2|𝐵|

++ = {(�̄� , �̌�) : �̄� − �̌� ∈ 𝜋𝐵(𝑊⊥), �̄� > 0𝐵 , �̌� > 0𝐵} . (35)

Analogously, we have that 𝑤c ∈𝑊c
and 𝑤c

supp(𝑠c) > 0. So, in particular,

(�̄�c

𝑁 , �̂�
c

𝑁) ∈ 𝜋(𝑁,𝑁)(𝑊
c) ∩ R2|𝑁 |

++ = {(�̄�, �̂�) : �̄� − �̂� ∈ 𝜋𝑁 (𝑊), �̄� > 0𝑁 , �̂� > 0𝑁 } . (36)

7.2.2 Stage II, From strict conic feasibility to analytic centers

In the call to Line 2 we have identified the partition 𝐵∪𝑁 = [𝑛] such that the property (C1) in Lemma 7.3

holds for all 𝑖 ∈ 𝐵 and analogously the property (C2) holds for all 𝑖 ∈ 𝑁 . In this section we describe how

Algorithm 1 solves dual feasibility in lines 17 to 25. The primal feasibility problem is solved analogously

in lines 9 to 17. The original dual feasibility problem for data (𝑊, 𝑑, 𝑐) in form (LP-subspace) is given by

𝑠 ∈𝑊⊥ + 𝑐, 𝑠 ≥ 0. The subproblems we are considering now are (28) and (29).

Solving the dual feasibility problem on the coordinates in 𝐵 is the challenging part, as for feasibility

on the coordinates in 𝑁 we can make use of the vector 𝑠𝑐 ∈ 𝑊⊥ that was found in the previous section

and that has the properties that 𝑠𝑐
𝐵
= 0𝐵 and 𝑠𝑐

𝑁
> 0𝑁 . We are not yet able to decide feasibility of the

system (28). However, we can already conclude that the feasible region is bounded, which is certified by

the primal conic vector �̄�c

𝐵
∈ 𝜑𝐵(𝑊) ∩ R𝐵++ = 𝜋𝐵(𝑊⊥)⊥ ∩ R𝐵++. This is crucial, as our goal in this section

is to find a vector that approximates the analytic center of the relative interior of the feasible region of

(28). We do so by considering the following subspace𝑊d
in Line 18 of Algorithm 1. Here,

𝑊d B {(�̄�, �̌�) : �̄� ∈ 𝜑𝐵(𝑊), �̄� + �̌� = 0} ,
(𝑊d)⊥ B {(�̄� , �̌�) : �̄� − �̌� ∈ 𝜑𝐵(𝑊)⊥}

and the corresponding dual feasibility system (Init-Dual-Feas-LP) is in form (LP-subspace) with data

(𝑊d , (�̄�c

𝐵
, �̌�c

𝐵
), 𝑐d), where 𝑐d = (𝑐𝐵 , 0𝐵) + (𝛽c)−1(∥𝑐𝐵∥1 + 1)∥(�̄�c

𝐵
, �̌�c

𝐵
)∥1(�̄�c

𝐵
, �̌�c

𝐵
).

min

〈
𝑐d , (�̄�𝐵 , �̌�𝐵)

〉
(�̄�𝐵 , �̌�𝐵) ∈𝑊d + (�̄�c

𝐵 , �̌�
c

𝐵)
(�̄�𝐵 , �̌�𝐵) ≥ 0

2|𝐵| ,

min

〈
(�̄�c

𝐵 , �̌�
c

𝐵), (𝑠𝐵 , 𝑠𝐵)
〉

(𝑠𝐵 , 𝑠𝐵) ∈ (𝑊d)⊥ + 𝑐d

(𝑠𝐵 , 𝑠𝐵) ≥ 0
2|𝐵| ,

(Init-Dual-Feas-LP)

The vector 𝑐d
is chosen such that the term (𝑐𝐵 , 0𝐵) gets dominated by the multiple of the conic term

(�̄�c

𝐵
, �̌�c

𝐵
). The conic term is not affecting the optimal solution as (�̄�c

𝐵
, �̌�c

𝐵
) ∈ (𝑊d)⊥ according to (35) and is

just needed for centrality of the initial vectors as we will see next. For

�d B (𝛽c)−1(∥𝑐𝐵∥1 + 1)∥(�̄�c

𝐵 , �̌�
c

𝐵)∥1 (37)

38

we get with (34) that (�̄�c

𝐵
, �̌�c

𝐵
) ◦ 𝑐d

�d

− 1
2|𝐵|

2

=
(�̄�c

𝐵 , �̌�
c

𝐵) ◦ (�̄�
c

𝐵 , �̌�
c

𝐵) − 1
2|𝐵| + (�d)−1(�̄�c

𝐵 , �̌�
c

𝐵) ◦ (𝑐𝐵 , 0𝐵)

2

≤
(�̄�c

𝐵 , �̌�
c

𝐵) ◦ (�̄�
c

𝐵 , �̌�
c

𝐵) − 1
2|𝐵|

2

+
(�d)−1(�̄�c

𝐵 , �̌�
c

𝐵) ◦ (𝑐𝐵 , 0𝐵)

2

≤ 𝛽c + 𝛽c = 2𝛽c ,

(38)

and therefore using Lemma 6.7 we get that(
(�̄�c

𝐵 , �̌�
c

𝐵), 𝑐
d

)
∈ 𝒩2

(
2𝛽c

1 − 2𝛽c

)
⊆ 𝒩2(𝛽d) . (39)

Unlike in the previous section, we are not able to describe the optimal region yet. Now, consider

the output (𝑥d , 𝑠d , 𝑣d , 𝑤d) under the algorithm in Theorem 6.10. Again, let us write 𝑥d = (�̄�d , �̌�d),
𝑠d = (𝑠d , 𝑠d), 𝑣d = (�̄�d , �̌�d) and 𝑤d = (�̄�d , �̌�d).

If 𝑠d ≠ 0𝐵 as checked in Line 23, then the corresponding primal vector is going to be a Farkas

certificate of dual infeasibility. Namely, consider the primal solution corresponding to the update

(�̄�, �̌�) B (−�̄�c

𝐵
, �̄�c

𝐵
) ∈ 𝑊d

which results in the feasible vector 𝑥′ B (�̄�c

𝐵
, �̌�c

𝐵
) + (�̄�, �̌�) = (0𝐵 , �̄�c

𝐵
+ �̌�c

𝐵
) =

(0𝐵 , 1𝐵). As 𝑠d ≠ 0𝐵, we have that

〈
𝑥′, 𝑠d

〉
=

〈
1𝐵 , 𝑠d

〉
> 0. Therefore, 𝑥′ is not an optimal primal solution.

In particular, 𝑥d

𝐵
= 𝑥d

𝐵
− 𝑥′

𝐵
∈ 𝜋𝐵(𝑊⊥) is a Farkas certificate of infeasibility of System (28) as〈

𝑥d

𝐵 , 𝑐𝐵
〉
=

〈
𝑥d

𝐵 − 𝑥
′
𝐵 , 𝑐𝐵

〉
=

〈
𝑥d − 𝑥′, (𝑐𝐵 , 0𝐵)

〉
=

〈
𝑥d − 𝑥′, 𝑐d

〉
=

〈
𝑥d − 𝑥′, 𝑠d

〉
< 0 , (40)

where we used that 𝑥′− 𝑥d ∈𝑊d
and (�̄�c

𝐵
, �̌�c

𝐵
) ∈ (𝑊d)⊥. The certificate 𝑥d

𝐵
can be extended to a certificate

of dual infeasibility of (LP-subspace) by padding it with zeros on the coordinates in 𝑁 .

Otherwise, we have that 𝑠d = 0𝐵 and therefore, 𝑠d ∈ 𝜑𝐵(𝑊)⊥ = 𝜋𝐵(𝑊⊥) and 𝑠d ≥ 0𝐵 by feasibility. In

particular, we have obtained a feasible solution to (28). Furthermore, we obtain conic vectors 𝑣d
and 𝑤d

which will become important in the third stage program, where we use them for initialization. Recall

that the IPM returns a support-maximal solution. In particular, if for some coordinate 𝑖 ∈ 𝐵 we have that

𝑠d

𝑖
= 0, then 𝑠𝑖 = 0 for all feasible solutions to (28). Let �̄� B 𝐵 \ supp(𝑠d) and 𝐵∗ B supp(𝑠d).
By Theorem 6.10 we obtain that

∥𝑠d

𝐵∗ ◦ 𝑤
d

𝐵∗ − 1𝐵∗ ∥2 ≤ 𝛽d . (41)

A completely analogous analysis can be applied for primal feasibility in Algorithm 1 on lines 9 to

17. We either terminate with a certificate of primal infeasibility, or we obtain a feasible solution to the

system (29) and conic vectors 𝑣p
and 𝑤p

which will be used in the third stage program.

We also find a subset 𝑁 ∗ = supp(�̄�p) and a set �̄� B 𝑁 \ 𝑁 ∗. Furthermore, we have that

∥ �̄�p

𝑁∗ ◦ 𝑣
p

𝑁∗ − 1𝑁∗ ∥2 ≤ 𝛽p . (42)

The corresponding orthogonal subspaces for primal feasibility are

𝑊p B {(�̄�, �̂�) : �̄� ∈ 𝜑𝑁 (𝑊⊥), �̄� + �̂� = 0}
(𝑊p)⊥ B {(�̄� , �̂�) : �̄� − �̂� ∈ 𝜋𝑁 (𝑊)}

(43)

and the corresponding optimization problem is

min ⟨𝑑p , (𝑠𝑁 , 𝑠𝑁)⟩
(𝑠𝑁 , 𝑠𝑁) ∈𝑊p + (𝑠c

𝑁 , 𝑠
c

𝑁)
(𝑠𝑁 , 𝑠𝑁) ≥ 0

2|𝑁 | ,

min

〈
(𝑠c

𝑁 , 𝑠
c

𝑁), (�̄�𝑁 , �̂�𝑁)
〉

(�̄�𝑁 , �̂�𝑁) ∈ (𝑊p)⊥ + 𝑑p

(�̄�𝑁 , �̂�𝑁) ≥ 0
2|𝑁 | ,

(Init-Primal-Feas-LP)

We are now ready to solve the optimization problem.

7.2.3 Stage III, From analytic centers to optimization

The procedures in Sections 7.2.1 and 7.2.2 allowed us determine the set 𝐵∗ ∪ 𝑁 ∗ ⊆ [𝑛] of variables for

which strictly feasible solution exist (unless we have decided infeasibility). Accordingly, for �̄� B 𝐵 \ 𝐵∗
and �̄� B 𝑁 \ 𝑁 ∗ we define

𝑊 ∗ B 𝜋[𝑛]\(�̄�∪�̄�)

(
𝜑[𝑛]\�̄�(𝑊)

)
= 𝜑𝐵∗∪𝑁∗

(
𝜋[𝑛]\�̄� (𝑊)

)
. (44)

39

in Line 28 of Algorithm 1. The subspace 𝑊 ∗ is the subspace on which our final call to the interior point

method in Theorem 1.3 will be applied. Using the output of the algorithms described in the previous

section, we are given 𝑥
𝑝

𝑁∗ and 𝑠𝑑
𝐵∗ near the analytic center of the following two feasibility systems:

𝑥 ∈ 𝜋𝑁∗(𝑊 ∗) + 𝑥 𝑓𝑁∗ , 𝑥 ≥ 0 , and 𝑠 ∈ 𝜋𝐵∗((𝑊 ∗)⊥) + 𝑠 𝑓𝐵∗ , 𝑠 ≥ 0 . (45)

which is certified by 𝑤d

𝐵∗ and 𝑣
p

𝑁∗ , respectively in (41) and (42).

These vectors suffice for initialization of the corresponding subsystem of the original system on the

coordinates 𝐵∗ and 𝑁 ∗, as we will see next.

Consider the vector 𝑥′ B 𝑑𝐵∗∪𝑁∗ + 𝐿𝑊
∗

𝑁∗ (𝑥
p

𝑁∗ − 𝑑𝑁∗) and analogously on the dual side 𝑠′ B 𝑐𝐵∗∪𝑁∗ +
𝐿
(𝑊 ∗)⊥
𝐵∗ (𝑠d

𝐵∗ − 𝑐𝐵∗). We require these shifts of 𝑑 and 𝑐 as we have to set the coordinates in �̄� to zero on the

primal side and the coordinates �̄� to 0 on the dual side, as we have concluded that all feasible solutions

to the original system have these coordinates set to 0.

Using (41) and (42) we can now find vectors near the central path by choosing �0
large enough. More

precisely, we choose

�0 = (𝛽c)−1∥𝑥′ ◦ 𝑠′∥1 (46)

in Line 31 of Algorithm 1 and set our initial vectors to be 𝑥0 B 𝑥′ +�0(𝑤d

𝐵∗ , 0𝑁∗) an 𝑠0 B 𝑠′ +�0(0𝐵∗ , 𝑣p

𝑁∗).
These are central as𝑥0 ◦ 𝑠0

�0

− 1

2

≤ 1

�0

∥𝑥′ ◦ 𝑠′∥2 + ∥𝑤d

𝐵∗ ◦ 𝑠
′
𝐵∗ − 1𝐵∗ ∥2 + ∥𝑣p

𝑁∗ ◦ 𝑥
′
𝑁∗ − 1𝑁∗ ∥2

=
1

�0

∥𝑥′ ◦ 𝑠′∥2 + ∥𝑤d

𝐵∗ ◦ 𝑠
d

𝐵∗ − 1𝐵∗ ∥2 + ∥𝑣p

𝑁∗ ◦ 𝑥
p

𝑁∗ − 1𝑁∗ ∥2

≤ 𝛽c + 𝛽d + 𝛽p ≤ 1

2

𝛽∗

(47)

This implies by Lemma 6.7 that 𝑥0 ◦ 𝑠0

(|𝐵∗ | + |𝑁 ∗ |)−1 ⟨𝑥0 , 𝑠0⟩
− 1

2

≤
1

2
𝛽∗

1 − 1

2
𝛽∗
≤ 𝛽∗ , (48)

hence (𝑥0 , 𝑠0) is sufficient to apply the algorithm in Theorem 6.10 in Line 34 with the appropriate choice

of 𝛽∗ in Line 1 in Algorithm 1.

This results in primal-dual optimal solutions (𝑥∗ , 𝑠∗) to the programs

min⟨𝑠0 , 𝑥⟩ : 𝑥 ∈𝑊 ∗ + 𝑥0 , 𝑥 ≥ 0𝐵∗∪𝑁∗ , min⟨𝑥0 , 𝑠⟩ : 𝑠 ∈ (𝑊 ∗)⊥ + 𝑠0 , 𝑠 ≥ 0𝐵∗∪𝑁∗ . (49)

This time, we do not require to extract the conic centrality certificates optimal face of the system, as we

are able to lift the solution to the original system directly.

It remains to show that we are able to lift this solution to an optimal solution in the variables [𝑛].
Extending the solution on the primal side on �̄� is easy, as we set all the values to 0. Analogously, we

can set the values on the dual side to 0 on the coordinates in �̄�. This leaves us with the problem of

extending the solution on the primal side to �̄� and on the dual side to �̄� . However, notice that we can

utilize the vectors𝑤d

�̄�
and 𝑣

p

�̄�
that were returned in the call to the feasibility solver in the previous section

(Section 7.2.2). First, let us lift the solution 𝑥∗ to a vector on all coordinates. That is, let �̃� = 𝐿
𝜑[𝑛]\�̄� (𝑊)
𝐵∗∪𝑁∗ (𝑥∗)

and analogously on the dual side let 𝑠 = 𝐿
𝜑[𝑛]\�̄�(𝑊⊥)
𝐵∗∪𝑁∗ (𝑠∗), see Lines 35 and 36 in Algorithm 1.

The solutions obtained from the optimization algorithm satisfy all the required properties, except

that �̃��̄� or 𝑠�̄� may not be non-negative. However, since 𝑠�̄� = 0�̄�, we only need to ensure non-negativity

on the primal side of �̄�, and complementarity holds automatically. To achieve this, we can use the vector

�̄�d
, which satisfies �̄�d ∈ 𝜑𝐵(𝑊), �̄�d ≥ 0𝐵, and supp(�̄�d) = �̄� due to strict complementarity of �̄�d

and

𝑠d
. We can augment �̃� by (𝛼�̄�d , 0𝑁) for sufficiently large 𝛼 > 0 to ensure that all variables in �̄� become

non-negative (38). Similarly, we use the vector �̄�p
to augment 𝑠 on the dual side (40).

Proof of Theorem 7.1. Let us first show that the operations in Algorithm 1 before and after the calls to the

IPM can be computed in strongly polynomial time. The operations for which this is not straightforward

are coordinate fixing 𝜑, coordinate projection 𝜋, and applying the lifting map 𝐿. Given a subspace

𝑊 = ker(A) ⊆ R𝑛 for some A ∈ R𝑚×𝑛 and a subset 𝐼 ⊆ [𝑛], we can compute the coordinate fixing

40

𝜑𝐼(𝑊) as 𝜑𝐼(𝑊) = ker(A𝐼). In particular, we can compute coordinate fixes in linear time. The coordinate

projection 𝜋𝐼(𝑊) can be computed as follows. Let 𝐽 = [𝑛] \ 𝐼 and reorder the columns of A such that the

columns 𝐽 appear before the columns in 𝐼. Let 𝑟 = rank(A𝐽). Now, let M be the matrix that arises from A
by performing Gaussian elimination. Then M[𝑟+1,𝑚],𝐽 = 0(𝑚−𝑟)×|𝐽 | and 𝜋𝐼(𝑊) = ker(M[𝑟+1,𝑚],𝐽). For 𝑟 = 𝑚,

we have 𝜋𝐼(𝑊) = R𝐼 . Note that analogous computations can be performed for the dual subspace 𝑊⊥,

given as 𝑊⊥ = im(A⊤), to obtain 𝜑𝐼(𝑊⊥) and 𝜋𝐼(𝑊⊥). Finally, we need to show that the lifting map 𝐿
can be computed in strongly polynomial time. It is a well-known fact that 𝐿 is a projection, which can be

represented using basic matrix multiplications and inversions, see Proposition B.17.

Further, note that the calls to the IPM uses subspaces, for which the SLC is bounded as the SLC of

�̄� B {(𝑤,−𝑤, �̄�) : 𝑤 − �̄� ∈ 𝑊}. In Stage I of Algorithm 1 for conic feasibility, the subspace �̄� is used.

The subsequent calls to the IPM are performed on subspaces of �̄� arising from projecting and fixing

some coordinates. For every such subspace𝑊 ′, Lemma 6.12 implies SLC�(𝑊 ′) ≤ SLC�(𝑊) + 2.

It remains to show that the number of iterations of the IPMs as well as the space used are as claimed.

Here, Theorem 6.10 gives us the bound on the number of iterations. Following up each iteration of

the algorithm in Theorem 6.10 with the algorithm in Lemma 8.2 and subsequently applying a constant

number of standard corrector steps (Proposition B.1) gives us the desired space bound. □

7.3 SLC preserving subspace operations
We now prove Lemma 6.12. We first need an auxiliary statement characterizing the max central path

curve; the proof follows using standard arguments in polyhedral combinatorics.

Lemma 7.4. Given an instance of (LP-subspace) with data (𝑊, 𝑑, 𝑐), 𝑐, 𝑑 ≥ 0𝑛 , let 𝑥𝔪 denote the max central

path and let 𝑖 ∈ [𝑛]. Let 𝑔★ ≥ 0 denote the largest breakpoint of 𝑥𝔪
𝑖

, that is, 𝑥𝔪
𝑖
(𝑔) is an affine function on [𝑔★,∞).

Then, for each 𝑔 ∈ [0, 𝑔★], 𝑥𝔪
𝑖
(𝑔) = �𝑣(1)

𝑖
+ (1 − �)𝑣(2)

𝑖
, such that 𝑣(1) and 𝑣(2) are basic feasible solutions to the

primal problem 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0, and � ∈ [0, 1]. Moreover, if 𝑔 < 𝑔★ then ⟨𝑐, 𝑥⟩ = 𝑔 for any optimal solution 𝑥
to max{𝑥𝑖 : 𝑥 ∈ 𝒫𝑔}.

Lemma 6.12. Let 𝑊 ⊆ R𝑛 be a subspace and � ∈ (0, 1). Then, for any index set 𝐼 ⊆ [𝑛], SLC�(𝜋𝐼(𝑊)) ≤
SLC�(𝑊) + 1 and SLC�(𝜑𝐼(𝑊)) ≤ SLC�(𝑊) + 1.

Proof. Let 𝐽 B [𝑛] \ 𝐼. Let us start with the first statement: let �̄� = 𝜋𝐼(𝑊) = {𝑤𝐼 : 𝑤 ∈ 𝑊}. Consider

vectors 𝑐, �̄� ∈ R𝐼+, and let �̄�𝔪 denote the max central path for the LP with data (�̄� , �̄�, 𝑐). Note that

replacing �̄� by any 𝑑′ ∈ �̄� + �̄� and 𝑐 by any 𝑐′ ∈ �̄�⊥ + 𝑐 does not change the straight line complexities.

Thus, we can assume that �̄� ≥ 0 is a primal and 𝑐 is a dual optimal solution. In particular, the optimum

value is

〈
𝑐, �̄�

〉
= 0.

We construct vectors 𝑐, 𝑑 ∈ R𝑛+ such that for the max central path of the LP with data (𝑊, 𝑑, 𝑐) and

max central path 𝑥𝔪, we have SLC(�̄�𝔪
𝑖
) ≤ SLC(𝑥𝔪

𝑖
) + 1. Let �̄� ⊆ R𝐼 denote the finite set of all basic

feasible solutions to the LP for (�̄� , �̄�, 𝑐), and

𝑀 B max{∥𝐿𝑊𝐼 (�̄� − �̄�)∥∞ : �̄� ∈ �̄�} .

Let us define

𝑐𝑖 B

{
𝑐𝑖 if 𝑖 ∈ 𝐼 ,
0 if 𝑖 ∈ 𝐽 .

and 𝑑𝑖 B

{
�̄�𝑖 if 𝑖 ∈ 𝐼 ,
𝑀 if 𝑖 ∈ 𝐽 .

Note that for every �̄� ∈ �̄� and 𝑣 = 𝐿𝑊
𝐼
(�̄� − �̄�) + 𝑑, we have 𝑣 ∈ 𝑊 + 𝑑, 𝑣 ≥ 0, that is, 𝑣 is feasible for the

LP with (𝑊, 𝑑, 𝑐).
Let us select the breakpoint �̄�★ for the function �̄�𝔪

𝑖
as in Lemma 7.4. We claim that �̄�𝔪

𝑖
(𝑔) = 𝑥𝔪

𝑖
(𝑔) for

all 𝑖 ∈ 𝐼 and 𝑔 ∈ [0, �̄�★]. This immediately yields the desired bound SLC(�̄�𝔪
𝑖
) ≤ SLC(𝑥𝔪

𝑖
) + 1.

First, we show �̄�𝔪
𝑖
(𝑔) ≥ 𝑥𝔪

𝑖
(𝑔). This follows because for every 𝑥 ∈ 𝑊 + 𝑑, 𝑥 ≥ 0, we have 𝑥𝐼 ∈ �̄� + �̄�,

𝑥𝐼 ≥ 0 and further ⟨𝑐, 𝑥𝐼⟩ = ⟨𝑐, 𝑥⟩ since 𝑐𝐽 = 0𝐽 . For the converse direction �̄�𝔪
𝑖
(𝑔) ≤ 𝑥𝔪

𝑖
(𝑔), consider a

point �̄� ∈ �̄� + �̄�, �̄� ≥ 0, ⟨𝑐, �̄�⟩ ≤ 𝑔 with �̄�𝔪
𝑖
(𝑔) = �̄�𝑖 . By Lemma 7.4, �̄� = �𝑣(1) +(1−�)𝑣(2) for 𝑣(1) , 𝑣(2) ∈ �̄�,

� ∈ [0, 1]. Since 𝐿𝑊
𝐼

is a linear operator,

∥𝐿𝑊𝐼 (�̄� − �̄�)∥∞ ≤ �∥𝐿𝑊𝐼 (𝑣
(1) − �̄�)∥∞ + (1 − �)∥𝐿𝑊𝐼 (𝑣

(2) − �̄�)∥∞ ≤ 𝑀 ,

by the definition of 𝑀, and therefore 𝑥 = 𝐿𝑊
𝐼
(�̄� − �̄�) + 𝑑 ∈𝑊 , 𝑥 ≥ 0 is a feasible solution to the larger LP

with ⟨𝑐, 𝑥⟩ = ⟨𝑐, �̄�⟩ ≤ 𝑔.

41

Let us now show the second statement on coordinate deletion. Let �̄� = 𝜑𝐼(𝑊) = {𝑤𝐼 : 𝑤 ∈𝑊 , 𝑤𝐽 =
0𝐽}. Consider vectors 𝑐, �̄� ∈ R𝐼+, and let �̄�𝔪 denote the max central path for the LP with data (�̄� , �̄�, 𝑐).
As in the first case, we can assume �̄� and 𝑐 are primal and dual optimal solutions with

〈
�̄�, 𝑐

〉
= 0. Recall

the circuit imbalance �A from Definition 3.1, and note that it only depends on the subspace𝑊 = ker(A).
Thus, we can use �𝑊 for the circuit imbalance corresponding to the subspace. Let us define

𝑐𝑖 B

{
𝑐𝑖 if 𝑖 ∈ 𝐼 ,
�𝑊 ∥𝑐∥1 + 1 if 𝑖 ∈ 𝐽 .

and 𝑑𝑖 B

{
�̄�𝑖 if 𝑖 ∈ 𝐼 ,
0 if 𝑖 ∈ 𝐽 ,

Let 𝑥𝔪 denote the max central path for the LP with data (𝑊, 𝑑, 𝑐). Again, our goal is to show SLC�(�̄�𝔪𝑖) ≤
SLC�(𝑥𝔪𝑖) + 1. We select �̄�★ for the function �̄�𝔪

𝑖
as in Lemma 7.4. The proof is complete by showing

�̄�𝔪
𝑖
(𝑔) = 𝑥𝔪

𝑖
(𝑔) for all 𝑖 ∈ 𝐼 and 𝑔 ∈ [0, �̄�★]. Let us assume 𝑔 < �̄�★; the case 𝑔 = �̄�★ follows by continuity.

First, note that 𝑥𝔪
𝑖
(𝑔) ≥ �̄�𝔪

𝑖
(𝑔) for every value 𝑔 ≥ 0, since every solution �̄� ∈ �̄� + �̄�, �̄� ≥ 0 maps

to 𝑥 = (�̄� , 0𝐽) such that 𝑥 ∈ 𝑊 + 𝑑, 𝑥 ≥ 0 and ⟨𝑐, 𝑥⟩ = ⟨𝑐, �̄�⟩. We now show the converse direction

𝑥𝔪
𝑖
(𝑔) ≤ �̄�𝔪

𝑖
(𝑔).

For a contradiction, assume that 𝑥𝔪
𝑖
(𝑔) > �̄�𝔪

𝑖
(𝑔). Let 𝑥 ∈ 𝑊 + 𝑑, 𝑥 ≥ 0 and �̄� ∈ 𝑊 + 𝑑, �̄� ≥ 0 be such

that 𝑥𝔪
𝑖
(𝑔) = 𝑥𝑖 > �̄�𝑖 = �̄�𝔪

𝑖
(𝑔) = �̄�𝑖 and ⟨𝑐, �̄�⟩ , ⟨𝑐, 𝑥⟩ ≤ 𝑔. Consider a conformal circuit decomposition of

𝑧 = 𝑥 − (�̄� , 0𝐽) ∈𝑊 as 𝑥 − (�̄� , 0𝐽) =
∑𝑘
ℓ=1

ℎ(ℓ) as in Proposition 2.4.

Let 𝐾 = {ℓ ∈ [𝑘] : supp(ℎ(ℓ)) ∩ 𝐽 ≠ ∅}. If 𝐾 = ∅, then supp(𝑥) ⊆ 𝐼 holds, and 𝑥𝐼 gives a better solution

than �̄� for the program defining �̄�𝔪
𝑖
(𝑔), a contradiction. Thus, 𝐾 ≠ ∅. Take any ℓ ∈ 𝐾; let 𝑗 ∈ supp(ℎ(ℓ))∩ 𝐽.

From the definition of the circuit imbalance, it follows that〈
𝑐, ℎ(ℓ)

〉
≥ 𝑐 𝑗ℎ(ℓ)𝑗 − ∥𝑐𝐼 ∥1 · ∥ℎ

(ℓ)
𝐼
∥∞ > ∥𝑐∥1(�𝑊 ℎ(ℓ)𝑗 − ∥ℎ

(ℓ)
𝐼
∥∞) > 0 .

Consequently, for 𝑦 = 𝑥 − ∑
ℓ∈𝐾 ℎ

(ℓ)
, we must have ⟨𝑐, 𝑦⟩ < ⟨𝑐, 𝑥⟩ ≤ 𝑔. By the conformity of the

decomposition, we also have 𝑦𝑖 ≥ �̄�𝑖 . Further, supp(𝑦) ⊆ 𝐼. To summarize, 𝑦𝑖 ≥ �̄�𝑖 = �̄�𝔪
𝑖

while

⟨𝑐, 𝑦𝐼⟩ < 𝑔, contradicting the last part of Lemma 7.4. □

8 A strongly polynomial rounding procedure
In this section, we develop tools to bound the bit-complexity of the iterates of the SLLS IPM, in order to

obtain a strongly polynomial algorithm in the Turing model. We start by defining the sizes of numbers,

as in e.g., [GLS88].

Definition 8.1 (Sizes of numbers). For an integer 𝑛 ∈ Z, we define the encoding length of 𝑛 as size(𝑧) =
1 + ⌈log

2
(|𝑛 | + 1)⌉. For a rational number 𝑟 ∈ Q represented as 𝑟 = 𝑝/𝑞 for integers 𝑝, 𝑞 ∈ Z, we let

size(𝑧) = size(𝑝) + size(𝑞). Further, for a rational vector or matrix, the size is defined as the sum of

the sizes of the entries. For matrices and vectors 𝑎1 , 𝑎2 , . . . , 𝑎𝑘 of possibly different dimensions, we let

size(𝑎1 , 𝑎2 , . . . , 𝑎𝑘) =
∑𝑘
𝑖=1

size(𝑎𝑖).

Our strongly polynomial implementation of the SLLS IPM algorithm [ADL
+
23] has two main in-

gredients. In Appendix B, we present a variant of this algorithm that proves Theorem 6.10. This

implementation avoids the square root computations in [ADL
+
23], even if it is slower by a factor 𝑛. The

algorithm uses poly(𝑛) basic arithmetic operations and comparisons.

Moreover, as stated in Theorem 6.10, every iteration can be implemented by a strongly polynomial

algorithm in the Turing model. That is, given an iterate (𝑥, 𝑠) ∈ Q2𝑛
, implementing an iteration takes

poly(𝑛) time and uses poly(𝑛) size(A, 𝑏, 𝑐, 𝑥, 𝑠) space. In particular, the next iterate (𝑥+ , 𝑠+) ∈ Q2𝑛
has

size(𝑥+ , 𝑠+) = poly(𝑛) size(A, 𝑏, 𝑐, 𝑥, 𝑠). We emphasize that this guarantee in each iteration does not

suffice to obtain an strongly polynomial overall IPM algorithm in the Turing model. The standard affine

scaling step direction (also used in many other IPMs) is the solution to a linear system where the matrix

is determined by the current iterate (𝑥, 𝑠). Thus, the encoding length may increase super-polynomially

in super-polylogarithmically many iterations.

The main contribution of this section is the following rounding lemma.

Lemma 8.2. Given (𝑥, 𝑠) ∈ 𝒩2(𝛽) ∩ Q2𝑛
, there exists a strongly polynomial algorithm that finds a point

(�̃� , 𝑠) ∈ 𝒩2(3𝛽) ∩Q2𝑛
with �(�̃� , 𝑠) ≤ (1 + 𝛽/𝑛2)�(𝑥, 𝑠) and size(�̃� , 𝑠) ≤ 𝑂(𝑛7) size(A, 𝑏, 𝑐).

42

Thus, after each iterate (𝑥, 𝑠) of the SLLS IPM (or after every polylog(𝑛) iterates), we can round it to

another iterate (�̂� , 𝑠)with possibly slightly worse gap bound in a slightly wider neighborhood. Note that

every iteration decreases the gap at least by a factor 1−𝛽/𝑂(
√
𝑛); thus, we only lose a small fraction of the

progress due to the rounding. After each such rounding, we can move back to the smaller neighborhood

𝒩2(𝛽) by at most two corrector steps (see Proposition B.1).

Lemma 8.2 is applicable much more broadly than the SLLS IPM. Whenever a path-following IPM

method computes every iteration in strongly polynomial time, this additional rounding is applicable.

Thus, if the total number of elementary arithmetic operations and comparisons in the original algorithm

is strongly polynomial, then we can modify it using this rounding step to obtain a strongly polynomial

algorithm in the Turing model. This is applicable to all LLS IPMs such as [VY96, MT03, DHNV23]. The

rounding steps could also be used in weakly polynomial algorithms; however, in case our running time

is allowed to depend on the total encoding length 𝐿 = size(A, 𝑏, 𝑐), it may be more efficient to use other

methods such as [GPV23].

It is interesting to note that the new iterate (�̃� , 𝑠) could have much better duality gap than (𝑥, 𝑠): the

rounding algorithm itself may take long steps down the central path. In particular, using the rounding it

turns out that the number of iterates is at most𝑂(
√
𝑛 log(𝑛)) times the number of vertices of the polytope:

adding this rounding step to any (possibly weakly polynomial) path following IPM already achieves the

property highlighted in the title “Interior point methods are not worse than Simplex” of [ADL
+
23].

We use the following simple bounds from [GLS88].

Lemma 8.3. The following bounds hold:

(i) For rational numbers 𝑟1 , . . . , 𝑟𝑘 , size(∑𝑘
𝑖=1
𝑟𝑖) ≤ 2

∑𝑘
𝑖=1

size(𝑟𝑖), and size(∏𝑘
𝑖=1
𝑟𝑖) ≤

∑𝑘
𝑖=1

size(𝑟𝑖).

(ii) For an invertible matrix M ∈ Q𝑛×𝑛 , size(M−1) ≤ 4𝑛2
size(M).

(iii) For A ∈ Q𝑚×𝑛 , 𝑏 ∈ Q𝑚 , 𝑐 ∈ Q𝑛 , let 𝒫 = {𝑥 ∈ R𝑛 | A𝑥 = 𝑏, 𝑥 ≥ 0𝑛} and 𝒟 = {𝑠 ∈ R𝑛 | ∃𝑦 ∈
R𝑚 ,A⊤𝑦 + 𝑠 = 𝑐, 𝑠 ≥ 0𝑛} denote the primal and dual feasible regions. Then every vertex and extreme ray

of 𝒫 has size 𝑂(𝑛3
size(A, 𝑏)), and every vertex and extreme ray of𝒟 has size 𝑂(𝑛3

size(A, 𝑐)).

We use two further auxiliary tools.

Lemma 8.4 (Anchoring numbers). Let 𝛼, 𝑟 ∈ Q++ such that 𝑟/2𝑛 ≤ 𝛼 ≤ 2
𝑛𝑟, and let 𝐾 ∈ Z. Then, there is an

𝑂(log
2(𝑛 + 𝐾)) time strongly polynomial algorithm that returns a number �̂� ∈ Q with 𝛼 ≤ �̂� ≤ (1 + 1/𝐾)𝛼 and

size(�̂�) ≤ size(𝑟) + 𝑂(𝑛 + 𝐾).

Proof. Using binary search, in 𝑂(log 𝑛) iterations we can find a value 𝑘 ∈ [−𝑛, 𝑛] such that 2
𝑘𝑟 ≤ 𝛼 ≤

2
𝑘+1𝑟; each iteration takes 𝑂(log 𝑛) arithmetic operations. Next, we let 𝛿 = (1 + 1/𝐾), and with a second

binary search in 𝑂(log𝐾) iterations we find a value 𝑗 ∈ [0, 𝐾] such that 2
𝑘𝑟𝛿 𝑗−1 ≤ 𝛼 ≤ 2

𝑘𝑟𝛿 𝑗 ; again, each

iteration takes 𝑂(log𝐾) arithmetic operations. Then, �̂� = 2
𝑘𝑟𝛿 𝑗 satisfies the claimed properties. □

Lemma 8.5 (Minkowski–Weyl decomposition). For A ∈ Q𝑚×𝑛 , 𝑏 ∈ Q𝑚 , let 𝒫 = {𝑥 ∈ R𝑛 | A𝑥 = 𝑏, 𝑥 ≥ 0𝑛}.
Assume we are given a point 𝑥 ∈ 𝒫. Then, there is a strongly polynomial algorithm that returns extreme points

𝑣(1) , . . . , 𝑣(𝑘), extreme rays 𝑟(1) , . . . , 𝑟(ℓ), and multipliers �1 , . . . ,�𝑘 ≥ 0, �1 , . . . , �ℓ ≥ 0 such that

∑𝑘
𝑖=1

�𝑖 = 1,

𝑘 + ℓ ≤ 𝑛 + 1, and

𝑥 =

𝑘∑
𝑖=1

�𝑖𝑣
(𝑖) +

ℓ∑
𝑗=1

� 𝑗𝑟
(𝑗) .

We prove Lemma 8.2 in two steps. First, we show that every iterate (𝑥, 𝑠) can be replaced by another

feasible pair (�̂� , 𝑠)whose normalized gap has bounded bit-complexity. This may involve an unbounded

decrease in the gap value, as the algorithm identifies an improving direction along the central path.

In the second step, we replace such a point by another one nearby that has approximately the same

normalized gap and also bounded bit-complexity.

Lemma 8.6. Let (𝑥, 𝑠) ∈ 𝒩2(𝛽). There is a strongly polynomial algorithm that returns a solution (�̂� , 𝑠) ∈ 𝒩2(2𝛽)
with �(�̂� , 𝑠) ≤ �(𝑥, 𝑠) and a value �★ ∈ Q such that �(�̂� , 𝑠) ≤ �★ ≤ (1 + 𝛽/(4𝑛2))�(�̂� , 𝑠), and size(�★) =
𝑂(𝑛3) size(A, 𝑏, 𝑐).

Proof. Let � = �(𝑥, 𝑠); thus, ⟨𝑥, 𝑠⟩ = 𝑛�. Let us construct a Minkowski–Weyl decomposition of (𝑥, 𝑠) ∈
𝒫 × 𝒟 into vertices and extreme rays of 𝒫 × 𝒟. Note that every vertex is of the form (𝑣(𝑖) , 𝑢(𝑖)), where

𝑣(𝑖) is a vertex of 𝒫 and 𝑢(𝑖) is a vertex of 𝒟. Similarly, for every extreme ray (𝑟(𝑗) , 𝑡(𝑗)), the vector 𝑟(𝑗) is

43

an extreme ray of 𝒫 and 𝑡(𝑗) is an extreme ray of 𝒟. The number of vertices and extreme rays is at most

2𝑛 + 1. We write the decomposition in the form

(𝑥, 𝑠) =
𝑘∑
𝑖=1

�𝑖(𝑣(𝑖) , 𝑢(𝑖)) + (𝑟, 𝑡) ,

where � ≥ 0,

∑𝑘
𝑖=1

�𝑖 = 1, and (𝑟, 𝑡) is a ray of 𝒫 × 𝒟 (i.e., the sum of all extreme ray terms). Let us

partition the vertices according to their objective values:

𝐼− = {𝑖 ∈ [𝑘] : �(𝑣(𝑖) , 𝑢(𝑖)) ≤ �} , 𝐼+ = {𝑖 ∈ [𝑘] : �(𝑣(𝑖) , 𝑢(𝑖)) > �} ,

Let us define

(𝑥− , 𝑠−) =
∑
𝑖∈𝐼− �𝑖(𝑣(𝑖) , 𝑢(𝑖))∑

𝑖∈𝐼− �𝑖
, (𝑥+ , 𝑠+) =

∑
𝑖∈𝐼+ �𝑖(𝑣(𝑖) , 𝑢(𝑖))∑

𝑖∈𝐼+ �𝑖
.

Thus, we can write

(𝑥, 𝑠) = (�̄� , 𝑠) + (𝑟, 𝑡), where (�̄� , 𝑠) = (1 − 𝛼)(𝑥− , 𝑠−) + 𝛼(𝑥+ , 𝑠+)

for some 𝛼 ∈ [0, 1]. That is, (�̄� , 𝑠) ∈ 𝒫 × 𝒟 is the part of (𝑥, 𝑠) in the convex hull of the vertices. We also

let �− = �(𝑥− , 𝑠−) and �+ = �(𝑥+ , 𝑠+). We note that 𝐼− ≠ ∅ but 𝐼+ might be empty. In that case, we let

(𝑥+ , 𝑠+) = (0, 0) and set 𝛼 = 0. Let us also define the accuracy parameter

𝛿 B
𝛽

16𝑛2

.

Consider the index 𝑖 ∈ 𝐼− with �(𝑣(𝑖) , 𝑢(𝑖)) maximal. By definition, �(𝑣(𝑖) , 𝑢(𝑖)) ≤ �. Since 𝑣(𝑖) and 𝑢(𝑖)

are primal and dual vertices, size(�(𝑣(𝑖) , 𝑢(𝑖))) = 𝑂(𝑛3
size(A, 𝑏, 𝑐)) by Lemma 8.3(iii). If �(𝑣(𝑖) , 𝑢(𝑖)) ≥

�𝛿2/(4𝑛), then using Lemma 8.4, we can find in strongly polynomial time a value �★ ∈ Qwith � ≤ �★ ≤
(1 + 𝛿)� and size(�★) = 𝑂(𝑛3

size(A, 𝑏, 𝑐)).
Similarly, whenever 𝐼+ ≠ ∅, we can pick 𝑗 ∈ 𝐼+ with �(𝑣(𝑗) , 𝑢(𝑗))minimal. If �(𝑣(𝑗) , 𝑢(𝑗)) ≤ 4𝑛�/𝛿2

, then

we can again find �★ ∈ Qwith small encoding length satisfying � ≤ �★ ≤ (1+ 𝛿)� in strongly polynomial

time. In both cases, we output (�̂� , 𝑠) = (𝑥, 𝑠) with the value �★
. For the rest of the proof, we can assume

that

�(𝑣(𝑖) , 𝑢(𝑖)) < 𝛿2�

4𝑛
∀𝑖 ∈ 𝐼− and �(𝑣(𝑗) , 𝑢(𝑗)) > 4𝑛�

𝛿2

∀𝑗 ∈ 𝐼+ . (50)

In particular, �− < �𝛿2/(4𝑛), and �+ > 4𝑛�/𝛿2
if 𝐼+ ≠ ∅. We now consider two cases.

Case I: (50) holds and 𝐼+ ≠ ∅. Let us define

(𝑥′, 𝑠′) B (𝑥+ , 𝑠+) + (𝑟, 𝑡)
𝛼

and �′ = �(𝑥′, 𝑠′) . (51)

Thus, (𝑥, 𝑠) = (1 − 𝛼)(𝑥− , 𝑠−) + 𝛼(𝑥′, 𝑠′). By the linearity of the duality gap (Proposition 6.4), we have

� = (1 − 𝛼)�− + 𝛼�′, implying

𝛼 ≤ �

�′
. (52)

We show the following strong property.

Claim 8.7. (𝑥− , 𝑠−) ≤ (1 + 𝛿)(𝑥, 𝑠), and for every 𝑖 ∈ [𝑛], either 𝑥−
𝑖
≥ (1 − 𝛿)𝑥𝑖 or 𝑠−

𝑖
≥ (1 − 𝛿)𝑠𝑖 .

Proof. First, assume for a contradiction that 𝑥−
𝑖
≤ (1 − 𝛿)𝑥𝑖 and 𝑠−

𝑖
≤ (1 − 𝛿)𝑠𝑖 for some 𝑖 ∈ [𝑛]. We claim

that �+ ≤ 2𝑛�/𝛿2
must hold, leading to a contradiction with (50).

Since (1− 𝛼)𝑥−
𝑖
+ 𝛼𝑥′

𝑖
= 𝑥𝑖 and (1− 𝛼)𝑠−

𝑖
+ 𝛼𝑠′

𝑖
= 𝑠𝑖 , the assumptions on 𝑥−

𝑖
and 𝑠−

𝑖
yield 𝛼𝑥′

𝑖
≥ 𝛿𝑥𝑖 and

𝛼𝑠′
𝑖
≥ 𝛿𝑠𝑖 . Together with (52), we get

𝛿𝑥𝑖 ≤
�

�′
𝑥′𝑖 and 𝛿𝑠𝑖 ≤

�

�′
𝑠′𝑖

Multiplying these inequalities, we have

𝛿2𝑥𝑖𝑠𝑖 ≤
(
�

�′

)
2

𝑥′𝑖𝑠
′
𝑖 ≤ 𝑛

�2

�′
,

44

where the last inequality follows by the definition�′ = ⟨𝑥′, 𝑠′⟩ /𝑛. By (𝑥, 𝑠) ∈ 𝒩2(𝛽), we get 𝑥𝑖𝑠𝑖 ≥ (1−𝛽)�,

and therefore (1 − 𝛽)𝛿2�′ ≤ 𝑛�. Thus, �′ ≤ 2𝑛�/𝛿2
. Finally, note that �′ = ⟨𝑥′, 𝑠′⟩ /𝑛 ≥ ⟨𝑥+ , 𝑠+⟩ /𝑛 = �+,

and therefore �+ ≤ 2𝑛�/𝛿2
, in contradiction with (50).

Next, assume that 𝑥−
𝑖
≥ (1+ 𝛿)𝑥𝑖 for some 𝑖 ∈ [𝑛]; the case 𝑠−

𝑖
≥ (1+ 𝛿)𝑥𝑖 follows analogously. Again,

we use (1 − 𝛼)𝑥−
𝑖
+ 𝛼𝑥′

𝑖
= 𝑥𝑖 . The lower bound on 𝑥−

𝑖
and 𝑥′

𝑖
≥ 0 imply 1 − 𝛼 ≤ 1/(1 + 𝛿), that is,

𝛼 ≥ 𝛿/(1 + 𝛿). Together with (52), we get �′ ≤ (1 + 𝛿)�/𝛿. Thus, �+ ≤ 2�/𝛿, again a contradiction with

(50). □

In light of the above claim, let

𝐵 B {𝑖 ∈ [𝑛] : 𝑥−𝑖 ≥ (1 − 𝛿)𝑥𝑖} and 𝑁 B {𝑖 ∈ [𝑛] : 𝑠−𝑖 ≥ (1 − 𝛿)𝑠𝑖} .

By the above claim, 𝐵 ∪ 𝑁 = [𝑛]. Further, 𝐵 ∩ 𝑁 = ∅ since �− < �𝛿2/(4𝑛). Now, we can find a possibly

much better solution (�̂� , 𝑠) by following the direction Δ𝑥 = 𝑥− − 𝑥 and Δ𝑠 = 𝑠− − 𝑠. For each 𝑖 ∈ [𝑛]
we have Δ𝑥𝑖Δ𝑠𝑖 ≤ 𝑛𝛿� in both cases 𝑖 ∈ 𝐵 or 𝑖 ∈ 𝑁 , using the near-monotonicity property (Lemma 6.8).

Thus, ∥Δ𝑥 ◦ Δ𝑠∥ ≤ 𝑛1.5𝛿/� < 𝛽�/4, and therefore Lemma 6.9 on determining the step-size is applicable.

We have

𝛾 B
∥(𝑥 + Δ𝑥) ◦ (𝑠 + Δ𝑠)∥

�
=
∥𝑥− ◦ 𝑠−∥

�
≤ ⟨𝑥

− , 𝑠−⟩
�

=
𝑛�−

�
≤ 𝛿2 .

Lemma 6.9 guarantees that for any step-length 𝜚 such that (1 − 𝜚) ≥ 4𝛾/𝛽, the iterate

(�̂� , 𝑠) B (𝑥, 𝑠) + 𝜚(Δ𝑥,Δ𝑠) = 𝜚(𝑥− , 𝑠−) + (1 − 𝜚)(𝑥, 𝑠) .

will be in 𝒩2(2𝛽), with �̂ = �(�̂� , 𝑠) ≤ 1.5(1 − 𝜚)�. Hence, we can use any value 𝜚 such that (1 − 𝜚)� ≥
4𝑛�−/𝛽. Note also that by the linearity of the gap we can write �̂ = 𝜚�− + (1 − 𝜚)�.

It is left to specify a suitable value of 𝜚 . Again, taking 𝑖 ∈ 𝐼− with �(𝑣(𝑖) , 𝑢(𝑖)) maximal, we have

�− ≤ �(𝑣(𝑖) , 𝑢(𝑖)) < 𝛿2�/(4𝑛) by the assumption (50). Let us pick 𝜚 such that �̂ = 6𝑛
𝛽 �(𝑣(𝑖) , 𝑢(𝑖)); note that

�̂ < �. Then, (�̂� , 𝑠) and �★ = �̂ satisfy the requirements of the lemma.

Case II: (50) holds and 𝐼+ = ∅. We can write (𝑥, 𝑠) = (𝑥− + 𝑟, 𝑠− + 𝑡) for the rays 𝑟 and 𝑡. Since 𝑟 and 𝑡
live in orthogonal linear spaces, ⟨𝑟, 𝑡⟩ = 0. Since both are nonnegative, we must have 𝑟𝑖 = 0 or 𝑡𝑖 = 0 for

each 𝑖 ∈ [𝑛]. On the other hand, we must have that

𝑥𝑖𝑠𝑖 = (𝑥−𝑖 + 𝑟𝑖)(𝑠
−
𝑖 + 𝑡𝑖) ≥ (1 − 𝛽)� >

4𝑛(1 − 𝛽)
𝛿2

�− ≥ 4(1 − 𝛽)
𝛿2

𝑥−𝑖 𝑠
−
𝑖 .

Let us define 𝐵 = {𝑖 ∈ [𝑛] | 𝑟𝑖 = 0} and 𝑁 = {𝑖 ∈ [𝑛] | 𝑡𝑖 = 0}. By the above inequality, 𝐵 and 𝑁 form a

partition of [𝑛]. Using this partition, we can move to a new (�̂� , 𝑠) the same way as in the previous case,

noting that we have the even stronger ∥Δ𝑥 ◦ Δ𝑠∥ = 0 for Δ𝑥 = 𝑥− − 𝑥 and Δ𝑠 = 𝑠− − 𝑠. □

Remark 8.8. In both cases of the above proof where we ‘shoot down’ along the central path, it exhibits

a ‘polarized’ structure: primal variables in 𝐵 stay roughly the same and scale down linearly with � in 𝑁 ;

for dual variables, the role of 𝑁 and 𝐵 is reversed. We note that this is the crucial structural property

exploited in the SLLS steps of [ADL
+
23]; see also Appendix B.

The following lemma will be the ingredient to complete the proof of Lemma 8.2.

Lemma 8.9. Let 𝒫 = {𝑥 : A𝑥 = 𝑏, 𝑥 ≥ 0𝑛} ⊂ R𝑛 be a polytope with nonempty interior and let 𝑦 be a vector

in the interior of 𝒫. For an index set 𝐽 ⊆ [𝑛], let 𝑅 ≥ max𝑥∈𝑃, ∥𝑥𝐽/𝑦𝐽 ∥∞ be an integer, and 𝐾 > 0 any integer.

There is a strongly polynomial algorithm that computes a vector 𝑧 ∈ 𝑃 such that ∥(𝑧𝐽 − 𝑦𝐽)/𝑦𝐽 ∥2 ≤ 1/𝐾 with

size(𝑧) ≤ �̃�(𝑛3
size(A, 𝑏) + 𝑛 log(𝐾 + 𝑅)).

Proof. First, we obtain a Minkowski–Weyl decomposition in strongly polynomial time as in Lemma 8.5

as 𝑦 =
∑𝑘
𝑖=1

�𝑖𝑣 𝑖 ,
∑𝑘
𝑖=1

�𝑖 = 1, � ≥ 0, such that 𝑘 ≤ 𝑛 + 1 and each 𝑣(𝑖) is a vertex of 𝒫. Note that the

decomposition does not include extreme rays, since the polytope is bounded. Let 𝛿 = 1/(2𝑛2𝑅𝐾), and let

us round the �𝑖 ’s to �̃𝑖 such that each �̃𝑖 is an integer multiple of 𝛿,

∑𝑘
𝑖=1

�̃𝑖 = 1, �̃ ≥ 0, and ∥�̃−�∥∞ ≤ 𝛿.

To achieve this, we first round down each �̃𝑖 to the nearest integer multiple of 𝛿. This can be done by

𝑂(𝑛 log(1/𝛿)) = 𝑂(𝑛 log(𝑛𝑅𝑘)) comparisons in total by doing a binary search on each coordinate. Let �′
𝑖

denote these coordinates. At this point, 1 −∑𝑘
𝑖=1

�′
𝑖
= ℓ𝛿 for an integer ℓ ≤ 𝑛. We now pick arbitrary ℓ

coordinates and set �̃𝑖 = �′
𝑖
+ 1 for them, and set �̃𝑖 = �′

𝑖
for all other coordinates.

45

We claim that 𝑧 =
∑𝑘
𝑖=1

�̃𝑖𝑣𝑖 satisfies the requirements. First, note that 𝑧 − 𝑦𝑦
2

≤
𝑘∑
𝑖=1

|�𝑖 − �̃𝑖 | ·
𝑣(𝑖)𝑦

2

≤ 2𝑅𝑛1.5𝛿 <
1

𝐾
,

since each |�𝑖 − �̃𝑖 | ≤ 𝛿 and ∥𝑣(𝑖)/𝑦∥2 ≤
√
𝑛∥𝑣(𝑖)/𝑦∥∞ ≤

√
𝑛𝑅 by the definition of 𝑅. The bound on the

encoding length of 𝑧 follows since each vertex 𝑣(𝑖) have size bounded as𝑂(𝑛3
size(A, 𝑏)) (Lemma 8.3(iii)),

and each coefficient �̃𝑖 is a ratio of two integers ≤ 𝑛2𝑅𝐾. □

We are ready to prove Lemma 8.2.

Proof of Lemma 8.2. Given (𝑥, 𝑠) ∈ 𝒩2(𝛽) ∩ Q𝑛+𝑛 , we first use Lemma 8.6 to obtain (�̂� , 𝑠) ∈ 𝒩2(2𝛽) and a

value �★
with �̂ ≤ �★ ≤ (1 + 𝛽/(4𝑛2))�̂ for �̂ = �(�̂� , 𝑠), satisfying size(�★) = 𝑂(𝑛3

size(A, 𝑏, 𝑐)). Let us

also fix any 𝑑 ∈ Q𝑛 such that A𝑑 = 𝑏; by choosing a nonsingular 𝑚 × 𝑚 submatrix B of A, for 𝑑 = B−1𝑏
we get size(𝑑) = 𝑂(𝑛3

size(A, 𝑏)); this 𝑑 can be fixed throughout the algorithm.

Let us now apply Lemma 8.9 with 𝐾 = ⌈8𝑛/𝛽⌉ on the primal-dual polyhedron, and the index set 𝐽
corresponding to the 𝑥′ and 𝑠′ variables.

𝒬 =
{
(𝑥′, 𝑦′, 𝑠′) ∈ R𝑛+𝑚+𝑛 | A𝑥′ = 𝑏 , A⊤𝑦′ + 𝑠′ = 𝑐, 𝑥′, 𝑠′ ≥ 0𝑛 , ⟨𝑐, 𝑥′⟩ + ⟨𝑑, 𝑠′⟩ ≤ ⟨𝑐, 𝑑⟩ + 𝑛�★

}
and the input point (�̂� , 𝑠). We note that 𝒬 is in fact a polytope. For the 𝑥′ and 𝑠′ variables, we have both

lower and upper bounds. Hence, if there is an infinite ray in 𝒬, it is supported on the 𝑦′ variables. But

since A is assumed to have full row rank, for any 𝑦′ ≠ 0 we have A⊤𝑦′ ≠ 0. Hence, no such ray may exist.

Note also that ⟨𝑐, 𝑥′⟩ + ⟨𝑑, 𝑠′⟩ ≤ ⟨𝑐, 𝑑⟩ + 𝑛�★
is equivalent to ⟨𝑥′, 𝑠′⟩ ≤ 𝑛�★

by Proposition 6.3. In

particular, (�̂� , �̂� , 𝑠) ∈ 𝒬, where �̂� is such that A⊤ �̂� + 𝑠 = 𝑐. By the centrality of (�̂� , 𝑠), using Lemma 6.8

with �̂/� ≤ 1 + 𝛿 and Proposition 6.5, one can check that 𝑅 = 2𝑛 is a valid bound for 𝐽. Further, the

size of the description of 𝒬 is size(A, 𝑏, 𝑐, 𝑑, �★) = 𝑂(𝑛3
size(A, 𝑏, 𝑐)). Therefore, the algorithm returns a

point (𝑥′, 𝑠′)with size(𝑥′, 𝑠′) = �̃�(𝑛6
size(A, 𝑏, 𝑐)) and𝑥′�̂� − 1𝑛

2

+
 𝑠′𝑠 − 1𝑛

2

≤
√

2

(𝑥′�̂� − 1𝑛
2

2

+
 𝑠′𝑠 − 1𝑛

2

2

)
1/2

≤
√

2

𝐾
≤ 𝛽

4𝑛
. (53)

We can bound the ratio �′/�̂ by(
1 + 𝛽

4𝑛2

)
�̂ ≥ �★ ≥ �′ =

1

𝑛

𝑛∑
𝑖=1

𝑥′𝑖𝑠
′
𝑖 ≥
(1 − 1/𝐾)2

𝑛

𝑛∑
𝑖=1

�̂�𝑖𝑠𝑖 =

(
1 − 𝛽

4𝑛

)
2

�̂ . (54)

We are ready to show that (𝑥′, 𝑠′) ∈ 𝒩2(3𝛽).𝑥′ ◦ 𝑠′�′
− 1𝑛

2

=

(𝑥′�̂� − 1𝑛 + 1𝑛
)
◦

(
𝑠′

𝑠
− 1𝑛 + 1𝑛

)
◦ �̂� ◦ 𝑠

�′
− 1𝑛

2

≤
(𝑥′�̂� − 1𝑛

2

+
 𝑠′𝑠 − 1𝑛

2

+
𝑥′�̂� − 1𝑛

2

 𝑠′𝑠 − 1𝑛

2

) �̂� ◦ 𝑠�′

∞
+

 �̂� ◦ 𝑠�′
− 1𝑛

2

(55)

Using (53), and bringing out a factor �̂/�′ in both terms, we get𝑥′ ◦ 𝑠′�′
− 1𝑛

2

≤ �̂

�′

(
𝛽

4𝑛
+

(
𝛽

4𝑛

)
2

) �̂� ◦ 𝑠�̂

∞
+ �̂

�′

 �̂� ◦ 𝑠�̂
− �′

�̂
1𝑛

2

≤ �̂

�′

(
𝛽

2𝑛
(1 + 2𝛽) +

 �̂� ◦ 𝑠�̂
− 1𝑛

2

+
�′�̂ 1𝑛 − 1𝑛

2

)
≤

(
1 +

𝛽

2𝑛

) (
𝛽

𝑛
+ 2𝛽 +

√
𝑛

𝛽

4𝑛

)
≤ 3𝛽 .

(56)

Here, the first inequality used (53), the second used that (�̂� , 𝑠) ∈ 𝒩2(𝛽) and the triangle inequality, the

third used again (�̂� , 𝑠) ∈ 𝒩2(𝛽) and the two sided bound (54) on �′/�̂. The final inequality uses 𝛽 ≤ 1/6
and 𝑛 ≥ 2. Therefore, (𝑥′, 𝑠′) ∈ 𝒩2(3𝛽), as required. □

46

References
[ABGJ18] X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig. Log-barrier interior point methods

are not strongly polynomial. SIAM Journal on Applied Algebra and Geometry, 2(1):140–178,

2018. 3

[AC91] I. Adler and S. Cosares. A strongly polynomial algorithm for a special class of linear

programs. Operations Research, 39(6):955–960, 1991. 1, 2

[ADL
+
23] X. Allamigeon, D. Dadush, G. Loho, B. Natura, and L. A. Végh. Interior point methods are

not worse than Simplex, 2023. 3, 4, 5, 6, 8, 13, 32, 33, 34, 42, 43, 45, 53, 54, 57, 60

[AGV22] X. Allamigeon, S. Gaubert, and N. Vandame. No self-concordant barrier interior point

method is strongly polynomial. In Proceedings of the 54th Annual ACM Symposium on Theory

of Computing (STOC), pages 515–528, 2022. 3

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applica-

tions. Prentice-Hall, Inc., feb 1993. 2

[BCK
+
23] J. v. d. Brand, L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, S. Sachdeva, and

A. Sidford. A deterministic almost-linear time algorithm for minimum-cost flow. In 2023

IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), 2023. 2

[BSS89] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the

real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the

American Mathematical Society, 21(1):1–46, 1989. 4

[CKL
+
22] L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, and S. Sachdeva. Maximum flow

and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd Annual Symposium on

Foundations of Computer Science (FOCS), pages 612–623. IEEE, 2022. 2

[CLS19] M. B. Cohen, Y. T. Lee, and Z. Song. Solving linear programs in the current matrix mul-

tiplication time. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of

Computing, pages 938–942, 2019. 2

[CM94a] E. Cohen and N. Megiddo. New algorithms for generalized network flows. Mathematical

Programming, 64(1):325–336, 1994. 1, 2

[CM94b] E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two variables

per inequality. SIAM Journal on Computing, 23(6):1313–1347, 1994. 1, 6

[DHNV23] D. Dadush, S. Huiberts, B. Natura, and L. A. Végh. A scaling-invariant algorithm for linear

programming whose running time depends only on the constraint matrix. Mathematical

Programming, 2023. (in press). 1, 3, 6, 13, 31, 43

[DKNV22] D. Dadush, Z. K. Koh, B. Natura, and L. A. Végh. An accelerated newton–dinkelbach

method and its application to two variables per inequality systems. Mathematics of Operations

Research, 2022. 2, 6

[DNV20] D. Dadush, B. Natura, and L. A. Végh. Revisiting Tardos’s framework for linear program-

ming: Faster exact solutions using approximate solvers. In Proceedings of the 61st Annual

IEEE Symposium on Foundations of Computer Science, 2020. 1

[DR24] D. Dadush and A. Ramachandran. Strongly polynomial frame scaling to high precision. In

Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024.

to appear. 8, 63

[DS08] S. I. Daitch and D. A. Spielman. Faster approximate lossy generalized flow via interior

point algorithms. In Proceedings of the fortieth annual ACM Symposium on Theory of Computing

(STOC), pages 451–460. ACM, 2008. 2

[DTK23] I. Diakonikolas, C. Tzamos, and D. M. Kane. A strongly polynomial algorithm for approx-

imate forster transforms and its application to halfspace learning. In Proceedings of the 55th

Annual ACM Symposium on Theory of Computing, pages 1741–1754, 2023. 8, 63

47

[Edm67] J. Edmonds. Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Standards

Sect. B, 71(4):241–245, 1967. 4

[ENV22] F. Ekbatani, B. Natura, and A. L. Végh. Circuit imbalance measures and linear programming.

In Surveys in Combinatorics 2022, London Mathematical Society Lecture Note Series, page

64–114. Cambridge University Press, 2022. 6

[Ful68] D. Fulkerson. Networks, frames, blocking systems. Mathematics of the Decision Sciences, Part

I, Lectures in Applied Mathematics, 2:303–334, 1968. 10

[GJO97] D. Goldfarb, Z. Jin, and J. B. Orlin. Polynomial-time highest-gain augmenting path algo-

rithms for the generalized circulation problem. Mathematics of Operations Research, 22(4):793–

802, 1997. 2

[GLS88] M. Grötschel, L. Lovász, and A. Schrĳver. Geometric algorithms and combinatorial optimization,

volume 2. Springer Science & Business Media, 1988. 4, 7, 42, 43, 66

[Gon92] C. C. Gonzaga. Path-following methods for linear programming. SIAM review, 34(2):167–

224, 1992. 32

[GPT91] A. V. Goldberg, S. A. Plotkin, and É. Tardos. Combinatorial algorithms for the generalized

circulation problem. Math. Oper. Res., 16(2):351–381, 1991. 1, 2, 6, 52

[GPV23] M. Ghadiri, R. Peng, and S. S. Vempala. The bit complexity of efficient continuous optimiza-

tion. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS). IEEE,

2023. 4, 43

[HN94] D. S. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer programs

with two variables per inequality. SIAM Journal on Computing, 23(6):1179–1192, 1994. 1, 2,

7, 29

[Hoc04] D. S. Hochbaum. Monotonizing linear programs with up to two nonzeroes per column.

Operations Research Letters, 32(1):49–58, January 2004. 1, 11

[JSWZ21] S. Jiang, Z. Song, O. Weinstein, and H. Zhang. A faster algorithm for solving general LPs. In

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. ACM, June

2021. 2

[Kan39] L. V. Kantorovich. Mathematical methods of organizing and planning production. Publica-

tion House of the Leningrad State University, page 68, 1939. English translation in Management

Science 6(4):366-422, 1960. 2

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of

the 16th Annual ACM Symposium on Theory of Computing (STOC), pages 302–311, 1984. 1

[Kar22] A. Karczmarz. Improved strongly polynomial algorithms for deterministic mdps, 2vpi

feasibility, and discounted all-pairs shortest paths. In Proceedings of the 2022 Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 154–172. SIAM, 2022. 2, 6

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. In Doklady Academii Nauk

SSSR, volume 244, pages 1093–1096, 1979. 1

[LMT09] G. Lan, R. D. Monteiro, and T. Tsuchiya. A polynomial predictor-corrector trust-region

algorithm for linear programming. SIAM Journal on Optimization, 19(4):1918–1946, 2009. 3,

55

[LS14] Y. T. Lee and A. Sidford. Path finding methods for linear programming: Solving linear

programs in �̃�(
√

rank) iterations and faster algorithms for maximum flow, part ii. In 55th

Annual Symposium on Foundations of Computer Science (FOCS), pages 424–433. IEEE, 2014. 2

[Meg83] N. Megiddo. Towards a genuinely polynomial algorithm for linear programming. SIAM

Journal on Computing, 12(2):347–353, 1983. 1, 2, 6, 29

[MMT98] N. Megiddo, S. Mizuno, and T. Tsuchiya. A modified layered-step interior-point algorithm

for linear programming. Mathematical Programming, 82(3):339–355, 1998. 3

48

[MT03] R. D. C. Monteiro and T. Tsuchiya. A variant of the Vavasis-Ye layered-step interior-point

algorithm for linear programming. SIAM Journal on Optimization, 13(4):1054–1079, 2003. 3,

32, 43

[MT05] R. D. C. Monteiro and T. Tsuchiya. A new iteration-complexity bound for the MTY predictor-

corrector algorithm. SIAM Journal on Optimization, 15(2):319–347, 2005. 3

[MTY93] S. Mizuno, M. Todd, and Y. Ye. On adaptive-step primal-dual interior-point algorithms for

linear programming. Mathematics of Operations Research, 18:964–981, 11 1993. 53

[NPT92] C. H. Norton, S. A. Plotkin, and É. Tardos. Using separation algorithms in fixed dimension.

Journal of Algorithms, 13(1):79–98, 1992. 1, 2

[OV20] N. Olver and L. A. Végh. A simpler and faster strongly polynomial algorithm for generalized

flow maximization. Journal of the ACM (JACM), 67(2):1–26, 2020. 1, 2, 6, 7, 29

[Rad04] T. Radzik. Improving time bounds on maximum generalised flow computations by con-

tracting the network. Theoretical Computer Science, 312(1):75–97, 2004. 2

[Roc69] R. T. Rockafellar. The elementary vectors of a subspace of 𝑅𝑁 . In Combinatorial Mathematics

and Its Applications: Proceedings North Carolina Conference, Chapel Hill, 1967, pages 104–127.

The University of North Carolina Press, 1969. 10

[RTV05] C. Roos, T. Terlaky, and J.-P. Vial. Interior point methods for linear optimization. Springer Science

& Business Media, 2005. 33

[RW09] M. Restrepo and D. P. Williamson. A simple GAP-canceling algorithm for the generalized

maximum flow problem. Mathematical Programming, 118(1):47–74, 2009. 2

[Sma98] S. Smale. Mathematical problems for the next century. The Mathematical Intelligencer, 20(2):7–

15, 1998. 1

[Tar85] É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,

5(3):247–255, Sep 1985. 1

[Tar86] É. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Opera-

tions Research, pages 250–256, 1986. 1

[TW98] É. Tardos and K. D. Wayne. Simple maximum flow algorithms in lossy networks. In

Proceedings of IPCO, Lecture Notes in Computer Science, volume 1412, pages 310–324, 1998. 2

[Vai89] P. M. Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th

Annual Symposium on Foundations of Computer Science (FOCS), pages 332–337. IEEE, 1989. 2

[vdB20] J. van den Brand. A deterministic linear program solver in current matrix multiplication

time. In Proceedings of the Symposium on Discrete Algorithms (SODA), pages 259–278. SIAM,

2020. 2

[vdBLSS20] J. van den Brand, Y. T. Lee, A. Sidford, and Z. Song. Solving tall dense linear programs in

nearly linear time, 2020. 2

[vdBZ23] J. van den Brand and D. Zhang. Faster high accuracy multi-commodity flow from single-

commodity techniques, 2023. 2

[Vég17] L. A. Végh. A strongly polynomial algorithm for generalized flow maximization. Mathe-

matics of Operations Research, 42(2):179–211, 2017. 1, 2, 6, 29

[VY96] S. A. Vavasis and Y. Ye. A primal-dual interior point method whose running time depends

only on the constraint matrix. Mathematical Programming, Series B, 74(1):79–120, 1996. 1, 2,

6, 7, 13, 30, 32, 33, 43

[Way02] K. D. Wayne. A polynomial combinatorial algorithm for generalized minimum cost flow.

Mathematics of Operations Research, pages 445–459, 2002. 1, 2, 6

[Ye97] Y. Ye. Interior-Point Algorithms: Theory and Analysis. John Wiley and Sons, New York, 1997.

53

49

[YTM94] Y. Ye, M. J. Todd, and S. Mizuno. An 𝑜(
√
𝑛𝐿)-iteration homogeneous and self-dual linear

programming algorithm. Mathematics of Operations Research, 19(1):53–67, February 1994. 7

[ZLY23] M. Zong, Y. T. Lee, and M.-C. Yue. Short-step methods are not strongly polynomial-time.

Mathematical Programming, July 2023. 3

50

A Omitted proofs
Lemma 4.4. Let (𝐺 = (𝑉, 𝐸), 𝛾, 𝑐, 𝑢, 𝑏) be an instance of minimum-cost generalized flow as given by (MGF)

satisfying Assumption 4.2, and let 𝑥∗ be any primal optimal solution. Let 𝑥𝔪 be the corresponding primal max-

central path as given by (MCP-Flow). Consider the instance of minimum-cost generalized circulation on the

residual graph 𝐺𝑥∗ , and let �̂�𝔪 be the corresponding primal max-central path. For any 𝑒 ∈ 𝐸 and � ∈ (0, 1),

(i) If 𝑥∗𝑒 = 𝑢𝑒 , then SLC�(𝑥𝔪𝑒) = 1.

(ii) If 𝑥∗𝑒 < 𝑢𝑒 , then SLC�/2(𝑥𝔪𝑒) ≤ SLC�(�̂�𝔪𝑒).

(iii) If 𝑒 ∈ 𝐸𝑐 and 𝑥∗𝑒 > 0, then SLC�/2(𝑥𝔪←
𝑒
) ≤ SLC�(�̂�𝔪←

𝑒
).

(iv) If 𝑒 ∈ 𝐸𝑐 and 𝑥∗𝑒 = 0, then SLC�(𝑥𝔪←
𝑒
) = 1.

Proof. Every feasible solution 𝑥 of (MGF) can be mapped to a feasible solution �̂� of (MGC), given by

�̂�𝑒 B min(𝑥𝑒 , 𝑢𝑒 − 𝑥∗𝑒) for all 𝑒 ∈ 𝐸(𝐺𝑥∗) ∩ 𝐸, and �̂�←
𝑒
B 𝛾𝑒 min(𝑢𝑒 − 𝑥𝑒 , 𝑥∗𝑒) for all 𝑒 ∈ supp(𝑥∗). This is

obtained by first mapping 𝑥 to a feasible solution �̄� of (MGC), defined by �̄�𝑒 B max(𝑥𝑒 − 𝑥∗𝑒 , 0) for all

𝑒 ∈ 𝐸(𝐺𝑥∗)∩𝐸, and �̄�←
𝑒
B 𝛾𝑒 max(𝑥∗𝑒 − 𝑥𝑒 , 0) for all 𝑒 ∈ supp(𝑥∗). Then, augment �̄� along every cycle of the

form (𝑒 ,←𝑒) to obtain �̂�. Note that ⟨𝑐, �̂�⟩ = ⟨𝑐, �̄�⟩ = ⟨𝑐, 𝑥⟩ − ⟨𝑐, 𝑥∗⟩. With the mapped solution �̂�, we deduce

that �̂�𝔪𝑒 (�) = min(𝑥𝔪𝑒 (�), 𝑢𝑒 − 𝑥∗𝑒) for all 𝑒 ∈ 𝐸(𝐺𝑥∗) ∩ 𝐸 and � ≥ 0. Similarly, �̂�𝔪←
𝑒
(�) = 𝛾𝑒 min(𝑥𝔪←

𝑒
(�), 𝑥∗𝑒)

for all 𝑒 ∈ supp(𝑥∗) and � ≥ 0.

Let 𝑒 ∈ 𝐸 and � ∈ (0, 1). Let 𝑓 : R+ → R+ be a continuous piecewise-affine function such that

��̂�𝔪𝑒 ≤ 𝑓 ≤ �̂�𝔪𝑒 . If 𝑥∗𝑒 ≤ 𝑢𝑒/2, then for any � ≥ 0 where �̂�𝔪𝑒 (�) = 𝑢𝑒 − 𝑥∗𝑒 , we have 𝑓 (�) ≥ �(𝑢𝑒 − 𝑥∗𝑒) ≥
�𝑢𝑒/2 ≥ �𝑥𝔪𝑒 (�)/2. Since 𝑓 ≤ �̂�𝔪𝑒 ≤ 𝑥𝔪𝑒 , it follows that �𝑥𝔪𝑒 /2 ≤ 𝑓 ≤ 𝑥𝔪𝑒 . Thus, SLC�/2(𝑥𝔪𝑒) ≤ SLC�(�̂�𝔪𝑒).
On the other hand, if 𝑥∗𝑒 ≥ 𝑢𝑒/2, then 𝑥𝔪𝑒 ≥ 𝑥∗𝑒 ≥ 𝑢𝑒/2 ≥ 𝑥𝔪𝑒 /2. In this case, SLC

1/2(𝑥𝔪𝑒) = 1 ≤ SLC�(�̂�𝔪𝑒).
If 𝑒 ∈ 𝐹 and 𝑥∗𝑒 > 0, then the argument for 𝑥𝔪←

𝑒
is analogous but opposite. Let ℎ : R+ → R+ be

a continuous piecewise-affine function such that ��̂�𝔪←
𝑒
≤ ℎ ≤ �̂�𝔪←

𝑒
. If 𝑥∗𝑒 ≤ 𝑢𝑒/2, then 𝑥𝔪←

𝑒
≥ 𝑢𝑒 − 𝑥∗𝑒 ≥

𝑢𝑒/2 ≥ 𝑥𝔪←
𝑒
/2. So, SLC

1/2(𝑥𝔪←
𝑒
) = 1 ≤ SLC�(�̂�𝔪←

𝑒
). On the other hand, if 𝑥∗𝑒 ≥ 𝑢𝑒/2, then for any � ≥ 0

where �̂�𝔪←
𝑒
(�) = 𝛾𝑥∗𝑒 , we have ℎ(�) ≥ �𝛾𝑒𝑥∗𝑒 ≥ �𝛾𝑒𝑢𝑒/2 ≥ �𝛾𝑒𝑥𝔪←

𝑒
(�)/2. As ℎ ≤ �̂�𝔪←

𝑒
≤ 𝛾𝑒𝑥𝔪←

𝑒
, it follows that

�𝑥𝔪←
𝑒
/2 ≤ ℎ/𝛾𝑒 ≤ 𝑥𝔪←

𝑒
. Hence, SLC�/2(𝑥𝔪←

𝑒
) ≤ SLC�(�̂�𝔪←

𝑒
).

Finally, it is easy to see that SLC�(𝑥𝔪𝑒) = 1 for all 𝑒 ∈ 𝐸𝑐 with 𝑥∗𝑒 = 𝑢𝑒 , and SLC�(𝑥𝔪←
𝑒
) = 1 for all 𝑒 ∈ 𝐸𝑐

with 𝑥∗𝑒 = 0, as required. □

Lemma 4.6. Suppose 𝑓 : R2

+ → R+ is 𝑘1-simple and 𝑔 : R+ → R+ is 𝑘2-simple. Then ℎ : R+ → R+ defined by

ℎ(𝑥) = 𝑓 (𝑥, 𝑔(𝑥)) is 𝑂(𝑘1 + 𝑘2)-simple.

Proof. Write 𝑓 (𝑧) = ∨
𝑖≤𝑘1

𝑓 (𝑖), where 𝑓 (𝑖)(𝑧) = min(𝑣𝑖0 , 𝑣𝑖1𝑧1 , 𝑣𝑖2𝑧2) for 𝑣𝑖 𝑗 ∈ R+ ∪ {∞} for all 𝑖 , 𝑗. Then

ℎ =
∨
𝑖≤𝑘1

ℎ(𝑖)(𝑥)where

ℎ(𝑖)(𝑥) := 𝑓 (𝑖)(𝑥, 𝑔(𝑥)) = min(𝑣𝑖0 , 𝑣𝑖1𝑥, 𝑣𝑖2𝑔(𝑥)).
Consider any interval [𝑥1 , 𝑥2] where 𝑔(𝑥) is constant; then ℎ(𝑖)(𝑥) is the minimum of a constant and

a linear function over this interval. The same holds if 𝑔(𝑥) is linear on this interval. So ℎ(𝑖) is a simple

function, and hence ℎ is as well.

Given a 𝑘-simple function 𝑟 : R+ → R+, say that 𝑥 ∈ R++ is a local apex of 𝑟 if for some 𝜖 > 0, 𝑟 is linear

on (𝑥 − 𝜖, 𝑥) and constant on (𝑥, 𝑥 + 𝜖). A 𝑘-simple function has at most 𝑘 local apexes, so it suffices to

show that ℎ has at most 2𝑘1 + 𝑘2 local apexes. Note that a local apex of ℎ must be a local apex of ℎ(𝑖) for

some 𝑖.
Fix some 𝑖. We claim that ℎ(𝑖) has at most 2 local apexes that are not local apexes of 𝑔. To see

this, first observe that
𝑣𝑖2𝑔(𝑥)
𝑣𝑖0

and
𝑣𝑖1𝑥
𝑣𝑖2𝑔(𝑥) are both nondecreasing functions. The former is clear from

monotonicity of 𝑔; the latter is immediate after writing 𝑔(𝑥) = max𝑖≤𝑘2
min(𝑤𝑖0 , 𝑤𝑖1𝑥), so that 𝑔(𝑥)/𝑥 =

max𝑖 min(𝑤𝑖0/𝑥, 𝑤𝑖1). This means that there will be values 𝑥𝑖1 ≤ 𝑥𝑖2 ∈ R+ ∪ {∞} so that

ℎ(𝑖)(𝑥) =

𝑣𝑖1𝑥 for 𝑥 ≤ 𝑥𝑖1
𝑣𝑖2𝑔(𝑥) for 𝑥𝑖1 ≤ 𝑥 ≤ 𝑥𝑖2
𝑣𝑖0 for 𝑥𝑖2 ≤ 𝑥

.

Then 𝑥𝑖1 and 𝑥𝑖2 are the only possible local apexes of ℎ(𝑖) aside from the 𝑘2 (or fewer) local apexes of 𝑔.

Thus ℎ has at most 2𝑘1 + 𝑘2 local apexes in total, as required. □

51

Lemma 4.8. Given 𝑓1 , . . . , 𝑓𝑟 : R+ → R+, with 𝑓𝑖 being 𝑘𝑖-simple for each 𝑖, then

∧
𝑖 𝑓𝑖 is (𝑘1+𝑘2+. . .+𝑘𝑟)-simple.

Proof. It suffices to show this for 𝑟 = 2. Let 𝑓 := 𝑓1 ∧ 𝑓2.

Given a simple function 𝑔, say that 𝑦 is a “flat value” of 𝑔 if there is an interval for which 𝑔(𝑥) = 𝑦
for all 𝑥 in the interval. Let 𝐻(𝑔) denote the set of flat values of 𝑔. Then the 𝑔 is |𝐻(𝑔)|-simple if 𝑔 is

bounded, and (|𝐻(𝑔)| + 1)-simple if 𝑔 is unbounded.

It suffices then to bound |𝐻(𝑓)| by |𝐻(𝑓1)| + |𝐻(𝑓2)|; if 𝑓 is unbounded, then 𝑓1 and 𝑓2 are as well. But

clearly 𝐻(𝑓) ⊆ 𝐻(𝑓1) ∪ 𝐻(𝑓2); the claim holds. □

To prove Lemma 4.9, we first show the following claim.

Claim A.1. Suppose 𝑓 =
∨
𝑖≤𝑘 𝑓

(𝑖)
and 𝑔 =

∨
𝑗≤ℓ 𝑔

(𝑗)
, where each 𝑓 (𝑖) and 𝑔(𝑗) are 1-simple, and 𝑓 ≥ 𝑔. Then

for each 𝑗 ≤ ℓ , there exists an 𝑖 ≤ 𝑘 so that 𝑓 (𝑖) ≥ 𝑔(𝑗).
Proof. Fix any 𝑗 ≤ ℓ , and let us express 𝑔(𝑗)(𝑥) = min(𝑤0 , 𝑤1𝑥1 , . . . , 𝑤𝑛𝑥𝑛). We can assume 𝑤𝑎 > 0

for all 0 ≤ 𝑎 ≤ 𝑛, as otherwise 𝑔(𝑗) ≡ 0 and the claim is trivial. First, we show the lemma under the

assumption that 𝑤𝑎 < ∞ for each 𝑎. Defining 𝑦 = (𝑤0/𝑤1 , 𝑤0/𝑤2 , . . . , 𝑤0/𝑤𝑛), we have 𝑔(𝑗)(𝑦) = 𝑤0,

and the minimum is achieved simultaneously on all terms. Since 𝑓 ≥ 𝑔, there must be an 𝑖 ≤ 𝑘 with

𝑓 (𝑖)(𝑦) ≥ 𝑔(𝑗)(𝑦). Let us denote 𝑓 (𝑖)(𝑥) = min(𝑣0 , 𝑣1𝑥1 , . . . , 𝑣𝑛𝑥𝑛). We must have 𝑣0 ≥ 𝑔(𝑗)(𝑦) = 𝑤0 and

𝑣𝑎𝑦𝑎 ≥ 𝑔(𝑗)(𝑦) = 𝑤0 for each 1 ≤ 𝑎 ≤ 𝑛. That is, 𝑣𝑎𝑤0/𝑤𝑎 ≥ 𝑤0, implying 𝑣𝑎 ≥ 𝑤𝑎 since 0 < 𝑤0 < ∞.

Thus, 𝑓 (𝑖) ≥ 𝑔(𝑗) as claimed.

Next, we drop the restriction that every 𝑤𝑎 is finite. For any positive integer 𝑀, let 𝑔(𝑗 ,𝑀) denote

the function 𝑔(𝑗 ,𝑀)(𝑥) = min(𝑤𝑀
0
, 𝑤𝑀

1
𝑥1 , . . . , 𝑤

𝑀
𝑛 𝑥𝑛), where 𝑤𝑀

𝑖
:= min(𝑤𝑖 , 𝑀). Then 𝑔(𝑗 ,𝑀) ≤ 𝑔(𝑗 ,𝑁) for

𝑀 ≤ 𝑁 , and 𝑔(𝑗 ,𝑀) → 𝑔(𝑗) pointwise as 𝑀 → ∞. For each 𝑀, there is a corresponding 𝑖𝑀 so that

𝑓 (𝑖𝑀) ≥ 𝑔(𝑗 ,𝑀), since we have proved the lemma already in the case that all coefficients are finite. Thus

there is an index 𝑖 so that 𝑓 (𝑖) ≥ 𝑔(𝑗 ,𝑀) for an infinite sequence of choices of 𝑀; necessarily 𝑓 (𝑖) ≥ 𝑔(𝑗) as

required. □

Lemma 4.9. Suppose 𝑓 : R𝑛+ → R+ is 𝑘-simple but not (𝑘 − 1)-simple, with 𝑓 =
∨
𝑖≤𝑘 𝑓

(𝑖)
for 1-simple functions

𝑓 (𝑖). Then for any description of 𝑓 as 𝑓 =
∨
𝑖≤ℓ 𝑔

(𝑖)
for 1-simple functions 𝑔(𝑖), there is a set 𝑆 ⊆ {1, 2, . . . , ℓ } with

|𝑆 | = 𝑘 so that { 𝑓 (𝑖) : 𝑖 ≤ 𝑘} = {𝑔(𝑖) : 𝑖 ∈ 𝑆}.
Proof. By the above claim (applied with both functions equal to 𝑓), for each 𝑖 ≤ 𝑘 there is some 𝜎(𝑖) so

that 𝑔(𝜎(𝑖)) ≥ 𝑓 (𝑖). Let 𝑔′ :=
∨
𝑖≤𝑘 𝑔

(𝜎(𝑖))
. Then

𝑓 ≥ 𝑔′ ≥
∨
𝑖≤𝑘

𝑓 (𝑖) = 𝑓 .

Applying the claim again, this time with both functions equal to 𝑔′, we determine that for each 𝑔(𝜎(𝑖))

there exists an 𝑓 (𝑗) with 𝑓 (𝑗) ≥ 𝑔(𝜎(𝑖)). Since 𝑓 (𝑗) ≥ 𝑓 (𝑖), we must have 𝑖 = 𝑗 by the minimal choice of the

representation of 𝑓 . Thus, 𝑔(𝜎(𝑖)) = 𝑓 (𝑖) for each 𝑖, proving the claim with 𝑆 = {𝜎(𝑖) : 𝑖 ≤ 𝑘}. □

Lemma 4.18. A flow is an elementary circulation if and only if it is induced by a simple conservative object.

Proof. For the forward direction, let 𝑥 be an elementary circulation. By Theorem 2.6 in [GPT91], 𝑥 is

either supported on a conservative cycle, or induced by a conservative object 𝑈 = (𝐶, 𝑃, 𝐷) where 𝐶 is

a flow-generating cycle, 𝑃 is a path, and 𝐷 is a flow-absorbing cycle. We are clearly done in the former

case, so let us focus on the latter; it remains to show that 𝑈 is simple. Let 𝑠 be the starting node and 𝑡
be the final node in 𝑃. By shortcutting, we may assume that 𝑉(𝐶) ∩𝑉(𝑃) = {𝑠} and 𝑉(𝐷) ∩𝑉(𝑃) = {𝑡}.
Consider the following two cases:

Case 1: 𝑠 ≠ 𝑡, i.e., 𝐸(𝑃) ≠ ∅. For a contradiction, suppose that there exists a node 𝑟 ∈ 𝑉(𝐶) ∩𝑉(𝐷). Let 𝐶𝑟
and 𝐷𝑟 be cycles at 𝑟 with the same support as 𝐶 and 𝐷 respectively. Then, (𝐶𝑟 , {𝑟}, 𝐷𝑟) is a conservative

object. Any flow induced by this object is supported on a proper subset of supp(𝑥), a contradiction.

Case 2: 𝑠 = 𝑡, i.e., 𝐸(𝑃) = ∅. For a contradiction, suppose that the intersection of 𝐶 and 𝐷 is not a path,

i.e., this intersection has multiple connected components. Let 𝐶1 be a minimal subpath of 𝐶 whose

endpoints lie in different components; its intermediate nodes do not lie in𝑉(𝐷) by minimality. Let 𝑄 be

a path with 𝐸(𝑄) ⊂ 𝐸(𝐷) and where 𝑅 := 𝐶1 ⊕𝑄 is a directed cycle. Let 𝑟 be the starting node of 𝐶1, and

again let 𝐶𝑟 and 𝐷𝑟 be cycles at 𝑟 with the same support as 𝐶 and 𝐷 respectively.

If 𝛾(𝑅) > 1, then (𝑅, {𝑟}, 𝐷𝑟) is a conservative object. If 𝛾(𝑅) = 1, then (𝑅, {𝑟}, 𝑅) is a conservative

object. If 𝛾(𝑅) < 1, then (𝐶𝑟 , {𝑟}, 𝑅) is a conservative object. In each scenario, the induced flow is

supported on a proper subset of supp(𝑥), a contradiction.

For the converse direction, we observe that removing any single arc from a simple conservative object

yields something that is not strongly connected, and hence cannot have a nonzero circulation. □

52

B An Implementation of the SLLS IPM with Strongly Polynomial
Iterations

In this section, we prove Theorem 6.10, which is the adapted IPM. This provides a slower version of

the original subspace layered least squares (SLLS) IPM, that satisfies two additional properties. Firstly,

each iteration can be implemented in strongly polynomial time. In particular, the bit-complexity of the

iterates increases at most polynomially with each iteration. Secondly, we provide certificates that the

outputted optimal solutions are close to the analytic centers of the respective optimal faces.

In terms of analysis, we will mainly focus on correctness and ensuring strongly polynomial iterations.

For the iteration complexity, the analysis is very similar to that of [ADL
+
23], so we only provide a sketch

of how the arguments differ.

The section is organized as follows. We begin in Appendix B.1 with a primer on standard predictor-

corrector methods. The subspace LLS IPM will follow this framework, while occasionally using more

aggressive predictor steps. The corresponding subspace LLS step is presented in Appendix B.2. The

pseudocode for the IPM is presented in Appendix B.3. In Appendix B.4, we argue the correctness of the

IPM, and in Appendix B.5 we quickly sketch how the iteration complexity analysis differs from [ADL
+
23].

In Appendix B.6, we show how to compute the required steps and step sizes in strongly polynomial

time. We note that the IPM will rely on an approximate SVD that is given in Appendix B.7.

For the sake of notational simplicity, throughout this section we use the notation

𝑥𝛼𝑦𝛽 B (𝑥𝛼
1
𝑦
𝛽
1
, . . . , 𝑥𝛼𝑛 𝑦

𝛽
𝑛),

for 𝑥, 𝑦 ∈ R𝑛 , 𝛼, 𝛽 > 0, where we will always restrict to choices of 𝑥, 𝑦, 𝛼, 𝛽 where the individual

coordinates on the right hand side are well-defined. Similarly, for 𝑥 ∈ R𝑛++ and 𝛼 > 0 and 𝑊 ⊆ R𝑛 a

linear subspace, we use 𝑥𝛼𝑊 B {𝑥𝛼𝑤 : 𝑤 ∈𝑊}.

B.1 Predictor-Corrector Methods
Given 𝑧 = (𝑥, 𝑠) ∈ 𝒫++ × 𝒟++, the search directions commonly used in interior-point methods are

obtained as the solution (Δ𝑥,Δ𝑠) to the following linear system for some � ∈ [0, 1].

Δ𝑥 ∈𝑊 (57)

Δ𝑠 ∈𝑊⊥ (58)

𝑠Δ𝑥 + 𝑥Δ𝑠 = ��1 − 𝑥𝑠 (59)

Predictor-corrector methods, such as the Mizuno–Todd–Ye Predictor-Corrector (MTY P-C) algorithm

[MTY93], alternate between two types of steps. In corrector steps, we use � = 1. This gives the centrality

direction, denoted as Δ𝑧c = (Δ𝑥c ,Δ𝑠c). In predictor steps, we use � = 0. This direction is also called the

affine scaling direction, and will be denoted as Δ𝑧a = (Δ𝑥a ,Δ𝑠a) throughout.

Let 𝑧 := (𝑥, 𝑠) ∈ 𝒩2(𝛽) be our current iterate. In our algorithm, we will first apply a corrector step

to get 𝑧c
:= 𝑧 + Δ𝑧c

, which will reduce our centrality error by a factor 2, that is, 𝑧c ∈ 𝒩2(𝛽/2), without

changing the gap �(𝑧). Following this, we apply a predictor step to get 𝑧+ := 𝑧c + 𝛼aΔ𝑧a
, for 𝛼a ∈ (0, 1],

which will make progress along the central path while maintaining that 𝑧+ ∈ 𝒩2(𝛽). Here we slightly

abuse notation, by letting Δ𝑧a
:= (Δ𝑧c)a, that is the predictor direction computed from the recentered

iterate 𝑧c
. The step length 𝛼a > 0 will be chosen such that

𝛼a ≤ sup{𝛼 ∈ [0, 1] : ∀𝛼′ ∈ [0, 𝛼] : 𝑧 + 𝛼′Δ𝑧a ∈ 𝒩2(𝛽)}.

Thus, we conclude 𝑧+ = 𝑧c + 𝛼aΔ𝑧a ∈ 𝒩2(𝛽). We remark that the closure allows us to take a step that

goes all the way to an optimal solution. If 𝑧+ ∈ 𝒩2(𝛽), i.e., if we have not arrived at an optimal solution,

then 𝑧+ remains a valid iterate for the next step.

The next proposition summarizes well-known properties, see e.g. [Ye97, Section 4.5.1].

Proposition B.1. Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩2(𝛽) for 𝛽 ∈ (0, 1/6].

(i) For 𝑧 ∈ 𝒩2(𝛽), let Δ𝑧c
be the corrector direction at 𝑧. Then for 𝑧c = 𝑧 + Δ𝑧c

, we have �(𝑧c) = �(𝑧) and

𝑧c ∈ 𝒩2(𝛽/2).

(ii) For the affine scaling step, we have �(𝑧+) = (1 − 𝛼a)�(𝑧) and 𝑧+ ∈ 𝒩2(𝛽).

53

(iii) The affine scaling step-length 𝛼a
can be chosen in the range

0 ≤ 𝛼a ≤ max

{
𝛽

2

√
𝑛
, 1 − 2∥Δ𝑥aΔ𝑠a∥2

𝛽�(𝑧)

}
.

(iv) After a sequence of 𝑂(
√
𝑛𝑡) corrector and predictor steps, we obtain an iterate 𝑧′ = (𝑥′, 𝑠′) ∈ 𝒩2(𝛽) such

that �(𝑧′) ≤ �(𝑧)/2𝑡 .

B.2 Subspace Layered Least Squares Steps
In this section, we describe the main step directions used by [ADL

+
23] to accelerate the IPM over long

straight parts of the central path. On these segments, the central path will be polarized according to

partition 𝐵 ∪ 𝑁 = [𝑛] that will be guessed by the algorithm. On such polarized segments, the primal

variables indexed by 𝑁 will scale down linearly with respect to parameter, while the primal variables

in 𝐵 will remain roughly constant. For the dual, the situation is reversed, the variables in 𝐵 scale down

while the variables in 𝑁 remain roughly constant. We describe these properties more formally below.

Definition B.2 (Polarized Central Path Segment). A segment CP[�1 , �0] B {(𝑥cp(�), 𝑠cp(�)) : � ∈
[�1 , �0]}, 0 ≤ �1 ≤ �0, is 𝛾-polarized, 𝛾 ∈ (0, 1], if there exists a partition 𝐵 ∪ 𝑁 = [𝑛] such that

𝑥
cp

𝐵
(�1) ≥ 𝛾𝑥

cp

𝐵
(�0) and 𝑠

cp

𝑁
(�1) ≥ 𝛾𝑠

cp

𝑁
(�0) ,

where the inequalities are to be interpreted coordinate by coordinate.

From the standard monotonocity properties of the central path, one derives for any � ∈ [�0 , �1] for

the primal side that

1.
𝛾
𝑛 𝑥

cp

𝐵
(�0) ≤ 𝑥cp

𝐵
(�) ≤ 𝑛𝑥cp

𝐵
(�0),

2.
�

�0𝑛
𝑥

cp

𝑁
(�0) ≤ 𝑥cp

𝑁
(�) ≤ 𝑛�

𝛾�0

𝑥
cp

𝑁
(�0).

The situation for 𝑠cp
is symmetric with the role of 𝐵 and 𝑁 reversed.

The main property of the subspace IPM of [ADL
+
23] is that it traverses any 𝛾-polarized segment as

above in poly(𝑛) log(𝑛/𝛾) iterations.

For this purpose, for any iterate 𝑧 = (𝑥, 𝑠) on such a polarized segment, we will search for directions

(Δ𝑥,Δ𝑠) for which (𝑥𝑁 + 𝛼Δ𝑥𝑁) ≈ (1 − 𝛼)𝑥𝑁 and (𝑥𝐵 + 𝛼Δ𝑥𝐵) ≈ 𝑥𝐵 for 𝛼 ∈ [0, 1] as close to 1 as possible,

and vice versa for (𝑠,Δ𝑠)with 𝐵 and 𝑁 reversed. We note that the desired notion of approximation here

is multiplicative. This goal helps motivates the subspace layered least squares step below.

Definition B.3 (Subspace LLS direction). Let 𝑧 B (𝑥, 𝑠) ∈ 𝒩2(𝛽), � = �(𝑧), 𝐵 ∪ 𝑁 = [𝑛], 𝐵, 𝑁 ≠ ∅, be a

partition. Let 𝑉 ⊆ 𝑊 , 𝑈 ⊆ 𝑊⊥ be linear subspaces satisfying dim(𝜋𝑁 (𝑉)) = dim(𝑉), and dim(𝜋𝐵(𝑈)) =
dim(𝑈). The Subspace LLS update direction (Δ𝑥ℓ ,Δ𝑠ℓ) ∈ 𝑊 ×𝑊⊥ at 𝑧 with respect to (𝐵, 𝑁,𝑈,𝑉) is

defined as

Δ𝑥ℓ B arg min

𝛿∈𝑉

𝑥𝑁 + 𝛿𝑁
�̂�𝑁

2

2

Δ𝑠ℓ B arg min

𝛿∈𝑈

 𝑠𝐵 + 𝛿𝐵
𝑠𝐵

2

2

,

where �̂� B
√
𝑥�/𝑠 ≈ 𝑥 and 𝑠 B

√
𝑠�/𝑥 ≈ 𝑠. Note that Δ𝑥ℓ ,Δ𝑠ℓ are indeed well-defined, as our

assumptions that dim(𝜋𝑁 (𝑉)) = dim(𝑉), dim(𝜋𝐵(𝑈)) = dim(𝑈) allows us to uniquely determineΔ𝑥ℓ ,Δ𝑠ℓ

from their coordinates in 𝑁 and 𝐵 respectively.

We note that rescaled norms ∥ �̂�−1 · ∥2 and ∥𝑠−1 · ∥2 used to measure error are multiplicatively close

to ∥𝑥−1 · ∥2 and ∥𝑠−1 · ∥2, since

√
1 − 𝛽�̂� ≤ 𝑥 ≤

√
1 + 𝛽�̂� and similarly

√
1 − 𝛽𝑠 ≤ 𝑠 ≤

√
1 + 𝛽𝑠 using that

(1 − 𝛽)�1𝑛 ≤ 𝑥𝑠 ≤ (1 + 𝛽)�1𝑛 (Proposition 6.6). In particular, for all 𝑧 ∈ R𝑛√
1 − 𝛽∥𝑥−1𝑧∥2 ≤ ∥ �̂�−1𝑧∥2 ≤

√
1 + 𝛽∥𝑥−1𝑧∥2 ,

√
1 − 𝛽∥𝑠−1𝑧∥2 ≤ ∥𝑠−1𝑧∥2 ≤

√
1 + 𝛽∥𝑠−1𝑧∥2 . (60)

The main advantage in the �̂� , 𝑠 rescaling, is that that the subspaces �̂�−1𝑊 and 𝑠−1𝑊⊥ remain or-

thogonal since �̂�𝑠 = �1𝑛 . This property often helps simplify the analyses. Even though �̂� , 𝑠 contain

54

square roots, we note that the computation of (Δ𝑥,Δ𝑠) can be done in strongly polynomial time given

appropriate representation of the subspaces𝑈,𝑉 (see Proposition B.15). More precisely, (Δ𝑥,Δ𝑠)will be

functions of the diagonal inner products diag(�̂�−2) = diag(𝑠/(𝑥�)) and diag(𝑠−2) = diag(𝑥/(𝑠�)), which

do not contain square roots. For the sake of notational simplicity, we assume below that the iterate (𝑥, 𝑠)
is on the central path, that is, 𝑥𝑠 = �1𝑛 . In this case, �̂� = 𝑥 and 𝑠 = 𝑠.

The Trust Region Step. We now explain the motivation for subspace LLS steps. The starting point for

subspace LLS steps is the trust region step of Lan, Monteiro and Tsuchiya [LMT09], for which subspace

LLS steps will yield suitably good and strongly polynomial computable approximation (the latter point

is the main goal of this entire section). Given an iterate (𝑥, 𝑠) > 0 and partition (𝐵, 𝑁), 𝐵, 𝑁 ≠ ∅, the

trust-region step computes:

Δ𝑥 := arg min

{𝑥−1

𝑁 (𝑥𝑁 + Δ𝑥𝑁)

2

:

𝑥−1

𝐵 Δ𝑥𝐵

2

≤ 𝛽/100,Δ𝑥 ∈𝑊
}
,

Δ𝑠 := arg min

{𝑠−1

𝐵 (𝑠𝐵 + Δ𝑠𝐵)

2

:

𝑠−1

𝑁 (Δ𝑠𝑁)

2

≤ 𝛽/100,Δ𝑠 ∈𝑊⊥
}
. (61)

The above program models the desire for (𝑥𝑁 + 𝛼Δ𝑥𝑁 , 𝑠𝐵 + 𝛼Δ𝑠𝐵) to “scale down” while enforcing

that (𝑥𝐵 + 𝛼Δ𝑥𝐵 , 𝑠𝑁 + 𝛼Δ𝑠𝑁) “barely move” (even for 𝛼 = 1!) as hard constraints. The constant 1/100

above is arbitrary, indeed, any small enough constant would work (though 𝛽 is meaningful as it encodes

the width of the ℓ2 neighborhood we wish to stay inside). In terms of the step length 𝛼 ∈ [0, 1] one can

achieve with these steps, if the maximum value of the primal and dual trust region programs is �, where

0 ≤ � < 𝛽/200, then one can set the step-length 𝛼 = 1 − 100�/𝛽 and satisfy (𝑥 + 𝛼Δ𝑥, 𝑠 + 𝛼Δ𝑠) ∈ 𝒩2(𝛽)
(see Proposition B.16). In particular, the primal-dual gap drops to 200�/𝛽�(𝑥, 𝑠) after this step, which is

0 if � = 0 (indeed, this is generally how finite termination occurs).

The main idea of subspace LLS is to approximate trust region steps by restricting the directions

(Δ𝑥,Δ𝑠) to live in subspaces for which the norm constraint

𝑥−1

𝐵
Δ𝑥𝐵

 ≤ 𝛽/100,

𝑠−1

𝑁
Δ𝑠𝑁

 ≤ 𝛽/100

becomes redundant.

For this purpose, the definition of a cheap lifting subspace will be fundamental:

Definition B.4 (Cheap Lifting Subspace). Let𝑊 ⊆ R𝑛 be a subspace, 𝑢 ∈ R𝑛++, and (𝐵, 𝑁) be a non-trivial

partition of [𝑛]. Then, 𝑉 ⊆ 𝑊 is a cheap lifting subspace for (𝑊, 𝑢, 𝐵, 𝑁)with lifting cost 𝜏 ≥ 0 if

∥𝑢𝐵𝑥𝐵∥2 ≤ 𝜏∥𝑢𝑁𝑥𝑁 ∥2 ,∀𝑥 ∈ 𝑉.

Note that for the above inequality to hold, we must have that dim(𝜋𝑁 (𝑉)) = dim(𝑉), since otherwise

there exists a vector 𝑥 ∈ 𝑉 with 𝑥𝐵 ≠ 0𝐵 and 𝑥𝑁 = 0𝑁 .

In the context of solving the primal trust-region program, if 𝑉 ⊆ 𝑊 is a cheap lifting space with

respect to (𝑊, 𝑥−1 , 𝐵, 𝑁) with lifting cost 𝜏 =
𝛽

100

√
𝑛

, the primal subspace LLS direction with respect to

(𝑊,𝑉, 𝑁, 𝐵)
Δ𝑥ℓ := arg min

Δ𝑥∈𝑉
∥𝑥−1

𝑁 (𝑥𝑁 + Δ𝑥𝑁)∥2

automatically satisfies the trust-region constraint ∥𝑥−1

𝐵
Δ𝑥ℓ

𝐵
∥2 ≤ 𝛽/100. This is because 𝑥−1

𝑁
Δ𝑥ℓ

𝑁
is the

orthogonal projection of 𝑥−1

𝑁
𝑥𝑁 = 1𝑁 onto subspace 𝑥−1

𝑁
𝑊 , and hence ∥𝑥−1

𝑁
Δ𝑥ℓ

𝑁
∥2 ≤ ∥1𝑁 ∥2 ≤

√
𝑛. By

the lifting cost condition on 𝑉 , we then have ∥𝑥−1

𝐵
Δ𝑥ℓ

𝐵
∥2 ≤ 𝜏∥𝑥−1

𝑁
Δ𝑥ℓ

𝑁
∥2 ≤

√
𝑛𝜏 =

𝛽
100
, as needed.

Analogously, any cheap lifting subspace 𝑈 ⊆ 𝑊 for (𝑊, 𝑠−1 , 𝑁 , 𝐵) with lifting cost at most 𝜏 will also

suffice for the dual subspace LLS direction Δ𝑠ℓ as in Definition B.3 to be feasible.

While low lifting cost subspaces are sufficient to get feasible solutions to the trust-region program,

they do not necessarily yield useful approximations. In particular, one can always choose the subspace

𝑉 = {0}, which is trivially cheap. To make significant progress along a polarized segment, we will require

that the use of cheap lifting subspaces of maximum dimension subject to a lifting cost threshold 𝜏. The

main idea will be to show that after every successful subspace LLS step, the dimension of cheap-lifting

subspace will either increase by one in poly(𝑛) additional IPM iterations or we will have past the end of

the polarized segment. For more details on this argument see Appendix B.5.

We now explain how to find these cheap lifting subspaces and what their achievable dimensions are.

This will be achieved by understanding the singular value decomposition of the lifting maps, as defined

in Definition 6.2. We first recall the basic properties singular values and singular value decompositions.

55

Definition B.5 (Singular Value Decomposition). A linear operator 𝑇 : 𝑈 → 𝑉 , where 𝑈 ⊆ R𝑚 and

𝑉 ⊆ R𝑛 are linear subspaces, admits a singular value decomposition (SVD)𝑇 =
∑𝑘
𝑖=1

𝜎𝑖𝑣𝑖𝑢⊤𝑖 , 𝑘 = rank(𝑇),
where 𝑣1 , . . . , 𝑣𝑘 ∈ 𝑉 and 𝑢𝑘 , . . . , 𝑢𝑘 ∈ 𝑈 are orthonormal vectors in their respective subspaces and

𝜎1 ≥ · · · ≥ 𝜎𝑘 > 0. We define 𝜎(𝑇) := (𝜎1 , . . . , 𝜎𝑘) to be the vector of singulars values of 𝑇 listed in

non-increasing order. By convention, we define 𝜎𝑖 = 0 for 𝑖 > rank(𝑇). For a matrix 𝑀 ∈ R𝑛×𝑚 , we define

its singular to be those of the induced linear operator from R𝑚 to R𝑛 .

One of the most useful ways to characterize singular values is via the following variational charac-

terization.

Proposition B.6 (Max-Min Principle for Singular Values). Let 𝑇 : 𝑈 → 𝑉 be a linear operator as in

Definition B.5. Then, for 1 ≤ 𝑖 ≤ 𝑛 B dim(𝑈), we have that

𝜎𝑖(𝑇) = min

dim(𝑆)=𝑛−𝑖+1

max

𝑢∈𝑆\{0}

∥𝑇𝑥∥2
∥𝑥∥2

= max

dim(𝑆)=𝑖
min

𝑥∈𝑆\{0}

∥𝑇𝑥∥2
∥𝑥∥2

. (62)

where 𝑆 ⊆ 𝑈 ranges over the linear subspaces of the prescribed dimensions above.

With the above definitions, we link the achievable dimensions for cheap lifting subspaces as follows.

Lemma B.7. Let𝑊 ⊆ R𝑛 be a linear subspace, 𝑢 ∈ R𝑛++, 𝐵∪𝑁 = [𝑛] be a partition, 𝐵, 𝑁 ≠ ∅, 𝑝 = dim(𝜋𝑁 (𝑊)).
Let 𝐿𝑢𝑊

𝑁
: 𝜋𝑁 (𝑢𝑊) → 𝑊 and ℓ𝑢𝑊

𝑁
: 𝜋𝑁 (𝑊) → 𝜋𝐵(𝑊) be the lifting maps as Definition 6.2. Then, given a

threshold 𝜏 ≥ 0, then the maximum dimension of a cheap lifting subspace 𝑉 ⊆ 𝑊 for (𝑊, 𝑢, 𝐵, 𝑁) with lifting

cost 𝜏 is

𝑑 = |{𝑖 ∈ [𝑝] : 𝜎𝑖(ℓ𝑢𝑊𝑁) ≤ 𝜏}|.

Moreover, letting

∑𝑟
𝑖=1

𝜎𝑖𝑦𝑖𝑤𝑇𝑖 , 𝑟 = rank(ℓ𝑢𝑊
𝑁
) ≤ 𝑝 be the singular value decomposition of ℓ𝑢𝑊 and C =

(𝑤1 , . . . , 𝑤𝑝) be an extension of the right singular vectors to an orthonormal basis of 𝜋𝑁 (𝑢𝑊), then if 𝑑 > 0, the

subspace 𝑉 = 𝑢−1𝐿𝑢𝑊
𝑁
(im(C≥𝑝−𝑑+1)) is a cheap lifting subspace for (𝑊, 𝑢, 𝐵, 𝑁) with lifting cost 𝜎𝑝−𝑑+1 ≤ 𝜏.

Proof. We first show that upper bound on 𝑑. Let 𝑉 ⊆ 𝑊 be a cheap lifting subpace as above with

dim(𝑉) = 𝑑′, and let 𝑉 B 𝑢𝑉 and �̂� B 𝑢𝑊 . For any 𝑦 ∈ 𝑉 ⊆ �̂� , by definition of the lifting map, we

have that (ℓ�̂�
𝑁
(𝑦𝑁), 𝑦𝑁) ∈ �̂� and ∥𝑦𝐵∥ ≤ ∥ℓ�̂�𝑁 (𝑦𝑁)∥. Therefore, without loss of generality, we may assume

that

𝑉 = {(ℓ�̂�𝑁 (𝑦𝑁), 𝑦𝑁) : 𝑦𝑁 ∈ 𝜋𝑁 (𝑉)} = 𝐿�̂�𝑁 (𝜋𝑁 (𝑉)).
since this can only decrease lifting cost while maintaining the dimension (recall that dim(𝜋𝑁 (𝑉)) =
dim(𝑉) for any cheap lifting subspace). Recall that ℓ�̂� : 𝜋𝑁 (�̂�) → 𝜋𝐵(�̂�), dim(𝜋𝑁 (�̂�)) = 𝑝 and that

dim(𝜋𝑁 (𝑉)) = 𝑑′ and satisfies 𝜋𝑁 (𝑉) ⊆ 𝜋𝑁 (�̂�). Therefore, the lifting cost of 𝑉 satisfies

𝜏 ≥ max

𝑥∈𝑉,𝑥𝑁≠0𝑁

∥𝑢𝐵𝑥𝐵∥2
∥𝑢𝑁𝑥𝑁 ∥2

= max

𝑦∈𝑉,𝑦𝑁≠0

∥𝑦𝐵∥2
∥𝑦𝑁 ∥2

= max

𝑧∈𝜋𝑁 (𝑉)

ℓ�̂�
𝑁
(𝑧)
∥𝑧∥ ≥ 𝜎𝑝−𝑑′+1(ℓ�̂�𝑁),

where the last inequality follows from Proposition B.6. Since 𝜏 ≤ 𝜎𝑝−𝑑′+1, we have that {𝑖 ∈ [𝑝] : 𝜏 ≥
𝜎𝑖(ℓ�̂�𝑁)} ⊇ {𝑖 ∈ [𝑝] : 𝑖 ≥ 𝑝 − 𝑑′+ 1} (recall that singular values are in non-increasing order). Since the first

set has size 𝑑 and the second has size 𝑑′, we conclude that 𝑑 ≥ 𝑑′, as needed.

We now prove the part, which gives an explicit form for the lower bound. If 𝑑 > 0, then clearly

𝜎𝑛−𝑑+1(ℓ�̂�𝑁) ≤ 𝜏. Then, using C = (𝑤1 , . . . , 𝑤𝑝) as defined above, it is direct to verify, using the orthogo-

nality properties of the SVD,

max

𝑥∈im(C≥𝑛−𝑑+1
)\{0𝑁 }

ℓ�̂�
𝑁
(𝑥)
∥𝑥∥2

= 𝜎𝑛−𝑑+1(ℓ�̂�𝑁).

By tracing the reduction from the first part backwards, we conclude that 𝑢−1𝐿�̂�
𝑁
(im(C≥𝑛−𝑑+1)) ⊆ 𝑊 is a

cheap lifting subspace for (𝑊, 𝑢, 𝑁, 𝐵)with lifting cost at most 𝜎𝑛−𝑑+1(ℓ�̂�𝑛) ≤ 𝜏, as desired. □

We remark that so far we have been treating the tasks of finding primal and dual cheap lifting

subspaces separately. Fortunately, it turns out the singular values of the corresponding primal and dual

lifting maps are identical. Thus, the corresponding problems of finding cheap lifting subspace on both

sides are intimately linked. The formal connection is given below.

56

Lemma B.8. (Corollary of [ADL
+
23, Lemma 2.18]) Let 𝑥, 𝑠 ∈ R𝑛++, � = ⟨𝑥, 𝑠⟩ /𝑛, satisfy 𝑥𝑠 = �1𝑛 . Then, for

𝑊 ⊆ R𝑛 and partition 𝐵 ∪ 𝑁 = [𝑛], 𝜎(ℓ 𝑥−1𝑊
𝑁
) = 𝜎(ℓ 𝑠−1𝑊⊥

𝐵
). Furthermore, if

∑𝑟
𝑖=1

𝜎𝑖𝑢𝑖𝑣⊤𝑖 is the SVD of ℓ 𝑥
−1𝑊
𝑁

,

then

∑𝑟
𝑖=1

𝜎𝑖𝑣𝑖𝑢⊤𝑖 is the SVD of ℓ 𝑠
−1𝑊⊥
𝐵

.

Given the above, computing cheap lifting subspaces for either the primal or dual, is closely tied to

the problem of computing an approximate SVD of the lifting map. For the sake of strong polynomial

algorithms, one must design such approximate SVDs to be numerically stable, e.g., to maintain bounded

bit complexity, as well as to take a strongly polynomial number of arithmetic operations (i.e., depending

only the dimension of the underlying matrix).

In Appendix B.7, we present a very simple approximtae SVD for this purpose based on a modifica-

tion of the Gram-Schmidt orthogonalization procedure. We use this approximate SVD in Cheap-Lift-

Subspace.

B.3 The Subspace LLS IPM
In this section, we describe the subspace LLS interior point method.

The associated partition Definition B.3 and Definition B.4 are applicable for any partition 𝐵∪𝑁 = [𝑛],
𝐵, 𝑁 ≠ ∅ and 𝑧 ∈ 𝒩2(𝛽). Our algorithm chooses a natural partition derived from the relative step lengths

in the affine scaling step:

Definition B.9 (Associated partition). For 𝑧 = (𝑥, 𝑠) ∈ 𝒩2(𝛽), let (Δ𝑥a ,Δ𝑠a) be the affine scaling step as

in (59) with � = 0. Let us define the associated partition 𝐵𝑧 ∪ 𝑁𝑧 = [𝑛] as

𝐵𝑧 B

{
𝑖 :

����Δ𝑥a

𝑖

𝑥𝑖

���� < ����Δ𝑠a

𝑖

𝑠𝑖

����} 𝑁𝑧 B [𝑛] \ 𝐵𝑧 .

The Subspace LLS Algorithm. Let 𝜏 := 1

16⌈
√
𝑛⌉ denote the lifting cost threshold. The algorithm is given

as IPM with subspace LLS below.

B.4 Correctness
In this subsection, we prove that upon termination, the IPM with subspace LLS satisfies its output

requirements, namely it outputs optimal primal and dual solutions that are close to the analytic centers

of the corresponding optimal faces. This will mainly depend on the guarantees on the computed step

lengths for subspace LLS and affine scaling, which are given in Proposition B.16 and Proposition B.14.

We also show that Cheap-Lift-Subspace is correct, which relies on the guarantees of the approximate SVD

in Appendix B.7 and the computation of lifting maps Proposition B.17.

Lemma B.10. The output of IPM with subspace LLS is correct. Furthermore, each iteration of the algorithm runs

in strongly polynomial time.

Proof. We first show that the output (𝑥★, 𝑠★, 𝑣★, 𝑤★) satisfies the requirements listed in the output de-

scription.

To argue this, we first claim that during the last iteration of the while loop, either the affine scaling

step length 𝛼a
or LLS step length 𝛼ℓ is 1. To see this, note that by assumption �(𝑥0 , 𝑠0) > 0, thus we at

least enter the while loop. Secondly, for any iterate (𝑥, 𝑠), by Proposition B.1(ii), the corrector step leaves

�(𝑥, 𝑠) unchanged, whereas the affine scaling step satisfies �(𝑥 + 𝛼aΔ𝑥a , 𝑠 + 𝛼aΔ𝑥a) = (1 − 𝛼a)�(𝑥, 𝑠).
Similarly, by Proposition B.16, �(𝑥 + 𝛼ℓΔ𝑥ℓ , 𝑥 + 𝛼ℓ) ≥ 3/4(1 − 𝛼ℓ)�(𝑥, 𝑠). Thus, the only to exit the loop,

corresponding to the condition �(𝑥, 𝑠) = 0, is if max{𝛼a , 𝛼ℓ } = 1, as needed.

Let (𝑥, 𝑠) ∈ 𝒩2(𝛽) be the iterate just after we exit the while loop, and let (Δ𝑥a ,Δ𝑠ℓ), 𝛼a
and (Δ𝑥ℓ ,Δ𝑠ℓ),

𝛼ℓ be the affine scaling and LLS step during the last iteration. Clearly, (𝑥★, 𝑠★) = (𝑥, 𝑠). By line 20, if

𝛼ℓ = 1, the previous iterate (�̄� , 𝑠) ∈ 𝒩2(𝛽/2) satisfies (�̄� , 𝑠) := (𝑥 − Δ𝑥ℓ , 𝑠 − Δ𝑠ℓ) and if 𝛼ℓ < 𝛼a = 1,

(�̄� , 𝑠) := (𝑥 − Δ𝑥a , 𝑠 − Δ𝑠a).
Let 𝐵 := {𝑖 ∈ [𝑛] : 𝑥𝑖 > 0} and 𝑁 := {𝑖 ∈ [𝑛] : 𝑠𝑖 > 0} and let � := �(�̄� , 𝑠). Note that � equals the value

of the corresponding variable set on either line 25 or line 28.

Assume first that 𝛼ℓ = 1. Then by the guarantees of Proposition B.16 used on line 17, we must have that

∥Δ𝑥ℓΔ𝑠ℓ ∥2 ≤ 𝛽�/8 and ∥(�̄�+Δ𝑥ℓ)(𝑠+Δ𝑠ℓ)∥2 = 0. For 𝑖 ∈ [𝑛], using that |Δ𝑥ℓ
𝑖
Δ𝑠ℓ

𝑖
| ≤ 𝛽�/8 < (1−𝛽/2) ≤ �̄�𝑖𝑠𝑖

57

Algorithm 2: IPM with subspace LLS

Input : Instance of (LP) with primal constraint matrix A ∈ R𝑚×𝑛 , rank(A) = 𝑚, and initial (𝑥0 , 𝑠0) ∈ 𝒩2(𝛽),
𝛽 ∈ (0, 1/6].

Output: (𝑥★, 𝑠★, 𝑣★, 𝑤★) satisfying:

1. 𝑥★ ∈ 𝒫 , 𝑠★ ∈ 𝒟,

〈
𝑥★, 𝑠★

〉
= 0,

2. 𝐵 B {𝑖 ∈ [𝑛] : 𝑥★
𝑖
> 0}, 𝑁 B {𝑖 ∈ [𝑛] : 𝑠★

𝑖
> 0} satisfy 𝐵 ∪ 𝑁 = [𝑛],

3. 𝑣★ ∈𝑊⊥ , 𝑣★
𝐵
> 0, 𝑤★ ∈𝑊 , 𝑤★

𝑁
> 0,

4. ∥(𝑥★
𝐵
𝑣★
𝐵
, 𝑠★
𝑁
𝑤★
𝑁
) − 1𝑛 ∥2 ≤ 𝛽,

where𝑊 ≔ ker(A),𝑊⊥ B im(A⊤).
1 Compute basis P ∈ R𝑛×(𝑛−𝑚) satisfying im(P) = ker(A); D← A⊤;

2 (𝑥, 𝑠) ← (𝑥0 , 𝑠0);
3 while �(𝑥, 𝑠) > 0 do
4 Compute corrector direction (Δ𝑥𝑐 ,Δ𝑠𝑐) at (𝑥, 𝑠);
5 𝑥 ← 𝑥 + Δ𝑥𝑐 , 𝑠 ← 𝑠 + Δ𝑠𝑐 ;
6 Compute affine scaling direction (Δ𝑥a ,Δ𝑠a) at (𝑥, 𝑠);
7 Set 𝛼a

for (Δ𝑥a ,Δ𝑠a) according to Proposition B.14 with parameter 𝛽;

8 𝐵←
{
𝑖 :

���Δ𝑥a

𝑖
𝑥𝑖

��� < ���Δ𝑠a

𝑖
𝑠𝑖

���} , 𝑁 ← [𝑛] \ 𝐵 ;

9 if 𝐵, 𝑁 ≠ ∅ then
10 MP← Cheap-Lift-Subspace(P, 1

𝑥 , 𝐵, 𝑁, 𝜏);
11 MD← Cheap-Lift-Subspace(D, 1

𝑠 , 𝑁 , 𝐵, 𝜏);
12 if MP or MD equals 0𝑛 then
13 𝛼ℓ ← 0;

14 else
15 (𝑉,𝑈) ← (im(MP), im(MD));
16 Compute the subspace LLS direction (Δ𝑥ℓ ,Δ𝑠ℓ) at (𝑥, 𝑠)with respect to (𝐵, 𝑁,𝑉,𝑈) using

Proposition B.15 on input (𝑥, 𝑠, 𝐵, 𝑁,MP,MD);
17 Set 𝛼ℓ for (Δ𝑥ℓ ,Δ𝑠ℓ) according to Proposition B.16 with parameters � = �(𝑥, 𝑠), 𝛽;

18 else
19 𝛼ℓ ← 0;

20 if 𝛼a > 𝛼ℓ then
21 (𝑥, 𝑠) ← (𝑥 + 𝛼aΔ𝑥a , 𝑠 + 𝛼aΔ𝑠a);
22 else
23 (𝑥, 𝑠) ← (𝑥 + 𝛼ℓΔ𝑥ℓ , 𝑠 + 𝛼ℓΔ𝑠ℓ);

24 if 𝛼ℓ = 1 then
25 �̄←

〈
𝑥 − Δ𝑥ℓ , 𝑠 − Δ𝑠ℓ

〉
/𝑛;

26 (𝑣, 𝑤) ← (−Δ𝑠ℓ/�̄,−Δ𝑥ℓ/�̄);
27 else
28 �̄← ⟨𝑥 − Δ𝑥a , 𝑠 − Δ𝑠a⟩ /𝑛;

29 (𝑣, 𝑤) ← (−Δ𝑠a/�̄,−Δ𝑥a/�̄);
30 return (𝑥, 𝑠, 𝑣, 𝑤);

(Proposition 6.6) and (�̄�𝑖+Δ𝑥ℓ𝑖)(𝑠𝑖+Δ𝑠
ℓ
𝑖
) = 0, we conclude that either 𝑥𝑖 = �̄�𝑖+Δ𝑥ℓ𝑖 > 0 and 𝑠𝑖 = 𝑠𝑖+Δ𝑠ℓ𝑖 = 0,

and thus 𝑖 ∈ 𝐵, or that 𝑥𝑖 = �̄�𝑖 + Δ𝑥ℓ𝑖 = 0 and 𝑠𝑖 = 𝑠𝑖 + Δ𝑠ℓ𝑖 > 0, and thus 𝑖 ∈ 𝑁 . In particular, we see that

(𝐵, 𝑁) partition [𝑛].
Given the above, for (𝑣, 𝑤) := (−Δ𝑠ℓ/�,−Δ𝑥ℓ/�) as set on 26, we have that 𝑣𝐵 = 𝑠𝐵/� > 0 and

𝑢𝑁 = �̄�𝑁/� > 0. Clearly (𝑣★, 𝑢★) = (𝑣, 𝑢). Furthermore,

∥(𝑥𝐵𝑣𝐵 , 𝑠𝑁𝑤𝑁) − 1𝑛 ∥2 =

 ((�̄�𝐵 + Δ𝑥ℓ𝐵)𝑠𝐵 , (𝑠𝑁 + Δ𝑠ℓ𝑁)�̄�𝑁)�
− 1𝑛

2

=

 �̄�𝑠� − 1𝑛 −
Δ𝑥ℓΔ𝑠ℓ

�

2

≤
 �̄�𝑠� − 1𝑛

2

+
Δ𝑥ℓΔ𝑠ℓ�

2

≤ 𝛽/2 + 𝛽/8 ≤ 𝛽, as needed . (63)

If 𝛼ℓ < 𝛼a = 1, the analysis is essentially identical with the role (Δ𝑥ℓ ,Δ𝑠ℓ) and (Δ𝑥a ,Δ𝑠a) switched. To

58

Algorithm 3: Cheap-Lift-Subspace

Input : Matrix M ∈ R𝑛×𝑑 , rank(M) = 𝑑, 𝑢 ∈ R𝑛++, partition 𝐵 ∪ 𝑁 = [𝑛], 𝐵, 𝑁 ≠ ∅, threshold 𝜏 > 0.

Output: Matrix C ∈ R𝑛×𝑘 , 𝑘 ≥ 1, such that for𝑊 B im(M), 𝑉 ≔ im(C) the following holds:

1. 𝑉 ⊆ 𝑊 .

2. 𝑘 = rank(C) or C = (0𝑛).
3. ∀𝑣 ∈ 𝑉 , ∥𝑢𝐵𝑣𝐵∥2 ≤ (𝜏/2)∥𝑢𝑁𝑣𝑁 ∥2.

4. dim(𝑉) ≥ |{𝑖 ∈ [𝑝] : 𝜎𝑖(ℓ𝑢𝑊𝑁) ≤
𝜏

2
𝑛+1

√
𝑛
}|, where ℓ𝑢𝑊

𝑁
is in as in Definition 6.2 and 𝑝 = dim(𝜋𝑁 (𝑊)).

1 // Compute matrix representation of lifting map 𝐿𝑢𝑊
𝑁

2 Π𝑢𝑊 ← diag(𝑢)M(M⊤ diag(𝑢)2M)−1M⊤ diag(𝑢), the orthogonal projection onto 𝑢𝑊 ;

3 L𝑢 ← (Π𝑢𝑊
[𝑛],𝑁)(Π

𝑢𝑊
𝑁,𝑁
)+, the lifting map 𝐿𝑢𝑊

𝑁
;

4 // Approximation of “Cheap Lift” subspace of ℓ𝑢𝑊
𝑁

5 (P,R,Q) ←Well-Conditioned-GSO(L𝑢
𝐵,𝑁
);

6 𝑙 ← min{𝑖 ∈ [𝑝] : ∥Q𝑖 ∥2
2
≤ 𝜏2

4
𝑛+1
} or −1 if undefined;

7 if 𝑙 ≠ −1 then
8 C𝑢 ← (PR)≥𝑙 ;

9 // Lift subspace into 𝑊 and rescale

10 C← column basis of
1

𝑢L𝑢C𝑢 ;

11 return C;

12 else
13 return 0𝑛 ;

see this, to ensure 𝛼a = 1 in Proposition B.14, we must have that ∥Δ𝑥aΔ𝑠a∥2 = 0. Since affine scaling step

satisfying 𝑠Δ𝑥a+ �̄�Δ𝑠 = −�̄�𝑠, we have (�̄�+Δ𝑥a)(𝑠+Δ𝑠a) = Δ𝑥aΔ𝑠a = 0. The analysis now follows as above

with (𝑣, 𝑤) := (−Δ𝑠a/�,−Δ𝑥a/�) as set on line (29). Note that by the stronger guarantee Δ𝑥aΔ𝑠a = 0, one

can in fact reduce 𝛽 in (63) to 𝛽/2.

We conclude that the algorithm’s output is correct in all cases.

For the strongly polynomial bound on each iteration, we must simply show that all the computations

performed within the while loop are strongly polynomial. In particular, we must check the corrector,

affine scaling and subspace LLS steps can all be computed in strongly polynomial, and that calls to

Cheap-Lift-Subspace run in strongly polynomial time. These claims are verified in Proposition B.14

(corrector and affine scaling), Proposition B.15 (subspace LLS direction), Proposition B.16 (subspace LLS

step length) and Lemma B.11 (Cheap-Lift-Subspace). Thus, each iteration runs in strongly polynomial

time as needed. □

Lemma B.11. Cheap-Lift-Subspace is correct and runs in strongly polynomial time.

Proof. The strongly polynomial running time is direct from the strong polynomiality of Algorithm Well-

Conditioned-GSO, and that elementary matrix operations are strongly polynomial. We thus focus on

correctness. The algorithm is essentially an algorithmic implementation of the second part of Lemma B.7.

The main difference is that one has access only to approximate SVD instead of the exact SVD, and that

we have access to matrix representations of the lifting maps (which affects the behavior of approximate

SVDs). We give the analysis below.

We run through the steps of the algorithm. We first compute Π𝑢𝑊
the orthogonal projection on 𝑢𝑊 .

We the compute L𝑢 = Π𝑢𝑊 (Π𝑢𝑊
𝑁𝑁
)+. By Proposition B.17, L𝑢 ∈ R𝑛×𝑁 is the matrix that implements the

lifting map 𝐿𝑢𝑊
𝑁

and L𝑢
𝐵,𝑁

implements ℓ𝑢𝑊
𝑁

.

Let 𝑝 = dim(𝜋𝑁 (𝑢𝑊)), (P,Q,R) be the output of Well-Conditioned-GSO on L𝑢
𝐵,𝑁

. Let 𝑟 B |{𝑖 ∈ [𝑝] :

𝜎𝑖(ℓ𝑢𝑊𝑁) ≤
𝜏

2
𝑛+1

√
𝑛
}|.

We claim that if 𝑟 ≥ 1, then 𝑙 B min{ 𝑗 ∈ [𝑝] : ∥Q•, 𝑗 ∥2
2
≤ 𝜏2

4
𝑛+1
} is well-defined and that 𝑝 − 𝑙 + 1 ≥ 𝑟. If

𝑟 ≥ 1, then ℎ B 𝑝 − 𝑟 + 1 ∈ [𝑝] satisfies ℎ = min{𝑖 ∈ [𝑝] : 𝜎𝑖(ℓ𝑢𝑊𝑁) ≤
𝜏

2
𝑛+1

√
𝑛
}. From here, by Lemma B.19,

for ℎ ≤ 𝑖 ≤ 𝑝, we have that

∥Q𝑖 ∥2 ≤
√
𝑛𝜎𝑖(L𝑢) =

√
𝑛𝜎𝑖(ℓ𝑢𝑊𝑁) ≤

√
𝑛𝜎ℎ(ℓ𝑢𝑊𝑁) ≤

𝜏

2
𝑛+1

.

59

In particular, 𝑙 ≤ ℎ, and thus 𝑝 − 𝑙 + 1 ≥ 𝑟 as needed. If 𝑙 = −1, then by the above, we must have 𝑟 = 0,

and thus the algorithm correctly returns 0𝑛 . Assume now 𝑙 ∈ [𝑝]. We must now show that algorithm

returns a cheap lifting subspace for (𝑊, 𝑢, 𝐵, 𝑁) of lifting cost at most 𝜏/2 and dimension at least 𝑟.
By Lemma B.19, the matrix C𝑢

𝑙
B (PR)•,≥𝑖 where satisfies that

max

𝑥∈im(C𝑢
≥𝑙)\{0}

∥L𝑢(𝑥)∥2
∥𝑥∥2

≤ 2
𝑛 ∥Q𝑖 ∥2 ≤ 𝜏/2. (64)

We will need the following claim, whose proof we leave as an exercise.

Claim B.12. Let 𝑉 ⊆ R𝑁 be any subspace containing ker(L𝑢
𝐵,𝑁
). Then L𝑢(𝑉) = L𝑢(𝑉 ∩ 𝜋𝑁 (𝑢𝑊)) and

dim(𝑉 ∩ 𝜋𝑁 (𝑢𝑊)) = dim(𝑉) + dim(𝜋𝑁 (𝑢𝑊)) − |𝑁 |.
Assuming the claim, let 𝑉 = im(C≥𝑙) as used by the algorithm. First, we note that 𝑉 contains the

kernel of the lifting matrix L𝑢
𝐵,𝑁

. If the kernel is trivial, there is nothing to prove. Otherwise, note that

the kernel equals im(C≥𝑘)where 𝑘 = min{𝑖 ∈ [|𝑁 |] : Q•,𝑖 = 0𝐵}, where clearly 𝑙 ≤ 𝑘.
Therefore, letting 𝑉′ = 𝑉 ∩ 𝜋𝑁 (𝑢𝑊), we use the claim to deduce that

dim(𝑉′) = dim(𝑉) + dim(𝜋𝑁 (𝑊)) − |𝑁 | = (|𝑁 | − 𝑙 + 1) + 𝑝 − |𝑁 | = 𝑝 − 𝑙 + 1,

and that L𝑢(𝑉′) = L𝑢(𝑉). In particular, the lifting cost of𝑉′with respect (𝑊𝑢 , 𝐵, 𝑁) is at most 𝜏/2 by (64),

and the dimension of 𝑉′ is 𝑝 − 𝑙 + 1 ≥ 𝑟 by the first part. Therefore, the subspace 𝑢−1L𝑢(𝑉) is a cheap

lifting subspace for (𝑊, 𝑢, 𝐵, 𝑁)with lifting cost 𝜏/2 and dimension at least 𝑟 as needed. Lastly, we make

sure to compute a basis C of 𝑢−1L𝑢(𝑉) = 𝑢−1L𝑢(C≥𝑙), to ensure the outputted matrix has full column

rank.

□

B.5 Iteration Complexity
We now quickly sketch why the modified subspace LLS algorithms run an 𝑂(𝑛) factor slower in terms

of iterations than [ADL
+
23]. As noted previously, this is immaterial to our main results, and in fact,

any poly(𝑛) slowdown of our IPM, for the sake of achieving strongly polynomial iterations would be

sufficient. We restrict the discussion below to this goal.

The main insight structural insight in [ADL
+
23] is that the central path can be decomposed in at most

𝑂

(
𝑛∑
𝑖=1

SLC�(𝑥𝔪𝑖)
)

𝛾 B �/poly(𝑛)-polarized segments, where polarization is as in Definition B.2. Thus, the main challenge

is to show that in at most poly(𝑛 log(1/�)) iterations, the subspace LLS IPM can traverse any 𝛾-polarized

segment.

Let CP[�0 , �1], 0 ≤ �0 ≤ �1 be an 𝛾-polarized segment with polarization partition 𝐵 ∪ 𝑁 , 𝐵, 𝑁 ≠ ∅.
Note that log(�0/�1) can be arbitrarily large on such a segment (in fact, infinite as �1 = 0 is possible),

thus standard path following does not suffice to traverse these segments 𝑂(poly(𝑛) log(1/𝛾)) iterations.

To be able to argue rapid progress on such segments, one uses a different, in fact combinatorial quantity,

to serve as a potential. Specifically, one uses the number of singular values of the lifting map above a

threshold as our potential.

For an iterate 𝑧 = (𝑥, 𝑠) ∈ 𝒩2(𝛽), define the lifting maps ℓ𝑧 = ℓ �̂�
−1𝑊
𝑁

and ℓ⊥𝑧 = ℓ 𝑠
−1𝑊⊥
𝐵

, where �̂� , 𝑠 are

the normalized iterates as in Definition B.3. As the potential, one examines

�(𝑧) B=

���{𝑖 : 𝜎𝑖(ℓ𝑧) >
𝜏

𝑛1.5

}��� ,
where 𝜏 := 1

16⌈
√
𝑛⌉ , as above. Recall that the singular values of ℓ𝑧 and ℓ⊥𝑧 are identical, and hence the

above serves as a global potential, measuring progress along a segment.

A main property that drives the analysis is that the singular values evolve predictably over the course

of a polarized segment. This is given the lemma below.

60

Lemma B.13 (Stability of singular values on polarized segments). Let CP[�1 , �0] be a 𝛾-polarized segment

of the central path with partition 𝐵 ∪ 𝑁 = [𝑛]. Let 𝑧, �̃� ∈ 𝒩2(𝛽) for 𝛽 ∈ (0, 1/6], such that � B �(𝑧) and

�̃ B �(̃𝑧) satisfy �0 ≥ � ≥ �̃ ≥ �1. Then we have:

𝛾2

4𝑛2

· �̃
�
𝜎(ℓ𝑧) ≤ 𝜎(ℓ �̃�) ≤

4𝑛2

𝛾2

· �̃
�
𝜎(ℓ𝑧). (65)

In particular, the singular values scale down proportional with the parameter decrease. From here,

the crucial property of our IPM is as follows. After𝑂(poly(𝑛) log(1/𝛾)) iterations, either we have crossed

the end of the polarized segment, or the number of large singulars values has dropped by at least one.

Clearly, the latter case can occur at most 𝑛 times per polarized segment, since the lifting map has rank at

most 𝑛.

Note that the above improvement is easy to achieve if the first singular value above the threshold has

size at most poly(𝑛). In this case, it suffices to use regular affine scaling steps to bring the singular value

below the threshold quickly. Thus, the main difficulty is when the singular values themselves are quite

polarized, namely either all at most 1/poly(𝑛) or at least poly(𝑛).
In this setting, it is shown that for the current iterate 𝑧 = (𝑥, 𝑠) on the polarized segment, that the

associated partition (𝐵, 𝑁) will match the partition of the current segment (𝐵, 𝑁). Secondly, if the LLS

subspaces 𝑉,𝑈 have maximum dimension, then in the next iteration, the first singular value above the

threshold will drop to poly(𝑛). The only point where our iteration complexity is affected by the weaker

SVD is the bound on how small the singular values below the threshold need to be before the SVD picks

them up. In particular, if one have a Γ-approximate SVD at hand, as long as all the singular values below

the threshold have size at most 𝛽/(Γpoly(𝑛)), the SVD will be guaranteed to pick them up. For this gap

to appear, we must potentially wait for an addition poly(𝑛) log(Γ) iterations, which is the cause of the

slowdown. Thus, if Γ = 2
𝑛
, the slowdown is propertional to log(Γ) = 𝑛. This completes the proof sketch.

B.6 Computing Steps in Strongly Polynomial Time
In this section, we show that all the steps used in the algorithm can be computed in strongly polynomial

time. In this section, we show that this is the case of corrector, affine scaling, and subspace LLS steps.

We also explain how to compute lifting maps, as these are needed for LLS steps.

Proposition B.14 (Computing Corrector and Affine Scaling Steps). Let A ∈ R𝑚×𝑛 , rank(A) = 𝑚, 𝑊 =

ker(A) and 𝑊⊥ = im(A⊤). Let 𝑧 := (𝑥, 𝑠), where 𝑥 ∈ 𝑊, 𝑥 > 0, 𝑠 ∈ 𝑊⊥ , 𝑠 > 0 and 𝑡 ∈ R𝑛 . Then, the solution

to 𝑠Δ𝑥 + 𝑥Δ𝑠 = 𝑡, Δ𝑥 ∈𝑊 , Δ𝑠 ∈𝑊⊥ can be expressed as

Δ𝑠 = A⊤(A diag(𝑥/𝑠)A⊤)−1A 𝑡

𝑠

Δ𝑥 =
𝑡

𝑠
− 𝑥
𝑠

A⊤(A diag(𝑥/𝑠)A⊤)−1A 𝑡

𝑠
.

Moreover, both the corrector step (Δ𝑥c ,Δ𝑠c) and affine scaling step (Δ𝑥a ,Δ𝑠a), corresponding to 𝑡 = ��(𝑧)1𝑛 − 𝑥𝑠
for � ∈ {0, 1} respectively, can be computed in strongly polynomial time. Furthermore, given Δ𝑥,Δ𝑠 ∈ R𝑛 and

𝛽 ∈ (0, 1/6], one can in strongly polynomial time compute an affine scaling step-length 𝛼a ∈ (0, 1] satisfying

max

{
𝛽

3

√
𝑛
, 1 − 3∥Δ𝑥aΔ𝑠a∥2

𝛽�(𝑧)

}
≤ 𝛼a ≤ max

{
𝛽

2

√
𝑛
, 1 − 2∥Δ𝑥aΔ𝑠a∥2

𝛽�(𝑧)

}
.

Proof. It is directly verified by inspection that 𝑠Δ𝑥 + 𝑥Δ𝑠 = 𝑡 and that AΔ𝑥 = 0 and Δ𝑠 ∈ im(A⊤).
To compute the corrector and affine scaling directions, we proceed as follows. First, we solve the linear

system (A diag(𝑥/𝑠)A⊤)𝑦 = A𝑡/𝑠 for 𝑡 = ��(𝑧)1𝑛−𝑥𝑠, and then we let Δ𝑠 = A⊤𝑦 and Δ𝑥 = 𝑡
𝑠 − 𝑥

𝑠Δ𝑠. Since

computing matrix vector products as well as solving linear systems can be done in strongly polynomial

time, both steps are strongly polynomially computable.

For the affine scaling step-length, we first compute 𝑎 =
𝛽

⌈2
√
𝑛⌉ , where ⌈2

√
𝑛⌉ is computed by binary

search in 𝑂(log 𝑛) time. Next, we compute 𝑟 = ∥Δ𝑥a

𝑖
Δ𝑠a

𝑖
∥∞ and 𝑏 = 1− ⌈2∥Δ𝑥aΔ𝑠a∥2/𝑟⌉𝑟/(𝛽�(𝑧)), where

⌈2∥Δ𝑥aΔ𝑠a∥2/𝑟⌉ ∈ [2, ⌈2
√
𝑛⌉] can also be computed in 𝑂(log 𝑛) time via binary search. We then return

𝛼a
:= max{𝑎, 𝑏}. Since ⌈2

√
𝑛⌉ ∈ [2

√
𝑛, 3
√
𝑛] and ⌈2∥Δ𝑥aΔ𝑠a∥2/𝑟⌉𝑟 ∈ [2∥Δ𝑥aΔ𝑠a∥2 , 3∥Δ𝑥aΔ𝑠a∥2], we have

that
𝛽

3

√
𝑛
≤ 𝑎 ≤ 𝛽

2

√
𝑛

and 1 − 3∥Δ𝑥aΔ𝑠a∥2
𝛽�(𝑧) ≤ 𝑏 ≤ 1 − 2∥Δ𝑥aΔ𝑠a∥2

𝛽�(𝑧) . Thus, 𝛼a
satisfies the requirement. □

61

Similarly to the affine scaling and corrector steps, subspace LLS steps can be computed in strongly

polynomial time given an appropriate representation of the subspaces. The formulas for the LLS step

directions are given in the next proposition. These are computed by solving the linear system which sets

the gradient of the quadratic optimization problems to zero.

Proposition B.15 (Computing the LLS Step Direction). Given an iterate 𝑧 = (𝑥, 𝑠), partition 𝐵 ∪ 𝑁 = [𝑛],
𝐵, 𝑁 ≠ ∅, and matrices MP ∈ R𝑛×𝑘𝑝 ,MD ∈ R𝑛×𝑘𝑑 satisfy 𝑉 B im(MP) ⊆ 𝑊 , 𝑈 B im(MD) ⊆ 𝑊⊥, and

dim(𝜋𝑁 (𝑈)) = rank(MP𝑁) = 𝑘𝑝 , dim(𝜋𝐵(𝑈)) = rank(MD𝐵) = 𝑘𝑑. Then subspace LLS direction (Δ𝑥ℓ ,Δ𝑠ℓ)
at 𝑧 with respect to (𝐵, 𝑁,𝑈,𝑉) can be computed as follows:

Δ𝑥ℓ = MP
(
MP⊤𝑁 diag(𝑠𝑁/𝑥𝑁)MP𝑁

)−1 MP𝑁 𝑠𝑁 ,

Δ𝑠ℓ = MP
(
MP⊤𝐵 diag(𝑥𝐵/𝑠𝐵)MP𝐵

)−1 MP𝐵𝑥𝐵 .

The next proposition explains how to compute the step length associated with directions which go

very far down the path. We will apply this to compute the subspace LLS step lengths.

Proposition B.16 (Step-length estimate for general directions). Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩2(𝛽/2), � := �(𝑧),
𝛽 ∈ (0, 1/6]. Consider directions Δ𝑥 ∈𝑊 , Δ𝑠 ∈𝑊⊥ that satisfy ∥Δ𝑥Δ𝑠∥2 ≤ 𝛽�/8. Let

𝛾 B
∥(𝑥 + Δ𝑥)(𝑠 + Δ𝑠)∥

2

�
≤ 𝛽

9

.

Then (𝑥 + 𝛼Δ𝑥, 𝑠 + 𝛼Δ𝑠) ∈ 𝒩2(𝛽) and �(𝑥 + 𝛼Δ𝑥, 𝑠 + 𝛼Δ𝑠) ∈ [1 ± 1/8](1 − 𝛼)�, for all 0 ≤ 𝛼 ≤ 1 − 8𝛾
𝛽 .

Furthermore, given Δ𝑥 ∈ R𝑛 ,Δ𝑠 ∈ R𝑛 , � > 0, 𝛽 > 0, one can in strongly polynomial time output a step-length

𝛼ℓ ∈ [0, 1] satisfying 1 − 9𝛾
𝛽 ≤ 𝛼ℓ ≤ 1 − 8𝛾

𝛽 if ∥Δ𝑥Δ𝑠∥2 ≤ 𝛽�/8 and 𝛾 := ∥(𝑥 + Δ𝑥)(𝑠 + Δ𝑠)∥2/� ≤ 𝛽
9
, and

output 𝛼ℓ = 0 otherwise.

Proof. Let 𝑧𝛼 B (𝑥 + 𝛼Δ𝑥, 𝑠 + 𝛼Δ𝑠) for 0 ≤ 𝛼 ≤ 1 − 8𝛾
𝛽 , 𝛼 < 1. We first bound the centrality error using

the estimate (1 − 𝛼)� for �(𝑧𝛼) as follows: (𝑥 + 𝛼Δ𝑥)(𝑠 + 𝛼Δ𝑠)
(1 − 𝛼)� − 1

2

=

 (1 − 𝛼)𝑥𝑠 + 𝛼(𝑥 + Δ𝑥)(𝑠 + Δ𝑠) − 𝛼(1 − 𝛼)Δ𝑥Δ𝑠
(1 − 𝛼)� − 1

2

≤
𝑥𝑠� − 1

2

+ 𝛼
1 − 𝛼

 (𝑥 + Δ𝑥)(𝑠 + Δ𝑠)�

2

+ 𝛼

Δ𝑥Δ𝑠�

2

≤ 𝛽/2 + 𝛼
1 − 𝛼

𝛾 + 𝛼
𝛽

8

≤ 3

4

𝛽 ,

where the last inequality follows since
𝛼

1−𝛼𝛾 ≤ 𝛽/8 for 0 ≤ 𝛼 ≤ 1− 8𝛾/𝛽 and 𝛼 < 1 (needed to ensure the

denominator (1 − 𝛼) is positive).

By Lemma 6.7 and the above bound, we get that �(𝑧𝛼) ∈ [1 ± 3

4
𝛽/
√
𝑛](1 − 𝛼)� ⊆ [1 ± 1

8
](1 − 𝛼)�,

and 𝑧𝛼 ∈ 𝒩
(

3

4
𝛽

1− 3

4
𝛽

)
⊆ 𝒩2(𝛽), for 𝛽 ∈ (0, 1/6]. If 𝛾 = 0, letting 𝛼 → 1

−
, we conclude by continuity that

𝑧1 := (𝑥 + Δ𝑥, 𝑠 + Δ𝑠) ∈ 𝒩2(𝛽) and �(𝑧1) = 0, as needed.

For the last part, note that the conditions ∥Δ𝑥Δ𝑠∥2 ≤ 𝛽�/8 and ∥(𝑥 + Δ𝑥)(𝑠 + Δ𝑠)∥2/� ≤ 𝛽/9 can

be checked in strongly polynomial time by squaring both sides. If this check fails, output 𝛼ℓ = 0.

Otherwise, compute 𝑟 = ∥(𝑥 + Δ𝑥)(𝑠 + Δ𝑠)∥∞ (i.e., the largest entry in absolute value) and compute

� = ⌈8∥(𝑥 + Δ𝑥)(𝑠 + Δ𝑠)∥2/𝑟⌉ ∈ [8, ⌈8
√
𝑛⌉] via binary search in 𝑂(log 𝑛) time, and return 𝛼ℓ = 1 − 8�𝑟

�𝛽 .

For correctness, note that ∥(𝑥 + Δ𝑥)(𝑠 + Δ𝑠)∥2 ≤ �(𝑟/8) ≤ 9

8
∥(𝑥 + Δ𝑥)(𝑠 + Δ𝑠)∥2, and thus the desired

inequalities follow recalling that 𝛾 := ∥(𝑥 + Δ𝑥)(𝑠 + Δ𝑠)∥2/�. □

We now show how to compute lifting maps.

Proposition B.17 (Computing Lifting Maps). Let U ∈ R𝑛×𝑑, rank(𝑈) = 𝑑, and 𝐵 ∪ 𝑁 = [𝑛] be a partition

with 𝐵, 𝑁 ≠ ∅. Then, for𝑊 = im(𝑈), 𝑥 ∈ R𝑁 , we have that

𝐿𝑊𝑁 (𝑥) = Π[𝑛],𝑁Π
+
𝑁,𝑁𝑥, ℓ𝑊𝑁 (𝑥) = Π𝐵,𝑁Π

+
𝑁,𝑁𝑥,

where Π = U(U⊤U)−1U⊤ is the orthogonal projection onto 𝑊 . Furthermore, the matrix Π[𝑛],𝑁Π
+
𝑁,𝑁

can be

computed in strongly polynomial time.

62

Proof. Let 𝑦 ∈ Π𝑁 (𝑊) ⊆ R𝑁 . Since im(Π) = 𝑊 , we clearly have that 𝑦 = im(Π𝑁,•). Furthermore, since

Π is positive semidefinite im(Π𝑁,•) = im(Π𝑁,𝑁). Thus, there exists 𝑥 ∈ R𝑁 such that 𝑦 = Π𝑁,𝑁𝑥. We

now claim that 𝐿𝑊
𝑁
(𝑦) = Π•,𝑁𝑥. Let �̂� = Π•,𝑁𝑥 and take any �̄� ∈ 𝑊 with �̄�𝑁 = 𝑦. We wish to show that

∥ �̄�∥2 ≤ ∥ �̂�∥2 ⇒ 𝑦′ = 𝑦.

To see this, notice that

∥ �̄�∥2
2
= ∥(�̄� − �̂�) + �̂�∥2

2
= ∥(�̄� − �̂�)∥2

2
+ 2 ⟨�̄� − �̂� , �̂�⟩ + ∥ �̂�∥2

2
.

To prove the claim, it suffices to show that ⟨�̄� − �̂� , �̂�⟩ = 0. Let �̄� ∈ R𝑛 denote the vector with �̄�𝑁 = 𝑥 and

�̄�𝐵 = 0𝐵. Then, noting that �̂� = Π�̄�, we have that

⟨�̄� − �̂� , �̂�⟩ = ⟨�̄� − �̂� ,Π�̄�⟩ = ⟨Π(�̄� − �̂�), �̄�⟩ = ⟨�̄� − �̂� , �̄�⟩ = 0,

where the last equality follows since supp(�̄� − �̂�) ⊆ 𝐵 and supp(�̄�) ⊆ 𝑁 . This proves the claim.

From the representation above, we note that 𝑦 ∈ ℑ(Π𝑁,𝑁), then by the properties of pseudoinverses,

we have that 𝑦 = Π𝑁,𝑁Π
+
𝑁,𝑁

𝑦. In particular, 𝐿𝑊
𝑁
(𝑦) = Π•,𝑁Π+𝑁,𝑁 𝑦, as needed.

We note that since matrix products and pseudoinverses can be computed in strongly polynomial

time, the lifting map can be computed in strongly polynomial time. □

B.7 A strongly polynomial singular value approximation
In this section we propose a simple strongly polynomial algorithm to approximate the singular values of a

matrix within a factor of

√
𝑛2

𝑛
. As mentioned previously, while more sophisticated strongly polynomial

SVDs indeed exists [DTK23, DR24], they are both somewhat complicated (and [DTK23] is randomized).

The simple deterministic alternative we provide below is sufficient for our purposes, and allows for a

more self-contained analysis.

Recall that the vector 𝜎(M) is the vector of singular values of M, where the vector is in non-increasing

order.

For a matrix M ∈ R𝑚×𝑛 , assuming M has full column rank for simplicity, consider the following

procedure (Algorithm 4). For all columns 𝑗 of M, consider the projection of the column M•, 𝑗 onto the

column-space of all the other columns M•,[𝑛]\{ 𝑗}. Then, remove the column 𝑗min from the matrix for

which the norm of this projection is the smallest and recurse on the remaining matrix M•,[𝑛]\{ 𝑗min}. When

this process finishes, we obtain a permutation MP of the columns, given by the order in which they

were removed from the matrix. It turns out, that the norms of the columns of the orthogonal matrix

Q obtained from a Gram-Schmidt process on the permuted matrix MP (the first column removed from

M is the last column in the reordering M̄) provide an exponential approximation of the singular values

of the original matrix M. The main observation for the proof is that the matrix R in the Gram-Schmidt

process, uniquely defined by MPR = Q, has only exponential condition number.

It is not hard to see that the output of Well-Conditioned-GSO satisfies that Q is precisely the result

of Gram Schmidt orthogonalization (GSO) on the matrix MP, i.e., the matrix M after its columns have

been permuted according to P.

The following proposition explains why the GSO computed by Well-Conditioned-GSO is “well-

conditioned”.

Proposition B.18. Let R ∈ R𝑛×𝑛 be an upper triangular matrix with diagonal 1𝑛 with entries of absolute value

at most 1. Then R−1
is upper triangular with diagonal 1𝑛 and |R−1

𝑖 𝑗
| ≤ max{1, 2𝑗−𝑖−1}, 𝑖 , 𝑗 ∈ [𝑛], 𝑖 ≥ 𝑗. In

particular, ∥R−1∥2 ≤ 2
𝑛
.

Proof. The proof goes proceeds via induction on 𝑛. The base case 𝑛 = 1 is trivial, so assume 𝑛 > 1. Then,

it is direct to verify that

R−1 =

(
R−1

[𝑛−1],[𝑛−1] −R−1

[𝑛−1],[𝑛−1]R𝑛,[𝑛−1]
0⊤
𝑛−1

1

)
.

By the induction hypothesis, the statement holds for R−1

𝑖 , 𝑗
, 𝑖 , 𝑗 ∈ [𝑛 − 1], 𝑖 ≥ 𝑗. Note that R−1

is upper

triangular as claimed. We now prove the coefficient bound for R−1

𝑖 ,𝑛
, for 𝑖 ≥ 𝑛. If 𝑖 = 𝑛, R−1

𝑖 ,𝑖
= 1, as

63

Algorithm 4: Well-Conditioned-GSO

Input : Matrix M ∈ R𝑚×𝑛 with full column rank.

Output: Matrix Q ∈ R𝑛×𝑛 with orthogonal columns, upper triangular matrix R ∈ R𝑛×𝑛 with diagonal 1𝑛 ,

permutation matrix P ∈ R𝑛×𝑛 satisfying:

1. MPR = Q.

2. ∥Q•,𝑡 ∥ = min𝑗∈[𝑡]min𝑥∈𝑅𝑡 ,𝑥 𝑗=1
∥MP•,[𝑡]𝑥∥.

3. The entries of R have absolute value at most 1.

1 Compute 𝐵𝑛 ⊆ [𝑛], rank(M•,𝐵𝑛) = rank(M);
2 𝐽𝑛 ← [𝑛]; 𝑘 ← 𝑛 − |𝐵𝑛 |;
3 for 𝑡 = 𝑛 down to 𝑛 − 𝑘 + 1 do
4 Pick 𝑖 ∈ 𝐽𝑡 \ 𝐵𝑡 ; 𝑢 ← 0𝑛 ;

5 (𝑢𝑖 , 𝑢𝐵𝑡) ← (1,−M−1

•,𝐵𝑡M•,𝑖);
6 𝜋(𝑡) ← arg max𝑗∈supp(𝑣) |𝑢𝑗 |;
7 𝑞𝑡 ← 0𝑚 ; 𝑣𝑡 B 𝑣𝑡𝜋(𝑡) ← 𝑢/𝑢𝜋(𝑡);
8 (𝐽𝑡−1

, 𝐵𝑡−1
) ← (𝐽𝑡 \ {𝜋(𝑡)}, (𝐵𝑡 ∪ {𝑖}) \ {𝜋(𝑡)});

9 for 𝑡 = 𝑛 − 𝑘 down to 1 do
10 for 𝑖 ∈ 𝐽𝑡 do
11 𝑣𝑡𝑖 ← arg min𝑣∈R𝑛 ,𝑣𝑖=1,supp(𝑣)⊆𝐽𝑡 ∥M𝑣∥

2
;

12 𝑝𝑡𝑖 ←M𝑣𝑡𝑖 ;

13 𝜋(𝑡) ← arg min𝑗∈[𝐽𝑡] ∥𝑝𝑡 𝑗 ∥2 ;

14 𝑞𝑡 ← 𝑝𝑡𝜋(𝑡) , 𝑣𝑡 ← 𝑣𝑡𝜋(𝑡);
15 𝐽𝑡−1

← 𝐽𝑡 \ {𝜋(𝑡)};
16 P← (1𝑖=𝜋(𝑗))𝑖 , 𝑗∈[𝑛];
17 R← P⊤

[
𝑣

1
. . . 𝑣𝑛

]
;

18 Q←
[
𝑞

1
. . . 𝑞𝑛

]
;

19 return (P,R,Q)

needed. For 𝑖 > 𝑛, using that R has entries at most 1 we get that

|R−1

𝑖𝑛 | = |(R
−1

[𝑛−1],[𝑛−1]R𝑛,[𝑛−1])𝑖 | = |
𝑛−1∑
𝑗=𝑖

R−1

𝑖 , 𝑗R𝑛,𝑗 | ≤
𝑛−1∑
𝑗=𝑖

|R−1

𝑖 , 𝑗 |

≤
𝑛−1∑
𝑗=𝑖

max{1, 2𝑗−𝑖−1} = 1 +
𝑛−𝑖−2∑
𝑙=0

2
𝑙 = max{1, 2𝑛−𝑖−1},

as needed. For the last statement, by a direct calculation

∥R−1∥2 ≤ ∥R−1∥2𝐹 ≤
𝑛∑
𝑖=1

𝑛∑
𝑗=𝑖

max{1, 4𝑗−𝑖−1} = 2

3

𝑛 − 1/9 + 4
𝑛/9 ≤ 4

𝑛 ,

as needed. □

We now show how the output of Well-Conditioned-GSO can be used to compute

√
𝑛2

𝑛
-approximation

of the singular values and subspaces of M.

Lemma B.19. Let M ∈ R𝑚×𝑛 be a matrix. Let (P,R,Q) be the output of Well-Conditioned-GSO on M. Let

C≥𝑖 B (PR)•,≥𝑖 , 𝑉≥𝑖 B im(C𝑖) and similarly C≤𝑖 B (PR)•,≤𝑖 , 𝑉≤𝑖 B im(C≤𝑖), 𝑖 ∈ [𝑛]. Then,

𝜎𝑖(M) ≤ max

𝑣∈𝑉≥𝑖\{0𝑛 }

∥M𝑣∥2
∥𝑣∥2

≤ 2
𝑛 ∥Q•,𝑖 ∥2 ≤

√
𝑛2

𝑛𝜎𝑖(M) (66)

𝜎𝑖(M) ≥ min

𝑣∈𝑉≤𝑖\{0𝑛 }

∥M𝑣∥2
∥𝑣∥2

≥ ∥Q•,𝑖 ∥2
𝑛

≥ 𝜎𝑖(M)
𝑛2

𝑛
. (67)

Proof. Without loss of generality, we may assume that P = I𝑛 . The inequalities 𝜎𝑖(M) ≤ max𝑣∈𝑉≥𝑖\{0𝑛 }
∥M𝑣∥2
∥𝑣∥2

and 𝜎𝑖(M) ≥ min𝑣∈𝑉≤𝑖\{0𝑛 }
∥M𝑣∥2
∥𝑣∥2 are direct consequence of the variational characterization of singular

values (62) using that dim(𝑉≥𝑖) = rank(R•,≥𝑖) = 𝑛 − 𝑖 + 1 and dim(𝑉≤𝑖) = 𝑖.

64

For the first upper bound, we have that

max

𝑣∈𝑉≥𝑖

∥M𝑣∥2
∥𝑣∥2

= max

𝑥∈R𝑛−𝑖+1\{0}

∥MR•,≥𝑖𝑥∥2
∥R•,≥𝑖𝑥∥2

= max

𝑥∈R𝑛−𝑖+1\{0}

∥Q•,≥𝑖𝑥∥2
∥R•,≥𝑖𝑥∥2

≤ max

𝑥∈R𝑛−𝑖+1\{0}
∥Q•,𝑖 ∥2

∥𝑥∥2
∥R•,≥𝑖𝑥∥2

(
Q orthogonal, max

𝑗≥𝑖
∥Q•, 𝑗 ∥ = ∥Q•,𝑖 ∥

)
≤ ∥Q•,𝑖 ∥2∥R−1∥2 ≤ 2

𝑛 ∥Q•,𝑖 ∥2 ,

where the last inequality follows by Proposition B.18. It remains to prove that ∥Q•,𝑖 ∥2 ≤
√
𝑛𝜎𝑖(M), ∀𝑖 ∈

[𝑛]. By (62), there exists a subspace𝑈𝑖 ⊆ R𝑛 such that max𝑥∈𝑈𝑖\{0}
∥𝑀𝑥∥2
∥𝑥∥2 = 𝜎𝑖(M) and dim(𝑈𝑖) = 𝑛− 𝑖+1.

By dimension counting, ∃�̄� ∈ 𝑈𝑖 \ {0} such that supp(�̄�) ⊆ [𝑖]. Therefore,

𝜎𝑖(M) ≥
∥M�̄�∥2
∥ �̄�∥2

≥ 1√
𝑛

∥M�̄�∥2
∥ �̄�∥∞

≥ ∥Q•,𝑖 ∥2√
𝑛

,

since ±�̄�/∥ �̄�∥∞ is a candidate solution for one of the least squares programs defining ∥Q•,𝑖 ∥ (property 2

of the output description).

For the second lower bound,

min

𝑣∈𝑉≤𝑖

∥M𝑣∥2
∥𝑣∥2

= min

𝑥∈R𝑖\{0}

∥MR•,≤𝑖𝑥∥2
∥R•,≤𝑖𝑥∥2

= min

𝑥∈R𝑖\{0}

∥Q•,≤𝑖𝑥∥2
∥R•,≤𝑖𝑥∥2

≥ min

𝑥∈R𝑖\{0}
∥Q•,𝑖 ∥2

∥𝑥∥2
∥R•,≤𝑖𝑥∥2

(
Q orthogonal, min

𝑗≤𝑖
∥Q•, 𝑗 ∥ = ∥Q•,𝑖 ∥

)
≥ ∥Q•,𝑖 ∥2∥R∥−1

2
≥ ∥Q•,𝑖 ∥2

𝑛
≥ 𝜎𝑖(M)

𝑛2
𝑛
,

where ∥R∥2 ≤ 𝑛 follows from R having entries of absolute value at most 1 and 𝜎𝑖(M) ≤ 2
𝑛 ∥Q•,𝑖 ∥2 comes

from the first part. This concludes the proof. □

Lemma B.20. Well-Conditioned-GSO is correct and runs in strongly polynomial time.

Proof. We start with correctness. We by show by induction for 𝑛 − 𝑘 ≤ 𝑡 ≤ 𝑛 that 𝐵𝑡 ⊆ 𝐽𝑡 forms a basis

the column span of M. Firstly, 𝐵𝑡 does not change size during the course of the for loop, so it suffices to

show that 𝐵𝑡 stays independent. By definition, since 𝐵𝑡 is a basis, for any 𝑖 ∈ 𝐽𝑡 \ 𝐵𝑡 , M•,𝑖 can be uniquely

expressed as a linear combinations of the columns of M•,𝐵𝑡 . Thus, 𝑢 is well-defined and M𝑢 = 0𝑛 .

Since supp(𝑢) = 𝐵𝑡 ∪ {𝑖}, by the basis exchange property 𝐵𝑡 ← (𝐵𝑡 ∪ {𝑖}) \ { 𝑗} remains a basis for any

𝑗 ∈ supp(𝑢). Note that 𝐵𝑡 ⊆ 𝐽𝑡 since the element 𝑖 we add to 𝐵𝑡 is already contained in 𝐽𝑡 . Lastly, since

|𝐵𝑡 | = |𝐵𝑛 | = 𝑛 − 𝑘 and |𝐽𝑡 | = 𝑛 − 𝑡, we see that 𝐽𝑛−𝑘 = 𝐵𝑛−𝑘 . In particular, 𝐽𝑛−𝑘 is a basis of the column

span of M•,𝐽𝑛−𝑘 .
Using the linear independence of the columns of M𝐽𝑡 , 1 ≤ 𝑡 ≤ 𝑛 − 𝑘, we explain how to interpret and

solve the least squares problem

𝑣𝑡𝑖 := arg min

𝑣∈R𝑛 ,𝑣𝑖=1,supp(𝑣)⊆𝐽𝑡
∥M𝑣∥2 (68)

for 𝑖 ∈ 𝐽𝑡 , 𝑡 ∈ [𝑛]. We first note that 𝑣𝑖𝑡 is indeed uniquely defined by linear independence of M•,𝐽𝑡 .
Secondly, letting 𝐽 𝑖𝑡 B 𝐽𝑡 \ {𝑖}, it is direct to verify that M•,𝐽 𝑖𝑡 (𝑣𝑡𝑖)𝐽 𝑖𝑡 = −Π𝑊 (M•,𝑖), where Π𝑊 is the

orthogonal projection onto𝑊 = im(M•,𝐽 𝑖𝑡), and hence M𝑣𝑡𝑖 = M•,𝑖 −Π𝑊 (M•,𝑖) = Π𝑊⊥(M•,𝑖). Using that

Π𝑊 = M•,𝐽 𝑖𝑡 (M
⊤
•,𝐽 𝑖𝑡

M•,𝐽 𝑖𝑡)
−1M⊤•,𝐽 𝑖𝑡

,

where linear independence yields the invertibility of (M⊤•,𝐽 𝑖𝑡
M•,𝐽 𝑖𝑡)

−1
, we see that

(𝑣𝑡𝑖)𝐽 𝑖𝑡 = −(M
⊤
•,𝐽 𝑖𝑡

M•,𝐽 𝑖𝑡)
−1M⊤•,𝐽 𝑖𝑡

M•,𝑖 .

Recalling that (𝑣𝑡𝑖)𝑖 = 1, the only other non-zero entry, this gives a strongly polynomial way to solve the

least squares problems.

We now verify the properties required of the output. Firstly, note that by construction 𝑀𝑣𝑖 = 𝑞𝑖 ,
𝑖 ∈ [𝑛]. Therefore MPR = MPP⊤[𝑣1 , . . . , 𝑣𝑛] = M[𝑣1 , . . . , 𝑣𝑛] = [𝑞1 , . . . , 𝑞𝑛] = Q as needed. To show

65

that R = P⊤[𝑣1 , . . . , 𝑣𝑛] is upper triangular diagonal 1𝑛 , note that supp(𝑣𝑡) ⊆ 𝐽𝑡 , (𝑣𝑡)𝜋(𝑡) = 1 and that

𝐽𝑡 = {𝜋(𝑖) : 𝑖 ∈ [𝑡]}. Therefore, letting 𝜋−1
denote the inverse permutation, we get supp(P⊤𝑣𝑡) ⊆ 𝜋−1(𝐽𝑡) =

{1, . . . , 𝑡} and (P⊤𝑣𝑡)𝑡 = (𝑣𝑡)𝜋(𝑡) = 1, for 𝑡 ∈ [𝑛], as needed. To see that Q has orthogonal columns, it is

sufficient to show that 𝑞𝑡 is orthogonal to 𝑞1 , . . . , 𝑞𝑡−1, for 2 ≤ 𝑡 ≤ 𝑛 − 𝑘, noting that 𝑞𝑡 = 0𝑚 for 𝑡 > 𝑛 − 𝑘.
By construction, 𝑞1 , . . . , 𝑞𝑡−1 are in im(M•,𝐽𝑡−1

), while by the previous by the paragraph, 𝑞𝑡 = 𝑞𝑡𝜋(𝑡) is

orthogonal to this subspace, noting that 𝐽𝑡−1 = 𝐽𝑡 \ {𝜋(𝑡)} = 𝐽
𝜋(𝑡)
𝑡 . We now show the second property

of output that characterizes ∥Q•,𝑡 ∥2. By construction, recall that 𝐽𝑡 = {𝜋(1), . . . ,𝜋(𝑡)}, 𝑡 ∈ [𝑛]. For

1 ≤ 𝑡 ≤ 𝑛 − 𝑘, by definition of 𝑞𝑡 , we have

∥Q•,𝑡 ∥2 = ∥𝑞𝑡 ∥2 = min

𝑗∈𝐽𝑡
min

𝑥∈R𝑛 :supp(𝑥)⊆𝐽𝑡 ,𝑥 𝑗=1

∥M𝑥∥2 = min

𝑗∈[𝑡]
min

𝑥∈R𝑡 :𝑥 𝑗=1

∥MP•,[𝑡]𝑥∥2.

Similarly, for 𝑛 − 𝑘 + 1 ≤ 𝑡 ≤ 𝑛, since by construction (𝑣𝑡)𝜋(𝑡) = 1, we have that

∥Q•,𝑡 ∥2 = ∥𝑞𝑡 ∥2 = 0 = ∥M𝑣𝑡 ∥2 = min

𝑗∈[𝑡]
min

𝑥∈R𝑡 :𝑥 𝑗=1

∥MP•,[𝑡]𝑥∥2.

We now show that the |R𝑗𝑡 | ≤ 1, ∀𝑗 , 𝑡 ∈ [𝑛]. Since by construction R𝑗𝑡 = (𝑣𝑡)𝜋(𝑗), it suffices to show

that ∥𝑣𝑡 ∥∞ ≤ 1, for all 𝑡 ∈ [𝑛]. For 𝑡 ∈ [𝑛], examine 𝑖 ∈ supp(𝑣𝑡) ⊆ 𝐽𝑡 . Then

|(𝑣𝑡)𝑖 | =
∥𝑞𝑡 ∥2 𝑞𝑡
|(𝑣𝑡)𝑖 |

2

≤ ∥𝑞𝑡 ∥2∥𝑞𝑡𝑖 ∥2
≤ 1,

where in the first inequality we used that 𝑣𝑡/(𝑣𝑡)𝑖 is a feasible solution for the least squares program

defining 𝑞𝑡𝑖 (since 𝑖 ∈ 𝐽𝑡) having value ∥𝑞𝑡/|(𝑣𝑡)𝑖 |∥2 ≥ ∥𝑞𝑡𝑖 ∥2, and for the second inequality we used that

∥𝑞𝑡 ∥2 B arg min𝑗∈𝐽𝑡 ∥𝑞𝑡 𝑗 ∥2. We note that in this last proof it is crucial that 𝑞𝑡𝑖 ≠ 0𝑚 , 𝑖 ∈ 𝐽𝑡 , which follows

by linear independence of M•,𝐽𝑡 .
For the strongly polynomial guarantees, it remains to check that all the intermediate iterates have

polynomial bit complexity. This follows directly by noting that each of the computed quantities vectors

corresponds to a well-described linear system in the original matrix M. Alternatively, one can use that

the algorithm simply performs a “reverse order” GSO on the matrix MP, and it is well known that that

the intermediate iterates of GSO have polynomial bit complexity (see [GLS88]). □

66

	Introduction
	Background and previous work
	The Subspace Layered Least Squares Interior Point Method and straight line complexity
	Computational models
	Our contributions
	Straight-line complexity bound for generalized flows
	Initialization
	Implementation in the Turing model

	Preliminaries
	Straight line complexity and circuits
	Reducing 2VPI LPs to generalized flows

	Straight line complexity in terms of the circuit imbalance measure
	Minimum-cost generalized flow
	Reduction to the generalized circulation problem
	Simple functions
	Some flow-related definitions
	SLC bounds via domination
	Path domination
	Weak domination bounds for non-conservative objects
	Dominating simple conservative objects
	Strong domination bounds for non-conservative objects
	Dominating objects of path type
	Dominating objects of mixed type
	Dominating objects of cycle type

	Initialization for generalized flows
	Background on interior point methods
	A stronger version of the SLLS IPM
	Straight-line complexity of a subspace

	An initialization framework for general Linear Programs
	High level description
	The algorithm and analysis
	Stage I, Strict conic feasibility
	Stage II, From strict conic feasibility to analytic centers
	Stage III, From analytic centers to optimization

	SLC preserving subspace operations

	A strongly polynomial rounding procedure
	Omitted proofs
	An Implementation of the SLLS IPM with Strongly Polynomial Iterations
	Predictor-Corrector Methods
	Subspace Layered Least Squares Steps
	The Subspace LLS IPM
	Correctness
	Iteration Complexity
	Computing Steps in Strongly Polynomial Time
	A strongly polynomial singular value approximation

