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Abstract

We prove a strongly polynomial bound on the circuit diameter of polyhedra, resolving the circuit
analogue of the polynomial Hirsch conjecture. Specifically, we show that the circuit diameter of a polyhedron
𝑃 = {𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 𝑥 ≥ 0} with A ∈ R𝑚×𝑛 is 𝑂(𝑚2 log𝑚). Our construction yields monotone circuit
walks, giving the same bound for the monotone circuit diameter.

The circuit diameter, introduced by Borgwardt, Finhold, and Hemmecke (SIDMA 2015), is a natural
relaxation of the combinatorial diameter that allows steps along circuit directions rather than only along
edges. All prior upper bounds on the circuit diameter were only weakly polynomial. Finding a circuit
augmentation algorithm that matches this bound would yield a strongly polynomial time algorithm for
linear programming, resolving Smale’s 9th problem.

1 Introduction
Linear programming is a cornerstone of modern optimization, with applications spanning operations research,
economics, machine learning, and algorithm design. The simplex method, introduced by Dantzig in 1947,
remains a workhorse algorithm for solving linear programs in practice, despite having exponential worst-case
complexity. Understanding the geometry underlying the simplex method’s remarkable empirical performance
has been a central pursuit in optimization theory for over seventy years.

At the heart of this question lies the combinatorial diameter of a polyhedron: the diameter of its vertex-edge
graph, measuring the maximum number of edge steps needed to traverse between any pair of vertices.
This quantity directly governs the worst-case iteration complexity of simplex-type algorithms. In 1957,
Warren M. Hirsch conjectured that the combinatorial diameter of a 𝑑-dimensional polytope with 𝑓 facets is at
most 𝑓 − 𝑑, a bound that would elegantly explain why the simplex method rarely requires many pivots in
practice. Hirsch’s conjecture became one of the most celebrated open problems in polyhedral combinatorics,
influencing decades of research in discrete geometry and optimization.

The conjecture remained open for over half a century. In a landmark result, Santos [San12] disproved
it in 2012, constructing a counterexample with diameter exceeding the Hirsch bound. However, Santos’s
counterexample still has polynomial diameter, leaving the more fundamental question unresolved: the
polynomial Hirsch conjecture, which asks whether the combinatorial diameter of every polytope admits a
polynomial bound poly( 𝑓 , 𝑑), remains the central open problem in this area. This question is not merely
of geometric interest: a positive answer would fundamentally advance our understanding of why pivot
algorithms perform well, while a negative answer would reveal inherent limitations of the simplex method
and related approaches.

Current progress on the polynomial Hirsch conjecture remains limited. Kalai and Kleitman [Kal92,KK92]
established the first quasipolynomial bound; subsequent improvements have refined the exponent [Suk17],
but no polynomial bound is known for general polytopes. Polynomial bounds have been proven only in
restricted cases: Dyer and Frieze [DF94] settled the conjecture for totally unimodular matrices, and polynomial
bounds in terms of the maximum subdeterminant Δ have been established for integer constraint matrices
[BDSE+14,BR13,EV17,DH16]. After 65 years of effort, the polynomial Hirsch conjecture for general polyhedra
remains tantalizingly open.
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1.1 Circuit Diameter: A Natural Geometric Relaxation
Given the difficulty of the combinatorial diameter problem, it is natural to study relaxations that may be
more tractable while still capturing essential geometric properties of polyhedra. Borgwardt, Finhold, and
Hemmecke [BFH15] introduced the circuit diameter as such a relaxation, generalizing edge directions to circuit
directions, which encompass all possible edge directions across all choices of the right-hand side vector.

To define circuit diameter precisely, consider a polyhedron in standard equality form

𝑃 = { 𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 𝑥 ≥ 0 } (P)

for A ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , with rk(A) = 𝑚. An elementary vector in ker(A) is a support-minimal nonzero vector
𝑔 ∈ ker(A): no ℎ ∈ ker(A) \ {0} satisfies supp(ℎ) ⊊ supp(𝑔). A circuit is the support of an elementary
vector; these are precisely the circuits of the linear matroid defined over the columns of A. We denote by
ℰ(A) ⊆ ker(A) and 𝒞(A) ⊆ 2[𝑛] the sets of elementary vectors and circuits, respectively. We remark that many
papers on circuit diameter [BSY18,BDLF16,BFH15,BDLFM18,KPS19] refer to elementary vectors as circuits;
we follow the traditional convention of [Ful67,Roc67,Lee89].

Elementary vectors naturally generalize edge directions. Every edge direction of 𝑃 is an elementary vector,
and conversely, the set ℰ(A) equals the set of all possible edge directions of polyhedra of the form (P) as 𝑏
varies over R𝑚 [ST97]. Thus, elementary vectors capture the full geometric richness of the constraint matrix
A, independent of any particular right-hand side.

A circuit walk is a sequence 𝑥(0) , 𝑥(1) , . . . , 𝑥(𝑘) in 𝑃 where each step 𝑥(𝑖+1) = 𝑥(𝑖) + 𝛼(𝑖)𝑔(𝑖) uses an elementary
vector 𝑔(𝑖) ∈ ℰ(A) with 𝛼(𝑖) > 0 chosen maximally: 𝑥(𝑖) + 𝛼′𝑔(𝑖) ∉ 𝑃 for any 𝛼′ > 𝛼(𝑖). The circuit diameter of 𝑃
is the maximum, over all pairs of vertices 𝑥, 𝑦 ∈ 𝑃, of the length of a shortest circuit walk from 𝑥 to 𝑦. Note
that circuit walks are non-reversible due to the maximal step requirement; this asymmetry is a key technical
challenge.

Circuit directions arise naturally in classical combinatorial optimization algorithms. Many fundamental
algorithms for network flows and transportation problems, including the network simplex method and
minimum-cost flow algorithms, are circuit augmentation algorithms [Bla76,DLHL15]. Thus, understanding
circuit walks is not merely a geometric abstraction, but directly relevant to algorithmic practice.

The circuit Hirsch conjecture, formulated in [BFH15], asserts that the circuit diameter of a 𝑑-dimensional
polyhedron with 𝑓 facets is at most 𝑓 − 𝑑. For 𝑃 in the form (P), where 𝑑 = 𝑛 − 𝑚 and the number of facets is
at most 𝑛, this conjectured bound is 𝑚. While this strong form of the conjecture remains open, our focus is on
the weaker but more fundamental polynomial circuit Hirsch conjecture: whether circuit diameter is bounded by
poly(𝑚, 𝑛).

The circuit Hirsch conjecture as a central open problem. Since its introduction, the circuit Hirsch conjecture
has attracted significant attention in the polyhedral combinatorics and optimization communities, appearing
prominently throughout the literature [BSY18,BBB25,DKNV24,BGK+25,BNS26,KPS19,NS24,Wul25,SY15,
BFH16,BV22,ENV22]. Black, Borgwardt, and Brugger [BBB25] describe it as “the main open problem in this
area”; Borgwardt, Grewe, Kafer, Lee, and Sanità [BGK+25] note that “a resolution of the circuit diameter
conjecture would give insight to the reason the Hirsch conjecture does not hold”.

1.2 Our Results: The First Strongly Polynomial Bound
The main contribution of this paper is the first strongly polynomial bound on the circuit diameter of polyhedra,
settling the polynomial circuit Hirsch conjecture.

Theorem 1.1. The circuit diameter of a polyhedron of the form (P) with A ∈ R𝑚×𝑛 is 𝑂(𝑚2 log𝑚).

This result represents a significant departure from all prior work on circuit diameter. Previous upper
bounds fall into two categories: (i) bounds derived by analyzing the iteration complexity of specific circuit
augmentation algorithms, which inherit dependencies on numerical properties of the input, and (ii) bounds
obtained by designing circuit augmentation schemes that imitate known algorithms, yielding circuit diameter
bounds that approximately match the iteration counts of those algorithms. Both approaches inherit the
limitations of these algorithms: they are either strongly polynomial only on highly structured polytopes,
depend on encoding size, or depend on condition numbers of the constraint matrix.
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In contrast, our bound of 𝑂(𝑚2 log𝑚) depends only on 𝑚, the number of constraints. This is the first
unconditional geometric result on circuit diameter: it reveals an intrinsic property of the polyhedron’s
combinatorial structure, independent of how the constraint matrix is represented numerically. Our result
conclusively establishes that short circuit walks exist between any pair of vertices, with length governed
solely by the dimension of the ambient space.

Strongly polynomial versus weakly polynomial complexity. The distinction between strongly and weakly
polynomial bounds is fundamental in optimization. A bound is weakly polynomial if it depends on the
bit-complexity of the input (e.g., logarithms of numerical values or condition numbers), and strongly polynomial
if it depends only on combinatorial parameters such as the dimensions of the constraint matrix. Strongly
polynomial bounds reveal that a problem’s complexity is governed by its combinatorial structure rather than
numerical artifacts of representation.

In linear programming, this distinction is central. Both Khachiyan’s ellipsoid method [Kha79] and interior
point methods [Kar84] only run in weakly polynomial time. Finding a strongly polynomial algorithm for LP
remains a major open problem, listed by Smale [Sma98] as one of the key mathematical challenges for the
21st century (Smale’s 9th problem). Our result on circuit diameter is, to our knowledge, the first strongly
polynomial bound on any diameter measure for general polyhedra.

Existence versus Computation. Our construction is algorithmic: given two vertices, a short circuit walk
between them can be computed in strongly polynomial time. However, this does not yield a strongly
polynomial algorithm for linear programming, since computing an optimal vertex is itself the problem we
wish to solve. The challenge is to find short circuit walks toward an optimum without knowing the target
vertex in advance. Our result shows that no geometric obstruction prevents such walks from existing; the
barrier is purely algorithmic.

Beyond settling the polynomial circuit Hirsch conjecture, our result suggests that polyhedra possess
fundamentally good geometric structure. The focus shifts toward understanding what structure might enable
efficient navigation without knowing the target: perhaps randomized or approximate methods that find
near-optimal walks with high probability, or augmentation rules guided by the geometric insights underlying
our proof.

1.3 Prior Work on Circuit Diameter
We now survey related work on circuit diameter bounds, organizing by methodology.

Circuit augmentation algorithms and condition number bounds. The circuit imbalance 𝜅(A) (defined in
Section 2) measures the maximum ratio between entries of an elementary vector. This parameter equals 1 if
and only if A admits a totally unimodular representation [Cam65,ENV22]. Ekbatani et al. [ENV22] showed
that a natural extension of the Goldberg–Tarjan minimum-mean cycle canceling algorithm [GT89] yields a
steepest-descent circuit augmentation algorithm with iteration complexity 𝑂(𝑛2𝑚𝜅(A) log(𝜅(A) + 𝑛)); see
also Gauthier and Desrosiers [GD21].

Dadush et al. [DKNV24] improved this to 𝑂(𝑚2 log(𝑚+𝜅(A))), giving the first bound with only logarithmic
dependence on 𝜅(A). Their key innovation is a “shoot towards the optimum” scheme: rather than greedily
improving the objective, the algorithm moves directly toward a known optimal vertex 𝑥∗, using circuit
directions that make geometric progress toward 𝑥∗. This more global strategy reduces dependence on local
condition numbers, but still requires logarithmic dependence on the circuit imbalance.

Interior point methods and straight-line complexity. Allamigeon et al. [ADL+25] introduced straight-line
complexity (SLC), a geometric measure that quantifies the curvature of trajectories in logarithmic coordinates.
They show that this measure provides, up to polynomial factors in 𝑛, an upper bound on the number
of iterations their path-following interior-point methods require. Dadush, Kober, and Koh [DKK25]
further established that SLC also bounds circuit augmentation complexity: by tracing the central path and
decomposing it into “polarized segments”, they obtain bounds of the form 𝑂(𝑛3

∑
𝑖∈[𝑛] SLC1/2(𝑥𝔪𝑖 )).
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While SLC is a natural geometric quantity, it can be exponential in the problem dimension [ABGJ18], so
this bound is not strongly polynomial.

Hardness of approximation. Black, Nöbel, and Steiner [BNS26] showed that approximating the monotone
circuit diameter (a variant where steps must decrease the objective) within a factor of 𝑂(𝑚1−𝜀) is NP-hard
for any 𝜀 > 0. This suggests that efficiently computing optimal circuit walks is computationally intractable,
consistent with the Existence versus Optimization gap discussed above.

Special polytopes. Constant and linear circuit diameter bounds have been established for specific polytopes.
Borgwardt, Finhold, and Hemmecke [BFH15] proved such bounds for dual transportation polyhedra.
Kafer, Pashkovich, and Sanità [KPS19] extended these results to matching polytopes, traveling salesman
polytopes, and fractional stable set polytopes, using problem-specific structure. Borgwardt, De Loera, and
Finhold [BDLF16] introduced several variants of circuit diameter and explored their relationships.

Comparison of bounds. The following table summarizes key circuit diameter bounds for general polyhedra,
highlighting their dependencies:

Reference Bound Depends on

De Loera et al. [LKS22] poly(𝑚, 𝑛, size(A, 𝑏, 𝑐)) size(A, 𝑏, 𝑐)
Ekbatani et al. [ENV22] 𝑂(𝑛2𝑚𝜅(A) log(𝜅(A) + 𝑛)) 𝜅(A)
Dadush et al. [DKNV24] 𝑂(𝑚2 log(𝜅(A) + 𝑚)) 𝜅(A)
Dadush et al. [DKK25] 𝑂(𝑛3

∑
𝑖 SLC1/2(𝑥𝔪𝑖 )) SLC

This paper 𝑶(𝒎2 log𝒎) -

Note that SLC1/2 is upper bounded by poly(𝑛) log(𝑛 + 𝜅(A)) as shown in [DKN+24].
Our work is the first to eliminate all dependence on numerical properties, achieving a purely combinatorial

bound.

1.4 Paper Organization
The remainder of this paper is organized as follows. Section 2 establishes notation and reviews necessary
background on elementary vectors, circuits, and conformal decompositions. Section 3 contains our main
result.

2 Preliminaries
Let [𝑛] = {1, 2, . . . , 𝑛}. For 𝛼 ∈ R, we denote 𝛼+ = max{0, 𝛼} and 𝛼− = max{0,−𝛼}. For a vector 𝑧 ∈ R𝑛 , we
define 𝑧+ , 𝑧− ∈ R𝑛 as (𝑧+)𝑖 = (𝑧𝑖)+, (𝑧−)𝑖 = (𝑧𝑖)− for 𝑖 ∈ [𝑛]. For 𝑧 ∈ R𝑛 , we let supp(𝑧) = {𝑖 ∈ [𝑛] : 𝑧𝑖 ≠ 0}
denote its support, and 1/𝑧 ∈ (R ∪ {∞})𝑛 denote the vector (1/𝑧𝑖)𝑖∈[𝑛]. Throughout, we use the convention
that 0/0 = 0 for convenience. We use ∥ · ∥𝑝 to denote the ℓ𝑝-norm. We denote by R𝑛

+ the non-negative orthant
{𝑥 ∈ R𝑛 : 𝑥 ≥ 0}.

For technical reasons we assume that 𝑚 ≥ 2. For 𝑚 = 1, our main statements are all trivial. Note that
every circuit has size at most 𝑚 + 1 since rk(A) ≤ 𝑚. The circuit imbalance measure of A is defined as

𝜅(A) B max
𝑔∈ℰ(A)

{ |𝑔𝑖|
|𝑔𝑗|

: 𝑖 , 𝑗 ∈ supp(𝑔)
}
.

For 𝑃 as in (P), 𝑥 ∈ 𝑃 and an elementary vector 𝑔 ∈ ℰ(A) \ R𝑛
+, we let aug𝑃(𝑥, 𝑔) B 𝑥 + 𝛼𝑔 where

𝛼 = max{𝛼̄ : 𝑥 + 𝛼̄𝑔 ∈ 𝑃}.
Definition 2.1 ([DLHK12]). We say that 𝑥, 𝑦 ∈ R𝑛 are sign-compatible if 𝑥𝑖𝑦𝑖 ≥ 0 for all 𝑖 ∈ [𝑛]. We write
𝑥 ⊑ 𝑦 if they are sign-compatible and further |𝑥𝑖| ≤ |𝑦𝑖| for all 𝑖 ∈ [𝑛]. For 𝑥 ∈ ker(A), a conformal circuit
decomposition of 𝑥 is a set of elementary vectors ℎ(1) , ℎ(2) , . . . , ℎ(𝑘) in ker(A) such that 𝑥 =

∑𝑘
𝑗=1 ℎ

(𝑗), 𝑘 ≤ 𝑛 − 𝑚,
and ℎ(𝑗) ⊑ 𝑥 for all 𝑗 ∈ [𝑘].
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The following lemma shows that every vector in a linear space has a conformal circuit decomposition. It is
a simple corollary of the Minkowski–Weyl and Carathéodory theorems.

Lemma 2.2 ([DKNV24]). For a matrix A ∈ R𝑚×𝑛 , every 𝑥 ∈ ker(A) has a conformal circuit decomposition
𝑥 =

∑𝑘
𝑗=1 ℎ

(𝑗) such that 𝑘 ≤ min{dim(ker(A)), |supp(𝑥)|}.

Lemma 2.3 ([DNV20]). A conformal circuit decomposition for a vector 𝑥 ∈ ker(A) can be found in strongly polynomial
time.

3 A strongly polynomial bound
In this section we prove our main result, a strongly polynomial bound on the circuit diameter of polyhedra
defined by a system of linear equations and non-negativity constraints.

Theorem 3.1. Let 𝑃 = {𝑥 : A𝑥 = 𝑏, 𝑥 ≥ 0} be a polyhedron with A ∈ R𝑚×𝑛 . Then, for any feasible 𝑥 ∈ 𝑃 and any
vertex 𝑣 ∈ 𝑃 there exists a circuit walk from 𝑥 to 𝑣 of length 𝑛 +𝑂(𝑚2 log(𝑚)). Furthermore, such a circuit walk can be
constructed in strongly polynomial time.

The following corollaries follow directly from Theorem 3.1.

Corollary 3.2. Let 𝑃 = {𝑥 : A𝑥 = 𝑏, 𝑥 ≥ 0} be a polyhedron with A ∈ R𝑚×𝑛 . Then, its circuit diameter is upper
bounded by 𝑂(𝑚2 log(𝑚)).

Proof. Any two vertices 𝑢, 𝑣 ∈ 𝑃 correspond to basic feasible solutions of (P) and hence have support of
at most 𝑚 variables each. Reducing the system A to the columns indexed by supp(𝑢) ∪ supp(𝑣), we get a
polyhedron in at most 2𝑚 variables. By Theorem 3.1, there exists a circuit walk from 𝑢 to 𝑣 of length at most
2𝑚 + 𝑂(𝑚2 log(𝑚)) = 𝑂(𝑚2 log(𝑚)), as desired. □

Corollary 3.3. Let 𝑃 = {𝑥 : A𝑥 = 𝑏, 𝑥 ≥ 0} be a polyhedron with A ∈ R𝑚×𝑛 . Then, its circuit diameter can
be approximated up to a factor 𝑂(𝑚

√
log(𝑚)) in strongly polynomial time. Furthermore, a circuit walk of length

𝑂(𝑚2 log(𝑚)) between any two vertices can be constructed in strongly polynomial time.

Proof. The second part of the corollary is trivial from Corollary 3.2. The first part is achieved by guessing a
circuit diameter of 𝑂(𝑚

√
log(𝑚)). □

Another important corollary concerns the running time to find a short circuit walk to an optimal vertex of
a linear program. As our algorithm can find a circuit walk of length 𝑂(𝑚2 log(𝑚)) between any two given
vertices, we can use any algorithm to solve (P) optimally for some objective vector 𝑐 ∈ R𝑛 to find an optimal
solution and then apply our algorithm.

Corollary 3.4. Given a polyhedron 𝑃 = {𝑥 : A𝑥 = 𝑏, 𝑥 ≥ 0} with A ∈ R𝑚×𝑛 and an objective 𝑐 ∈ R𝑛 . If 𝒯 (𝑃) is the
time to solve (P) optimally with objective 𝑐, then in time 𝒯 (𝑃) + poly(𝑚, 𝑛) we can find a circuit walk from any given
initial feasible solution to an optimal vertex of 𝑃 of length 𝑂(𝑚2 log(𝑚)).

3.1 Algorithmic Overview
We now outline the main ideas underlying our proof, deferring technical details to Section 3.2. Our proof
constructs an explicit circuit walk from any feasible point to a target vertex 𝑥∗ (with basis 𝐵 and non-basic
indices 𝑁 = [𝑛] \ 𝐵) in 𝑛 + 𝑂(𝑚2 log𝑚) steps. The algorithm operates in two phases.

Phase 1: Support reduction. The first phase is straightforward: we reduce the number of nonzero non-basic
coordinates. Since any 𝑚 + 1 variables contain a circuit of ker(A), whenever |supp(𝑥𝑁 )| ≥ 𝑚 + 1 we can find an
elementary vector 𝑔 supported entirely within supp(𝑥𝑁 ) and augment along it, zeroing at least one coordinate.
After at most 𝑛 − 2𝑚 steps, we achieve |supp(𝑥𝑁 )| ≤ 𝑚, giving at most 2𝑚 nonzero coordinates total. This
phase requires no sophisticated analysis and contributes only the additive 𝑛 term to our bound.
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Phase 2: Trapped variables and amortized progress. The main contribution lies in Phase 2, where we
achieve the 𝑂(𝑚2 log𝑚) bound through a novel combination of trapped variables and elimination steps.

After Phase 1, we maintain a trapped set 𝑇 ⊆ 𝐵 of basic indices satisfying the invariant

𝑥𝑡 ≤ 𝑚 · 𝑥∗𝑡 for all 𝑡 ∈ 𝑇.

This invariant says that trapped coordinates are within a factor of 𝑚 of their target values. Crucially, once an
index becomes trapped, it remains trapped throughout the algorithm. Progress in Phase 2 is measured by two
events: either the trapped set 𝑇 grows, or a non-basic coordinate is zeroed. Since |𝑇| ≤ 𝑚 and |supp(𝑥𝑁 )| ≤ 𝑚
after Phase 1, at most 2𝑚 such progress events can occur.

Between progress events, the algorithm performs two types of steps:

Norm-reduction steps. These steps are standard and have, e.g., been used already in [DKNV24] to make
geometric progress towards a target vertex: We decompose the direction 𝑥∗ − 𝑥 into a conformal sum
of elementary vectors 𝑔(1) , . . . , 𝑔(𝑘) with 𝑘 ≤ 𝑚 (by Lemma 2.2, the number of circuits in a conformal
decomposition can be upper bounded by the kernel dimension, which is at most 𝑚 after Phase 1). We then
select the circuit 𝑔(𝑗∗) that maximizes progress on a weighted ℓ1-norm over 𝑁 , and augment along it.

By conformality, each 𝑔
(𝑗)
𝑁
≤ 0 (since 𝑥∗

𝑁
= 0 and 𝑥𝑁 ≥ 0), so these steps always decrease non-basic

coordinates. Crucially, the step size 𝛼 is at most 𝑚, which will follow from the greedy circuit selection. This
bounded step size will preserve the trapped invariant: for any 𝑡 ∈ 𝑇, conformality ensures |𝑔𝑡 | ≤ |𝑥∗𝑡 − 𝑥𝑡 |, so
the change in 𝑥𝑡 is at most 𝑚 · |𝑥∗𝑡 − 𝑥𝑡 | ≤ 𝑚 · 𝑥∗𝑡 , keeping 𝑥𝑡 ≤ 𝑚𝑥∗𝑡 .

Each norm-reduction step decreases the weighted ℓ1-norm by a (1 − 1/𝑚) factor. After 𝑂(𝑚 log𝑚)
consecutive norm-reduction steps, the non-basic coordinates shrink below a threshold 𝜏 = 1/poly(𝑚) relative
to a reference point 𝑥(𝑟), triggering an elimination step.

Elimination steps. When ∥𝑥𝑁/𝑥(𝑟)𝑁 ∥∞ ≤ 𝜏, we perform an elimination step designed to force progress. The
idea is to extrapolate beyond the current point in the direction it has been moving. Define

𝑦 = 𝑥 + 𝜚

1 − 𝜚 (𝑥 − 𝑥(𝑟)) ,

where 𝜚 = max𝑗∈𝑁 𝑥 𝑗/𝑥(𝑟)𝑗 ≤ 𝜏 measures how much non-basic coordinates have shrunk. By construction,
𝑦𝑁 ≤ 0: we have extrapolated past zero on all non-basic coordinates.

However, moving directly towards 𝑦 via a circuit direction in the decomposition of 𝑦 − 𝑥 might zero a
trapped coordinate before any non-basic coordinate, hindering the progress we seek. To prevent this, we pull
the target slightly from 𝑦 toward 𝑥∗ by setting

𝑧 = 𝑦 + 𝜆(𝑥∗ − 𝑦)

with 𝜆 = Θ(1/poly(𝑚)). This perturbation is carefully calibrated: for trapped coordinates 𝑡 with 𝑥𝑡 ≪ 𝑥∗𝑡 , it
ensures 𝑧𝑡 ≥ 𝑥𝑡 , preventing conformal steps toward 𝑧 from decreasing such coordinates. Conversely, for
trapped coordinates 𝑡 with 𝑥𝑡 close to 𝑥∗𝑡 , the construction ensures that the relative change from 𝑥 toward 𝑧
for any coordinate in 𝑁 dominates that of 𝑡.

We then decompose 𝑧 − 𝑥 conformally and augment along the circuit that makes most progress toward
zeroing some coordinate in 𝑁 . Crucially, due to the relative change on coordinates 𝑁 dominating the relative
change on coordinates in 𝑇, we will observe that either some non-basic or non-trapped basic coordinate must
hit zero first, guaranteeing progress: either |𝑇| increases or |supp(𝑥𝑁 )| decreases.

A strongly polynomial bound. The crucial property of our augmentation scheme is that our parameter 𝜏
that we require to ensure combinatorial progress is only polynomially small and, unlike prior works, does not
depend on condition numbers. Previous approaches could not achieve this because they analyzed specific
algorithmic paths guided by numerical properties (objective gradients, circuit imbalances, or curvature
measures). Our algorithm, by contrast, is designed so that any conformal decomposition suffices: we select

6



circuits greedily for concreteness, but the analysis only requires that the decomposition exists and has size at
most 𝑚. This allows us to bound the walk length using purely combinatorial arguments.

While trapped variables appeared already in [DKNV24], the main novelty of our work is the introduction of
elimination steps and the use of carefully chosen auxiliary points which force combinatorial progress after only
𝑂(𝑚 log𝑚) norm-reduction steps, eliminating all dependence on condition numbers.

3.2 Formal Algorithm and Proof of Theorem 3.1
In this section we present the full algorithm and prove Theorem 3.1. The full algorithm is given in Algorithm 1.

Algorithm 1: Circuit Augmentation Algorithm for Strongly Polynomial Diameter Bound
Input: Feasible solution 𝑥(0) to (P) with A ∈ R𝑚×𝑛 , target vertex 𝑥∗ with basis 𝐵, threshold value

𝜏 = (2𝑚)−3, 𝜆 = (2𝑚)−2.
Output: Sequence of circuit augmentations from 𝑥(0) to 𝑥∗

1 𝑁 ← [𝑛] \ 𝐵 ; // Non-basic variables

2 𝑇(−1) ← ∅ ; // Trapped variables
3 // Phase 1: Reduce support on non-basic variables
4 𝑖 ← 0;
5 while |supp(𝑥(𝑖)

𝑁
)| ≥ 𝑚 + 1 do

6 Select elementary vector 𝑔 ∈ ℰ(A)with supp(𝑔) ⊆ supp(𝑥(𝑖)
𝑁
) and supp(𝑔−) ≠ ∅;

7 𝑥(𝑖+1) ← aug𝑃(𝑥(𝑖) , 𝑔);
8 𝑖 ← 𝑖 + 1;
9 // Phase 2: Main circuit augmentation loop

10 𝑟 ← 𝑖 ; // Reference index (reset when 𝑇 grows)

11 while 𝑥(𝑖) ≠ 𝑥∗ do
12 // Update trapped set

13 𝑇(𝑖) ← { 𝑗 ∈ 𝐵 : 𝑥
(𝑖)
𝑗
≤ 𝑚𝑥∗

𝑗
};

14 if 𝑇(𝑖) ≠ 𝑇(𝑖−1) then
15 𝑟 ← 𝑖 ; // Reset reference point

16 // Norm-reduction step: shrink non-basic coordinates

17 if ∥𝑥(𝑖)
𝑁
/𝑥(𝑟)

𝑁
∥∞ > 𝜏 then

18 (𝑔(1) , . . . , 𝑔(𝑘)) ← conformal decomposition of 𝑥∗ − 𝑥(𝑖);

19 𝑗∗ ← argmax𝑗∈[𝑘] ∥
𝑔
(𝑗)
𝑁

𝑥
(𝑟)
𝑁

∥1 ; // Best progress on weighted ℓ1-norm

20 𝑥(𝑖+1) ← aug𝑃(𝑥(𝑖) , 𝑔(𝑗
∗)) ;

21 else
22 // Elimination step: force a desired coordinate to zero

23 𝑞 ← argmax𝑗∈𝑁
𝑥
(𝑖)
𝑗

𝑥
(𝑟)
𝑗

;

24 𝜚 ← 𝑥
(𝑖)
𝑞

𝑥
(𝑟)
𝑞

; // Shrinkage ratio; note 𝜚 ≤ 𝜏

25 𝑦 ← 𝑥(𝑖) + 𝜚
1−𝜚 (𝑥(𝑖) − 𝑥(𝑟)) ; // Extrapolate past zero on 𝑁

26 𝑧 ← 𝑦 + 𝜆(𝑥∗ − 𝑦) ; // Pull toward 𝑥∗ to protect small trapped coords
27 (𝑔(1) , . . . , 𝑔(𝑘)) ← conformal decomposition of 𝑧 − 𝑥(𝑖) ;
28 𝑗∗ ← argmax𝑗∈[𝑘] −𝑔

(𝑗)
𝑞 ; // Circuit with most progress on 𝑞

29 𝑥(𝑖+1) ← aug𝑃(𝑥(𝑖) , 𝑔(𝑗
∗)) ;

30 𝑖 ← 𝑖 + 1;
31 return Circuit walk (𝑥(0) , 𝑥(1) , . . . , 𝑥(𝑖))
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Proof of Theorem 3.1. We prove Theorem 3.1 by analyzing Algorithm 1. We begin with Phase 1, which reduces
the support on the non-basic variables, and then analyze Phase 2.

Phase 1: Support Reduction (Lines 5 to 8). Initially, if |supp(𝑥(0)
𝑁
)| ≥ 𝑚+1, we perform circuit augmentations

to reduce the support. Since any set of 𝑚 + 1 variables in ker(A) contains a circuit, we can always find
an elementary vector 𝑔 ∈ ℰ(A) with supp(𝑔) ⊆ supp(𝑥(0)

𝑁
) and supp(𝑔−) ≠ ∅. Each augmentation reduces

|supp(𝑥(𝑖)
𝑁
)| by at least one. This phase terminates after at most 𝑛 − 2𝑚 iterations with |supp(𝑥(𝑖)

𝑁
)| ≤ 𝑚, giving

us at most 2𝑚 non-zero variables in total.

Reducing the norm on variables in 𝑁 (Lines 17 to 20). We maintain a set 𝑇 ⊆ 𝐵 of trapped variables
satisfying 𝑥

(𝑖)
𝑡 ≤ 𝑚𝑥∗𝑡 for all 𝑡 ∈ 𝑇.

Let us first show that the set of trapped variables will only increase in the norm-reduction steps in Line 20
and that furthermore, these steps make significant progress in reducing the weighted ℓ1 norm on 𝑁 . Claim 3.5
is analogous to progress guarantees obtained in prior work on circuit augmentation algorithms [DKNV24].

Claim 3.5. If the augmentation in iteration 𝑖 happens in Line 20, then 𝑇(𝑖+1) ⊇ 𝑇(𝑖) and furthermore, if the current
reference index is 𝑟, then 




𝑥(𝑖+1)𝑁

𝑥
(𝑟)
𝑁







1

≤
(
1 − 1

𝑚

) 




 𝑥(𝑖)𝑁𝑥(𝑟)
𝑁







1

.

Proof of Claim. Let 𝑡 ∈ 𝑇(𝑖) be any trapped variable at iteration 𝑖. Let (𝑔(1) , . . . , 𝑔(𝑘)) be the conformal
decomposition of 𝑥∗ − 𝑥(𝑖), and let 𝑗∗ ∈ {1, . . . , 𝑘} with 𝑔(𝑗

∗) being the selected circuit for augmentation in
Line 20. By the induction hypothesis, we have 𝑥

(𝑖)
𝑡 ≤ 𝑚𝑥∗𝑡 . By definition 𝑥(𝑖+1) = 𝑥(𝑖) + 𝛼𝑔(𝑗

∗) for some 𝛼 > 0.
First, note that 𝑔(𝑗

∗)
𝑁
≤ 0𝑁 by conformality and 𝛼 ≤ 𝑚 as we have that




𝑥(𝑖+1)𝑁

𝑥
(𝑟)
𝑁







1

=






 𝑥(𝑖)𝑁𝑥(𝑟)
𝑁

+ 𝛼
𝑔
(𝑗∗)
𝑁

𝑥
(𝑟)
𝑁







1

=






 𝑥(𝑖)𝑁𝑥(𝑟)
𝑁







1

− 𝛼






 𝑔(𝑗
∗)

𝑁

𝑥
(𝑟)
𝑁







1

≤





 𝑥(𝑖)𝑁𝑥(𝑟)

𝑁







1

− 𝛼
𝑘






 𝑥(𝑖)𝑁𝑥(𝑟)
𝑁







1

=

(
1 − 𝛼

𝑘

) 




 𝑥(𝑖)𝑁𝑥(𝑟)
𝑁







1

.

(1)

where the last inequality follows by the choice of 𝑔(𝑗∗) maximizing the weighted ℓ1 norm reduction on 𝑁 .
The second equality used the fact that 𝑔

(𝑗∗)
𝑁
≤ 0𝑁 . Using the further fact that 𝑘 ≤ dim(ker(Asupp(𝑥(𝑖)))) ≤

2𝑚 − rk(A𝐵) = 2𝑚 − 𝑚 = 𝑚 by Lemma 2.2 and the fact that the left hand side of (1) is nonnegative gives
𝛼 ≤ 𝑚. From here, note that we have for any 𝑡 ∈ 𝑇 with 𝑥

(𝑖)
𝑡 ≥ 𝑥∗𝑡 that 𝑔

(𝑗∗)
𝑡 ≤ 0 by conformality. Hence

𝑥
(𝑖+1)
𝑡 ≤ 𝑥

(𝑖)
𝑡 ≤ 𝑚𝑥∗𝑡 . For 𝑡 ∈ 𝑇 with 𝑥

(𝑖)
𝑡 ≤ 𝑥∗𝑡 , we have by conformality that 0 ≤ 𝑔

(𝑗∗)
𝑡 ≤ 𝑥∗𝑡 − 𝑥

(𝑖)
𝑡 , giving

𝑥
(𝑖+1)
𝑡 = 𝑥

(𝑖)
𝑡 + 𝛼𝑔

(𝑗∗)
𝑡 ≤ 𝑥

(𝑖)
𝑡 + 𝛼(𝑥∗𝑡 − 𝑥

(𝑖)
𝑡 ) ≤ 𝑥

(𝑖)
𝑡 + 𝑚(𝑥∗𝑡 − 𝑥

(𝑖)
𝑡 ) ≤ 𝑚𝑥∗𝑡 ,

which proves the first part of the claim. For the second part of the claim, note that we also have that 𝛼 ≥ 1,
again by conformality as we have that

𝛼 = min

{
−
𝑥
(𝑖)
ℓ

𝑔
(𝑗∗)
ℓ

: ℓ ∈ supp([𝑔(𝑗∗)]−)
}
≥ min

{
𝑥
(𝑖)
ℓ

𝑥
(𝑖)
ℓ
− 𝑥∗

ℓ

: ℓ ∈ supp([𝑥∗ − 𝑥(𝑖)]−)
}
≥ 1 . (2)

Therefore, we have with (1) that




𝑥(𝑖+1)𝑁

𝑥
(𝑟)
𝑁







1

≤
(
1 − 𝛼

𝑘

) 




 𝑥(𝑖)𝑁𝑥(𝑟)
𝑁







1

≤
(
1 − 1

𝑚

) 




 𝑥(𝑖)𝑁𝑥(𝑟)
𝑁







1

,

which proves the claim. ■
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A direct consequence of Claim 3.5 is the following.

Claim 3.6. Within 𝑚 log(𝑚/𝜏) many consecutive executions of Line 20 either the set of trapped variables 𝑇 gets
extended or the if condition ∥𝑥(𝑖)

𝑁
/𝑥(𝑟)

𝑁
∥∞ > 𝜏 in Line 17 becomes false.

Proof of Claim. Let 𝑖 be an iterate and let 𝑝 = 𝑖 + 𝑚 · log(𝑚/𝜏) be such that in each iteration 𝑗 ∈ {𝑖 , . . . , 𝑝 − 1}
the augmentation is performed in Line 20. If 𝑇 has not been extended in any of these iterations, then the
reference index 𝑟 ≤ 𝑖 remains unchanged. By Claim 3.5, we have that




𝑥(𝑝)𝑁

𝑥
(𝑟)
𝑁







∞

≤





𝑥(𝑝)𝑁

𝑥
(𝑟)
𝑁







1

≤
(
1 − 1

𝑚

)𝑝−𝑖 




 𝑥(𝑖)𝑁𝑥(𝑟)
𝑁







1

=

(
1 − 1

𝑚

)𝑚 log(𝑚/𝜏)





 𝑥(𝑖)𝑁𝑥(𝑟)

𝑁







1

≤
(
1 − 1

𝑚

)𝑚 log(𝑚/𝜏)
· 𝑚

≤ 𝑒− log(𝑚/𝜏) · 𝑚 ≤ 𝜏
𝑚
· 𝑚 = 𝜏 ,

as desired. ■

We now claim that a single execution of the elimination step in Line 29 either sets a variable in 𝑁 to zero
or extends 𝑇(𝑟) (= 𝑇(𝑖)). From now on, we let 𝑇 B 𝑇(𝑟) for simplicity.

Elimination step analysis Let 𝑖 > 𝑟 be such that the condition ∥𝑥(𝑖)
𝑁
/𝑥(𝑟)

𝑁
∥∞ ≤ 𝜏 holds. Let 𝑞 ∈ 𝑁 be the

index maximizing 𝑥
(𝑖)
𝑞 /𝑥(𝑟)𝑞 and let 𝜚 B 𝑥

(𝑖)
𝑞 /𝑥(𝑟)𝑞 ≤ 𝜏. As in the algorithm, we define the vectors

𝑦 B 𝑥(𝑖) +
𝑥
(𝑖)
𝑞

𝑥
(𝑟)
𝑞 − 𝑥

(𝑖)
𝑞

(𝑥(𝑖) − 𝑥(𝑟)) = 𝑥(𝑖) + 𝜚

1 − 𝜚 (𝑥
(𝑖) − 𝑥(𝑟)) , 𝑧 B 𝑦 + 𝜆(𝑥∗ − 𝑦) .

Note that 𝑦𝑞 = 0. By construction, we have 𝑦𝑁 ≤ 0𝑁 as for any 𝑗 ∈ 𝑁 , we get that

(1 − 𝜚)𝑦 𝑗 = (1 − 𝜚)𝑥(𝑖)𝑗 + 𝜚(𝑥
(𝑖)
𝑗
− 𝑥
(𝑟)
𝑗
) = 𝑥

(𝑖)
𝑗
− 𝜚𝑥(𝑟)

𝑗
≤ 𝑥

(𝑖)
𝑗
−

𝑥
(𝑖)
𝑗

𝑥
(𝑟)
𝑗

𝑥
(𝑟)
𝑗

= 0.

For all 𝑡 ∈ 𝑇, we have

𝑧𝑡 − 𝑥
(𝑖)
𝑡 = 𝜆(𝑥∗𝑡 − 𝑦𝑡) +

𝜚

1 − 𝜚 (𝑥
(𝑖)
𝑡 − 𝑥

(𝑟)
𝑡 )

= 𝜆(𝑥∗𝑡 − 𝑥
(𝑖)
𝑡 ) + 𝜆(𝑥

(𝑖)
𝑡 − 𝑦𝑡) +

𝜚

1 − 𝜚 (𝑥
(𝑖)
𝑡 − 𝑥

(𝑟)
𝑡 )

= 𝜆(𝑥∗𝑡 − 𝑥
(𝑖)
𝑡 ) +

(1 − 𝜆)𝜚
1 − 𝜚 (𝑥

(𝑖)
𝑡 − 𝑥

(𝑟)
𝑡 ) .

Now, by Claim 3.5 we have that 𝑥(𝑖)𝑡 , 𝑥
(𝑟)
𝑡 ≤ 𝑚𝑥∗𝑡 . Therefore, we have that

|𝑧𝑡 − 𝑥
(𝑖)
𝑡 |

𝑥∗𝑡
=

���𝜆(𝑥∗𝑡 − 𝑥
(𝑖)
𝑡 ) +

(1−𝜆)𝜚
1−𝜚 (𝑥

(𝑖)
𝑡 − 𝑥

(𝑟)
𝑡 )

���
𝑥∗𝑡

≤ 𝜆
|𝑥∗𝑡 − 𝑥

(𝑖)
𝑡 |

𝑥∗𝑡
+ (1 − 𝜆)𝜚

1 − 𝜚
|𝑥(𝑖)𝑡 − 𝑥

(𝑟)
𝑡 |

𝑥∗𝑡

≤
(
𝜆 + (1 − 𝜆)𝜚

1 − 𝜚

)
𝑚 .

(3)
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For 𝑡 ∈ 𝑇 with 𝑥
(𝑖)
𝑡 ≤ 1

2𝑥
∗
𝑡 , we furthermore have

𝑧𝑡 − 𝑥
(𝑖)
𝑡 = 𝜆(𝑥∗𝑡 − 𝑥

(𝑖)
𝑡 ) +

(1 − 𝜆)𝜚
1 − 𝜚 (𝑥

(𝑖)
𝑡 − 𝑥

(𝑟)
𝑡 )

≥ 𝜆(𝑥∗𝑡 − 𝑥
(𝑖)
𝑡 ) −

(1 − 𝜆)𝜚
1 − 𝜚

���𝑥(𝑖)𝑡 − 𝑥
(𝑟)
𝑡

���
≥ 𝜆

𝑥∗𝑡
2
− (1 − 𝜆)𝜚

1 − 𝜚 · 𝑚𝑥∗𝑡

=

(
𝜆
2
− (1 − 𝜆)𝜚

1 − 𝜚 𝑚

)
𝑥∗𝑡

≥
(
𝜆
2
− 𝜚𝑚

)
𝑥∗𝑡

≥ 0 .

Observe that 𝜆 = (2𝑚)−2 ≤ 1, which implies that 𝑧 is a convex combination of 𝑦 and 𝑥∗. Consequently,
𝑧𝑁 ≤ 0𝑁 . So, in contrast, for 𝑗 ∈ 𝑁 , we have

|𝑧 𝑗 − 𝑥
(𝑖)
𝑗
|

𝑥
(𝑖)
𝑗

≥
|0 − 𝑥

(𝑖)
𝑗
|

𝑥
(𝑖)
𝑗

≥ 1

as 𝑧 𝑗 ≤ 0 and 𝑥
(𝑖)
𝑗
≥ 0.

We now show that when we decompose 𝑧 − 𝑥(𝑖) conformally (Line 27) and select 𝑔(𝑗∗) maximizing −𝑔(𝑗)𝑞
(Line 28), the augmentation (Line 29) will zero out a coordinate in 𝑁 or 𝐵 \ 𝑇 before any coordinate in 𝑇.

The coordinate that gets zeroed out first is

argmax
𝑗:𝑔
(𝑗∗)
𝑗

<0

−𝑔(𝑗
∗)

𝑗

𝑥
(𝑖)
𝑗

.

By conformality, we have for all 𝑡 ∈ 𝑇 with 𝑥
(𝑖)
𝑡 ≤ 1

2 𝑥
∗
𝑡 that 𝑔(𝑗

∗)
𝑡 ≥ 0. Hence, such coordinates cannot be zeroed

out in the conformal augmentation. For 𝑡 ∈ 𝑇 with 𝑥
(𝑖)
𝑡 ≥ 1

2 𝑥
∗
𝑡 we have that

−𝑔(𝑗
∗)

𝑡

𝑥
(𝑖)
𝑡

≤
|𝑧𝑡 − 𝑥

(𝑖)
𝑡 |

𝑥
(𝑖)
𝑡

≤
2|𝑧𝑡 − 𝑥

(𝑖)
𝑡 |

𝑥∗𝑡

≤ 2

(
𝜆 + (1 − 𝜆)𝜚

1 − 𝜚

)
𝑚 (by (3))

≤ 2

(
𝜆 + (1 − 𝜆)𝜏

1 − 𝜏

)
𝑚 (as 𝜚 ≤ 𝜏)

= 2

(
(2𝑚)−2 + (1 − (2𝑚)

−2) · (2𝑚)−3
1 − (2𝑚)−3

)
𝑚

<
1

𝑚
.

On the other hand, we have that 𝑧𝑞 = 0 and so
∑

𝑗 𝑔
(𝑗)
𝑞 = 𝑧𝑞 − 𝑥

(𝑖)
𝑞 = −𝑥(𝑖)𝑞 and so

max
𝑗∈𝑁

−𝑔(𝑗
∗)

𝑗

𝑥
(𝑖)
𝑗

≥
−𝑔(𝑗

∗)
𝑞

𝑥
(𝑖)
𝑞

≥ 1

𝑘

𝑘∑
𝑗=1

−𝑔(𝑗)𝑞
𝑥
(𝑖)
𝑞

=
1

𝑘
≥ 1

𝑚
.
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and so the two inequalities above yield

max
𝑗∈𝑁

−𝑔(𝑗
∗)

𝑗

𝑥
(𝑖)
𝑗

> max
𝑡∈𝑇

−𝑔(𝑗
∗)

𝑡

𝑥
(𝑖)
𝑡

. (4)

Therefore, the augmentation in Line 29 cannot set a variable in 𝑇 to zero. As a consequence, either a variable
in 𝑁 is set to zero, or a variable in 𝐵 \𝑇 is set to zero. In the former case, this variable will remain zero forever,
while in the latter case, the variable that is set to zero will now satisfy 𝑥

(𝑖+1)
𝑗

= 0 ≤ 𝑚𝑥∗
𝑗
and so 𝑇 gets extended.

With this we proved the main part of the theorem. To show that the algorithm is correct we still have to
show that after this augmentation, variables that originated in 𝑇 remain trapped.

Claim 3.7. Let 𝑖 be an iterate where the augmentation is performed in Line 29 and let 𝑥(𝑖+1) be the resulting point.
Then, 𝑇(𝑖) ⊆ 𝑇(𝑖+1).

Proof of Claim. For any 𝑡 ∈ 𝑇 with 𝑥
(𝑖)
𝑡 ≥ 𝑧𝑡 , we have by conformality that 𝑔(𝑗

∗)
𝑡 ≤ 0 and so 𝑥

(𝑖+1)
𝑡 ≤ 𝑥

(𝑖)
𝑡 ≤ 𝑚𝑥∗𝑡 .

For 𝑡 ∈ 𝑇 with 𝑥
(𝑖)
𝑡 ≥ 3

2𝑥
∗
𝑡 , we get that

𝑧𝑡 − 𝑥
(𝑖)
𝑡 = 𝜆(𝑥∗𝑡 − 𝑥

(𝑖)
𝑡 ) +

(1 − 𝜆)𝜚
1 − 𝜚 (𝑥

(𝑖)
𝑡 − 𝑥

(𝑟)
𝑡 ) ≤ −

𝜆
2
𝑥∗𝑡 +
(1 − 𝜆)𝜚
1 − 𝜚 𝑚𝑥∗𝑡 ≤

(
−𝜆
2
+ 𝜚𝑚

)
𝑥∗𝑡 ≤

(
−𝜆
2
+ 𝜏𝑚

)
𝑥∗𝑡 = 0 .

and so 𝑔
(𝑗∗)
𝑡 ≤ 0.

It therefore remains to consider the case 𝑥
(𝑖)
𝑡 ≤ 3

2 𝑥
∗
𝑡 and 𝑧𝑡 ≥ 𝑥

(𝑖)
𝑡 . Now, note that similar to the proof of

Claim 3.5, we have that the step size 𝛼 in the augmentation 𝑥(𝑖+1) = 𝑥(𝑖) + 𝛼𝑔(𝑗
∗) satisfies 𝛼 ≤ 𝑚. This can be

observed by noting that −𝑔(𝑗
∗)

𝑞 = max𝑗∈[𝑘] −𝑔(𝑗)𝑞 ≥ 1
𝑘

∑𝑘
𝑗=1 −𝑔

(𝑗)
𝑞 = 1

𝑘 𝑥
(𝑖)
𝑞 ≥ 1

𝑚 𝑥
(𝑖)
𝑞 and so

𝛼 = min

−
𝑥
(𝑖)
𝑗

𝑔
(𝑗∗)
𝑗

: 𝑗 ∈ supp([𝑔(𝑗∗)]−)
 ≤ −

𝑥
(𝑖)
𝑞

𝑔
(𝑗∗)
𝑞

≤ 𝑚 . (5)

But then, we have with (3) that

𝑥
(𝑖+1)
𝑡 = 𝑥

(𝑖)
𝑡 + 𝛼𝑔

(𝑗∗)
𝑡

≤ 𝑥
(𝑖)
𝑡 + 𝛼(𝑧𝑡 − 𝑥

(𝑖)
𝑡 ) (by conformality)

≤ 𝑥
(𝑖)
𝑡 + 𝑚

(
𝜆 + (1 − 𝜆)𝜚

1 − 𝜚

)
𝑚𝑥∗𝑡 (by 𝛼 ≤ 𝑚 and (3))

≤ 3

2

(
1 + 𝑚2 ·

(
𝜆 + (1 − 𝜆)𝜚

1 − 𝜚

))
𝑥∗𝑡 (by 𝑥

(𝑖)
𝑡 ≤ 3

2 𝑥
∗
𝑡 )

≤ 3

2

(
1 + 𝑚2 · (𝜆 + 𝜚)

)
𝑥∗𝑡 (by 𝜆 > 𝜚)

≤ 3

2

(
1 + 𝑚2 ·

(
(2𝑚)−2 + (2𝑚)−3

) )
𝑥∗𝑡

≤ 𝑚𝑥∗𝑡 ,

where the last inequality follows by the assumption that 𝑚 ≥ 2. This proves the claim. ■

It remains to analyze the total number of circuit augmentations of the algorithm. By Claim 3.5, we perform
at most 𝑚 log(𝑚/𝜏) consecutive norm-reduction iterations before either 𝑇 gets extended or we reduced the
relative norm on 𝑁 below 𝜏 so that the elimination step is called, which either extends 𝑇 or sets a variable in
𝑁 to zero. Since |𝑇| ≤ 𝑚 and |𝑁| ≤ 𝑚 after Phase 1, there are at most 2𝑚 such progress events, so the total
number of augmentations after Phase 1 is at most 𝑚 · 𝑚 log(𝑚/𝜏) = 𝑂(𝑚2 log(𝑚)). □
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3.3 Monotone Diameter
A circuit walk is monotone with respect to an objective 𝑐 ∈ R𝑛 if the objective value does not increase along the
walk. The monotone circuit diameter measures the worst-case length of shortest monotone walks.

Definition 3.8. Let 𝑃 = {𝑥 : A𝑥 = 𝑏, 𝑥 ≥ 0} ⊆ R𝑛 be a polyhedron. A circuit walk (𝑥(0) , 𝑥(1) , . . . , 𝑥(𝑘)) is
monotone with respect to 𝑐 ∈ R𝑛 if 𝑐⊤𝑥(𝑖+1) ≤ 𝑐⊤𝑥(𝑖) for all 𝑖 ∈ {0, . . . , 𝑘 − 1}. The monotone circuit diameter of 𝑃 is
the maximum, over all vertices 𝑢, 𝑣 ∈ 𝑃 and objectives 𝑐 ∈ R𝑛 with 𝑣 ∈ argmin𝑥∈𝑃 𝑐⊤𝑥, of the length of the
shortest monotone circuit walk from 𝑢 to 𝑣.

Since every circuit walk is trivially monotone for 𝑐 = 0, the circuit diameter is a lower bound on the
monotone circuit diameter. We show that Algorithm 1 produces monotone walks, yielding a strongly
polynomial bound on the monotone circuit diameter as well.

The key observation is that monotonicity can be characterized in terms of the non-basic coordinates. Let
𝑣 = 𝑥∗ be the target vertex with basis 𝐵 and non-basic indices 𝑁 = [𝑛] \ 𝐵. By complementary slackness, any
objective 𝑐 minimized at 𝑥∗ satisfies 𝑐 = A⊤𝑦 + 𝑠 for some 𝑦 ∈ R𝑚 and 𝑠 ∈ R𝑛 with 𝑠𝐵 = 0 and 𝑠𝑁 ≥ 0. For any
circuit step 𝑥(𝑖) → 𝑥(𝑖+1) = 𝑥(𝑖) + 𝛼𝑔 with 𝑔 ∈ ker(A), we have

𝑐⊤(𝑥(𝑖+1) − 𝑥(𝑖)) = 𝛼 · 𝑐⊤𝑔 = 𝛼 · 𝑠⊤𝑔 = 𝛼
∑
𝑗∈𝑁

𝑠 𝑗 𝑔𝑗 .

Since 𝛼 > 0 and 𝑠𝑁 ≥ 0, the step is monotone if 𝑔𝑁 ≤ 0. Thus, an algorithm that only uses circuit directions 𝑔
with 𝑔𝑁 ≤ 0 is monotone with respect to all objectives minimized at 𝑥∗.

Algorithm 1 satisfies this property. In the norm-reduction steps, the conformal decomposition of 𝑥∗ − 𝑥(𝑖)

yields circuits 𝑔(𝑗) ⊑ 𝑥∗ − 𝑥(𝑖). Since 𝑥∗
𝑁
= 0 and 𝑥

(𝑖)
𝑁
≥ 0, we have (𝑥∗ − 𝑥(𝑖))𝑁 ≤ 0, and conformality implies

𝑔
(𝑗)
𝑁
≤ 0. In the elimination steps, the target 𝑧 satisfies 𝑧𝑁 ≤ 0 by construction, and since 𝑥

(𝑖)
𝑁
≥ 0, we again

have (𝑧 − 𝑥(𝑖))𝑁 ≤ 0, so the conformal decomposition yields circuits with 𝑔
(𝑗)
𝑁
≤ 0.

Corollary 3.9. Let 𝑃 = {𝑥 : A𝑥 = 𝑏, 𝑥 ≥ 0} ⊆ R𝑛 be a polyhedron with A ∈ R𝑚×𝑛 . Then, the monotone circuit
diameter of 𝑃 is bounded by 𝑂(𝑚2 log(𝑚)).

We complement this with a hardness result of Black, Nöbel, and Steiner [BNS26], showing that computing
the monotone circuit diameter exactly is hard.

Theorem 3.10 ([BNS26, Corollary 1.7]). For every 𝜀 > 0 and 𝑚 ≥ 2, the following problem is NP-hard: Given a
polytope 𝑃 = {𝑥 : A𝑥 = 𝑏, 𝑥 ≥ 0} ⊆ R𝑛 with A ∈ R𝑚×𝑛 , two vertices 𝑢, 𝑣 ∈ 𝑃, and an objective 𝑐 minimized at 𝑣,
compute a monotone circuit walk from 𝑢 to 𝑣 approximating the minimum possible length of such a walk to within a
factor of 𝑂(𝑚1−𝜀).
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