
Exact Linear Programming
Circuits, Curvature, and Diameter

by

Bento Natura

A thesis submitted for the degree of
Doctor of Philosophy

at
Department of Mathematics

The London School of Economics and Political Science





Acknowledgements

First and foremost, I thank my supervisor László A. Végh. For all the guidance and freedom that
he gave me. For his mathematical advice, for so many inspiring research sessions and ideas. I am
also thankful for his advice in navigating through the various stages of grad school and challenges
in the last four years.

My utmost gratitude also goes out to my unofficial co-supervisor Daniel Dadush. For the many
collaborations, for hosting me at CWI, the many hours of brainstorming, for shutting down bad
ideas before they take roots, and for nurturing good ones.

Working with both Daniel and Laci in tandem is an amazing experience. The skills I acquired
from learning from both of you will help me greatly going forward. I am looking forward to
continuing to collaborate with you and edging a little closer to the holy grail.

Thanks to all my co-authors, without whom this thesis would not have been possible. Besides
Daniel and Laci, I am especially grateful for the opportunity to work with Cedric, Daniel R., Farbod,
Meike, Omri, Shunhua, Siad, Stefan, Stephan, and Xavier. I would be honored to work with you
again.

I am thankful to the examiners Yin Tat Lee, Levent Tuncel, and Bernhard von Stengel for giving me
comments and suggestions that have improved the presentation of the thesis, and for a stimulating
discussion during the viva.

Further, I would like to thank Ahmad Abdi, Neil Olver, and Giacomo Zambelli. All of you have
brought me great benefit in learning topics adjacent to my research and helped enjoy my time in
the department. You and Laci alone make the Operations Research Group such an amazing place
to be part of.

I would like to thank all the amazing people that make the Department of Mathematics at LSE
such a great and welcoming environment. Credits are due to all the other PhD students and the
administrative staff Kate Barker, Enfale Farooq, and Edward Perrin. A special thanks to Sarah
Massey for so many things; let me representatively mention the collaboration on the blog and daily
games.

Further thanks go to Stephan Held, Stefan Hougardy, and Jens Vygen at the Institute for Discrete
Mathematics at the University of Bonn for sparking my interest in Discrete Mathematics and
Optimization through exciting courses and projects throughout my Bachelor’s and Master’s. When
I entered the university with solid foundations in algebra and analysis, I had never heard of the
area in which I am now submitting this thesis. Another thanks to my Master’s supervisor Stephan
for encouraging me to pursue a PhD; it turned out to be the correct decision.

I am further thankful to an institute affiliated with the University of Bonn, the Hausdorff Institute
of Mathematics, for hosting me at the trimester “Discrete Optimization”, during which the research
for one of the chapters of this thesis was undertaken.

I am grateful to all the anonymous reviewers for conferences and journals that helped to improve
the presentation of the papers that became the backbone of this thesis.

These days we take LATEX for typesetting for granted. But it is an immense success story of the
open-source community, which still actively develops and improves packages and features. Special
thanks go to Thomas Colcombet for developing knowledge, to Bastian Rieck for mimosis, and to R
Schlicht for developing microtype.



Throughout my degree I was supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement
ScaleOpt–757481).

I thank everybody involved with “James Joyce”, Lucile, Unlucky and all my other friends. To my
family, I am forever grateful for their unconditional love and encouragement.

4



Declaration

I certify that the thesis I have presented for examination for the PhD degree of the London School
of Economics and Political Science is solely my own work, with the exceptions outlined in the
section below.

The copyright of this thesis rests with the author. Quotation from it is permitted, provided that
full acknowledgement is made. In accordance with the regulations, I have deposited an electronic
copy of it in LSE Theses Online held by the British Library of Political and Economic Science and
have granted permission for my thesis to be made available for public reference. Otherwise, this
thesis may not be reproduced without my prior written consent. I warrant that this authorisation
does not, to the best of my belief, infringe the rights of any third party.

I declare that this thesis consists of 76,384 words.

Statement of co-authored work

Chapter 3 is based on [ENV22], Chapter 4 is based on [DHNV20], Chapter 5 is based on [All+22],
Chapter 7 is based on [DNV20], Chapter 8 is based on [DKNV22; ENV22], and Chapter 9 is based
on [DKNV21].

The contents of Chapter 6 and Section 9.3 are novel unpublished work.

[All+22] X. Allamigeon, D. Dadush, G. Loho, B. Natura, and L. A. Végh. Interior point methods are
not worse than Simplex. To appear in Annual Symposium on Foundations of Computer
Science (FOCS 2022). 2022. url: https://arxiv.org/abs/2206.08810.

[DHNV20] D. Dadush, S. Huiberts, B. Natura, and L. A. Végh. “A Scaling-Invariant Algorithm for
Linear Programming Whose Running Time Depends Only on the Constraint Matrix”.
In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing.
STOC 2020. Association for Computing Machinery, Chicago, IL, USA, 2020, pp. 761–
774. isbn: 9781450369794. url: https://doi.org/10.1145/3357713.3384326.

[DKNV21] D. Dadush, Z. K. Koh, B. Natura, and L. A. Végh. “An Accelerated Newton-Dinkelbach
Method and Its Application to Two Variables per Inequality Systems”. In: 29th Annual
European Symposium on Algorithms (ESA 2021). Ed. by P. Mutzel, R. Pagh, and G.
Herman. Vol. 204. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2021, 36:1–36:15.
isbn: 978-3-95977-204-4. url: https://drops.dagstuhl.de/opus/volltexte/2021/
14617.

[DKNV22] D. Dadush, Z. K. Koh, B. Natura, and L. A. Végh. “On Circuit Diameter Bounds via
Circuit Imbalances”. In: Integer Programming and Combinatorial Optimization. Springer
International Publishing, 2022, pp. 140–153. url: https://doi.org/10.1007/978-3-
031-06901-7_11.

5

https://arxiv.org/abs/2206.08810
https://doi.org/10.1145/3357713.3384326
https://drops.dagstuhl.de/opus/volltexte/2021/14617
https://drops.dagstuhl.de/opus/volltexte/2021/14617
https://doi.org/10.1007/978-3-031-06901-7_11
https://doi.org/10.1007/978-3-031-06901-7_11


[DNV20] D. Dadush, B. Natura, and L. A. Végh. “Revisiting Tardos’s Framework for Linear
Programming: Faster Exact Solutions using Approximate Solvers”. In: 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020. IEEE, 2020, pp. 931–942. url: https://doi.org/10.1109/
FOCS46700.2020.00091.

[ENV22] F. Ekbatani, B. Natura, and L. A. Végh. “Circuit Imbalance Measures and Linear
Programming”. In: Surveys in Combinatorics 2022. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2022, pp. 64–114.

During my degree, I have also -authored the following published papers that are not part of this
thesis:

[DHNR19] S. Daboul, S. Held, B. Natura, and D. Rotter. “Global Interconnect Optimization”.
In: 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2019,
pp. 1–8.

[JNW22] S. Jiang, B. Natura, and O. Weinstein. “A Faster Interior-Point Method for Sum-Of-
Squares Optimization”. In: 49th International Colloquium on Automata, Languages, and
Programming (ICALP 2022). Ed. by M. Bojańczyk, E. Merelli, and D. P. Woodruff.
Vol. 229. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022, 79:1–79:20. isbn: 978-3-
95977-235-8. url: https://drops.dagstuhl.de/opus/volltexte/2022/16420.

[NNW22] B. Natura, M. Neuwohner, and S. Weltge. The Pareto cover problem. In Annual European
Symposium on Algorithms (ESA 2022). 2022. url: https://arxiv.org/abs/2202.
08035.

Bento Natura

6

https://doi.org/10.1109/FOCS46700.2020.00091
https://doi.org/10.1109/FOCS46700.2020.00091
https://drops.dagstuhl.de/opus/volltexte/2022/16420
https://arxiv.org/abs/2202.08035
https://arxiv.org/abs/2202.08035


Abstract

We study Linear Programming (LP) and present novel algorithms. In particular, we study LP in the
context of circuits, which are support-minimal vectors of linear spaces. Our results will be stated in
terms of the circuit imbalance (CI), which is the worst-case ratio of nonzero entries of circuits and
whose properties we study in detail. We present following results with logarithmic dependency on
CI. (i) A scaling-invariant Interior-Point Method, which solves LP in time that is polynomial in the
dimensions, answering an open question by Monteiro-Tsuchiya in the affirmative. This closes a
long line of work by Vavasis-Ye and Monteiro-Tsuchiya; (ii) We introduce a new polynomial-time
path-following interior point method where the number of iterations admits a singly exponential
upper bound. This complements recent results, that path-following method must take at least
exponentially many iterations; (iii) We further provide similar upper bounds on a natural notion of
curvature of the central path; (iv) A black-box algorithm that requires only quadratically many
calls to an approximate LP solver to solve LP exactly. This significantly strengthens the framework
by Tardos, which requires exact solvers and whose runtime is logarithmic in the maximum
subdeterminant of the constraint matrix. The maximum subdeterminant is exponentially bigger
than CI, already for fundamental combinatorial problems such as matchings; (v) Furthermore, we
obtain a circuit diameter that is quadratic in the number of variables, giving the first polynomial
bound for general LP where CI is exponential. Unlike in the simplex method, one does not have
to augment around the edges of the polyhedron: Augmentations can be in any circuit direction;
(vi) Lastly, we present an accelerated version of the Newton–Dinkelbach method, which extends
the black-box framework to certain classes of fractional and parametric optimization problems.
Using the Bregman divergence as a potential in conjunction with combinatorial arguments, we
obtain improved runtimes over the non-accelerated version.
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1 Introduction

In real life, when emotions and sentiments
are involved and the very continuity of life
is at stake, there are no quantitative
theories, linear programming, and applied
mechanics available to solve those
problems.

Some Mistakes Have No Pardon
Girdhar Joshi

Fortunately, we do not study real life here. Even if this thesis is submitted for the degree of
Doctor of Philosophy, we do not make an attempt at discussing the relation of the most important
real life problems to emotions and sentiments. The study of LP can still solve various problems,
even if they might be unrelated to emotions, sentiments, and the context of real life. This does not
degrade their importance in the world.

Linear programming is viewed as a revolutionary development giving man the ability
to state general objectives and to find, by means of the simplex method, optimal policy
decisions for a broad class of practical decision problems of great complexity.

(George Dantzig)

This is the positive perspective we need. From here, we focus on the mathematics of LP.

Linear Programming (LP) in matrix formulation. We will use LPs in the following standard
primal and dual form for A ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 .

System 1.1. Linear Program (LP)

Data: A triple (A, 𝑏, 𝑐), where A is an 𝑚 × 𝑛 matrix and 𝑏 ∈ R𝑚 and 𝑐 ∈ R𝑛 .

Primal

min
𝑥

⟨𝑐, 𝑥⟩

s.t. A𝑥 = 𝑏,

𝑥 ≥ 0

Dual

max
𝑦, 𝑠

⟨𝑦, 𝑏⟩

s.t. A⊤𝑦 + 𝑠 = 𝑐,

𝑠 ≥ 0

Linear Programming in subspace formulation Since our main focus is on properties of subspaces,
it will be more natural to think about linear programming in the following subspace formulation. For
A, 𝑏 and 𝑐 as above, let 𝑊 = ker(A) ⊆ R𝑛 . We can write System 1.1 in the following equivalent
form, where 𝑑 is a vector fulfilling A𝑑 = 𝑏:

10
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opt

Max central path
Simplex path
Circuit walk
Central path
IPM
Blackbox

Figure 1.1: The several geometric objects considered in the thesis.

System 1.2. Linear Program (LP) – subspace formulation

Data: A triple (𝑊, 𝑑, 𝑐), where𝑊 ⊆ R𝑛 is a subspace, and 𝑑, 𝑐 ∈ R𝑛 .

Primal

min
𝑥

⟨𝑐, 𝑥⟩

s.t. 𝑥 ∈𝑊 + 𝑑,
𝑥 ≥ 0

Dual

max
𝑠

⟨𝑑, 𝑐 − 𝑠⟩

s.t. 𝑠 ∈𝑊⊥ + 𝑐,
𝑠 ≥ 0

In this thesis we present several exact algorithms with varying methods, as depicted in Figure 1.1.
For the primal and dual feasible regions we write

𝒫 ≔ { 𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 𝑥 ≥ 0 } = { 𝑥 ∈ R𝑛 : 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0 } and

𝒟 ≔
{
𝑠 ∈ R𝑛 : ∃𝑦 : A⊤𝑦 + 𝑠 = 𝑐 , 𝑠 ≥ 0

}
=

{
𝑠 ∈ R𝑛 : 𝑠 ∈𝑊⊥ + 𝑐, 𝑠 ≥ 0

}
.

(1.1)

An outstanding open question is the existence of a strongly polynomial algorithm for LP,
listed by Smale as one of the most prominent mathematical challenges for the 21st century
[Sma98]. Such an algorithm amounts to solving LP using poly(𝑛, 𝑚) basic arithmetic operations
in the real model of computation.1 Known strongly polynomially solvable LP problems classes
include: feasibility for two variable per inequality systems [Meg83], the minimum-cost circulation
problem [Tar85], the maximum generalized flow problem [OV20; Vég17], and discounted Markov
decision problems [Ye05; Ye11].

1In the bit-complexity model, a further requirement is that the algorithm must be in PSPACE.

11
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Algorithmic Perspective

Linear Programming has a long history and is a central tool in optimization in both theory and
practice. The study of LP dates back at least as far as the early 19th century to Fourier. In the mid
20th century it was formalized by Kantorovich. Shortly after, the first efficient algorithms were
developed.

The Simplex Method. The simplex method is the oldest of the practical algorithms for LP and was
invented by Dantzig in 1947. Its fundamental role earned it a place in a list of the top 10 algorithms
of the 20th century [Nas00]. The simplex method traverses a path formed by vertices and edges
of 𝒫 according to a certain pivot rule. Albeit efficient in practice, there is no polynomial-time
variant known, and there are exponential worst case examples for several pivot rules. The first
such construction was given by Klee and Minty [KM72] for Dantzig’s pivot rule. While the simplex
method may be exponential, it is never worse: for any non-cycling pivot rule, the number of pivot
steps can be bounded by the number of bases, at most

(𝑛
𝑚

)
< 2𝑛 .

The Ellipsoid Method. Khachiyan [Kha79] used the ellipsoid method to give the first polynomial
time LP algorithm in the bit-complexity model, that is, polynomial in the bit description length of
(A, 𝑏, 𝑐).

On a high level, the ellipsoid method aims to find a feasible solution in a polytope, by encircling
the feasible region by an ellipsoid. If the center of the ellipsoid is not contained in the polytope, then
a separation oracle provides a separating hyperplane, which allows cutting off a part of the ellipsoid to
recurse with an ellipsoid of smaller size that still fully contains the feasible region. These methods
are called cutting plane methods.

The excellent performance of cutting plane methods in theory led to a hype, even though people
were not immediately able to translate the theoretical guarantees into a practical algorithm able to
compete with the by then well-established simplex method. It remains a challenge today to design
practical cutting plane methods. In theory, more breakthroughs were achieved in recent years
[JLSW20; LSW15].

Interior Point Methods. The advent of Interior-Point-Methods (IPM) brought the first class of
algorithms for LP that performs well in both, theory and practice. Karmarkar [Kar84] was the first
to devise such a method in 1984. Contrary to the simplex method, it solves LP by traversing the
interior of the polytope. IPM follow a central path which corresponds to the set of optimal solutions
to problems of the form min ⟨𝑐, 𝑥⟩ +𝜇𝐹(𝑥), 𝑥 ∈ 𝒫, where 𝐹(𝑥) is a so-called barrier function defined
which penalizes getting to close the boundary of 𝒫. A standard barrier for LP is the log-barrier,
whose so called central path is the set of solutions defined in (CP), parametrized by 𝜇.

𝑥(𝜇)𝑖𝑠(𝜇)𝑖 = 𝜇, ∀𝑖 ∈ [𝑛]
A𝑥(𝜇) = 𝑏, 𝑥(𝜇) > 0,

A⊤𝑦(𝜇) + 𝑠(𝜇) = 𝑐, 𝑠(𝜇) > 0,

(CP)

IPM are at the heart of recent breakthrough results for LP, see [Bra20; Che+22; CLS19; LS19] to
only name a few which appeared during the author’s PhD studies.

Geometric Perspective

Related to algorithms, but allowing for separate study, are certain geometric properties of LP.

12
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The combinatorial diameter of a polyhedron 𝑃 ⊆ R𝑑 is the diameter of the vertex-edge graph
associated with 𝑃. Hirsch’s famous conjecture from 1957 asserted that the combinatorial diameter
of a polytope (a bounded polyhedron) in 𝑑 dimensions with 𝑛 facets is at most 𝑛 − 𝑑. This
was disproved by Santos in 2012 [San12]. The polynomial Hirsch conjecture, i.e., finding a
poly(𝑛, 𝑑) bound on the combinatorial diameter remains a central question in the theory of linear
programming. In particular is such a bound necessary to devise a strongly polynomial simplex
algorithm.

The first quasipolynomial bound was given by Kalai and Kleitman [Kal92; KK92], see [Suk17]
for the best current bound and an overview of the literature. Dyer and Frieze [DF94] showed the
polynomial Hirsch conjecture for Totally Unimodular (TU) matrices.

As a natural relaxation of the combinatorial diameter, Borgwardt, Finhold, and Hemmecke
[BFH15] initiated the study of circuit diameters. Consider a polytope in the standard equality form
𝒫. All edge directions of 𝒫 are elementary vectors, and the set of elementary vectors ℰ(A) equals
the set of all possible edge directions of 𝒫 for varying 𝑏 ∈ R𝑛 [ST97].

A circuit walk is a set of consecutive points 𝑥(1) , 𝑥(2) , . . . , 𝑥(𝑘+1) ∈ 𝒫 such that for each 𝑖 = 1, . . . , 𝑘,
𝑥(𝑖+1) = 𝑥(𝑖)+ 𝑔(𝑖) for 𝑔(𝑖) ∈ ℰ(A), and further, 𝑥(𝑖)+(1+𝜀)𝑔(𝑖) ∉ 𝒫 for any 𝜀 > 0, i.e., each consecutive
circuit step is maximal. The circuit diameter of 𝒫 is the minimum length of a circuit walk between
any two vertices 𝑥, 𝑦 ∈ 𝒫. Note that, in contrast to walks in the vertex-edge graph, circuit walks are
non-reversible and the minimum length from 𝑥 to 𝑦 may be different from the one from 𝑦 to 𝑥; this
is due to the maximality requirement. The circuit-analogue of the Hirsch conjecture, formulated in
[BFH15], asserts that the circuit diameter of a polytope in 𝑑 dimensions with 𝑛 facets is at most
𝑛 − 𝑑; this may be true even for unbounded polyhedra, see [BSY18]. For 𝒫, 𝑑 = 𝑛 − 𝑚 and hence
the conjectured bound is 𝑚.

Circuit diameter bounds have been shown for some combinatorial polytopes such as dual
transportation polyhedra [BFH15], matching, travelling salesman, and fractional stable set polytopes
[KPS19]. The paper [BDF16] introduced several other variants of the circuit diameter, and explored
the relation between them.

Another geometric object that has been studied is the central path and a natural notion of its
curvature [SSZ91], defined as

ℐ(0,∞) ≔
∫ ∞

0

Υ(𝜈)
𝜈

d𝜈, Υ(𝜈) ≔
√
∥𝜈 ¤𝑥(𝜈)¤𝑠(𝜈)∥ . (1.2)

It was related very closely tied to the number of iterations an IPM requires if the error one allows
while approximately following the paths converges to 0 [MT08].

Condition numbers of the constraint matrix

Towards the goal of finding more classes of LP that are strongly polynomially solvable, the principal
line of attack has been to develop LP algorithms whose running time is bounded in terms of natural
condition measures. Such condition measures attempt to measure the “intrinsic complexity” of
LPs. An important line of work in this area has been to parametrize LPs by the “niceness” of their
solutions (e.g., the depth of the most interior point), where relevant examples include the Goffin
measure [Gof80] for conic systems and Renegar’s distance to ill-posedness for general LPs [Ren94;
Ren95], and bounded ratios between the nonzero entries in basic feasible solutions [Chu14; KM13].

Parametrizing by the constraint matrix. A second line of research, and one of the main topics
of this thesis, focuses on the complexity of the constraint matrix A. In a seminal work, Vavasis
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and Ye [VY96] introduced a new type of interior-point method that optimally solves System 1.1
within 𝑂(𝑛3.5 log(�̄�A + 𝑛)) iterations, where the condition number �̄�A controls the size of solutions
to certain linear systems related to the kernel of A (see Section 4.2 for the formal definition).

Monteiro and Tsuchiya [MT03], noting that the central path is invariant under rescalings of
the columns of A and 𝑐, asked whether there exists an LP algorithm depending instead on the
measure �̄�∗A, defined as the minimum �̄�AD value achievable by a column rescaling AD of A, and
gave strong evidence that this should be the case. We resolve this open question affirmatively.

Theorem I (Theorem 3.4.7). There exists a strongly polynomial algorithm, that given a matrix A computes
a rescaling D such that �̄�AD ≤ poly(𝑛, �̄�∗A).

This result is in surprising contrast to that of Tunçel [Tun99], who showed NP-hardness for
approximating �̄�A to within 2poly(rk(A)).

While this resolves Monteiro and Tsuchiya’s question by appropriate preprocessing, it falls
short of providing either a truly scaling invariant algorithm or an improvement upon the base
Layered-Least-Squares (LLS) analysis. In this vein, as a second main contribution in this theory we
develop a scaling invariant LLS algorithm.

Theorem II (Theorem 4.3.16). There exists a scaling-invariant IPM that solves LP in 𝑂(𝑛2.5 log(�̄�∗A))
iterations, each of which can be computed in strongly polynomial poly(𝑛, 𝑚) time.

Besides being scaling-invariant and hence depending on �̄�∗ instead of �̄�, this also constitutes a
𝑛/log 𝑛 improvement on the iteration complexity bound of the original Vavasis-Ye Algorithm in
[VY96] (VY) algorithm and follow-up works by Monteiro and Tsuchiya.

As other IPM our algorithm follows very closely the central path (CP) induced by the barrier.
In particular, matching the result on the number of iterations of the VY algorithm Monteiro and
Tsuchiya bounded the total curvature of the central path by 𝑂(𝑛3.5 log(�̄�∗A + 𝑛)). We show that
their result can naturally be improved based on our improvement on the number of iterations in
our scaling-invariant IPM.

Theorem III (Theorem 6.3.3). The total curvature of the central path is bounded by ℐ(0,∞) =

𝑂(𝑛2.5 log �̄�∗A).

However, while this results in an IPM with logarithmic dependency on log �̄�∗, they do not admit
even an exponential dependency on the dimensions 𝑚 and 𝑛 only, as �̄�∗ can be arbitrarily big even
in fixed dimension. To the extent of our knowledge, no variant of the ellipsoid or interior point
methods have been shown to admit a bound 𝑓 (𝑛) on the number of iterations for any function
𝑓 : N→ N prior to 2022. We design an IPM that finally admits an exponential iteration bound.

Theorem IV (Informal, Theorem 5.1.2). There exists an IPM that solves LP within 𝑂(𝑛1.52𝑛 log(𝑛))
iterations. Each iteration can be implemented in strongly polynomial time poly(𝑛, 𝑚).

Moreover, the running time of the algorithm is within a polynomial factor of any path following
method.

We also show how this algorithmic bound can be translated into a purely geometric bound on
the curvature of the central path.

Theorem V (Theorem 6.2.4). The total curvature of the central path is bounded by ℐ(0,∞) =

𝑂(𝑛1.52𝑛 log(𝑛)).

14



1 INTRODUCTION 1 Introduction

Proximity– based solvers. The first breakthrough in the area of conditioned matrices predates
Vavasis and Ye by 10 years and was achieved by Tardos [Tar86]. She showed that if A has integer
entries and all square submatrices of A have determinant at most Δ in absolute value, then
System 1.1 can be solved in poly(𝑛, 𝑚, logΔ) arithmetic operations, independent of the encoding
length of the vectors 𝑏 and 𝑐. At the heart of this approach lie proximity results. Such proximity
results allow to deduce information about optimal solutions to LP based on nearly-optimal solutions
to slightly perturbed problems. We introduce a new condition number, 𝜅A, which is the largest
ratio of two non-zero coordinates in support-minimal elements in the kernel of A, which fulfills
𝜅A ≤ ΔA for all A ∈ Z𝑚×𝑛 . We provide an in-depth study of its properties as well as related
condition numbers in Chapter 3 and extend Tardos’ results to 𝜅A, while requiring weaker oracle
assumptions.

Theorem VI (Informal, Theorem 7.8.1). There exist algorithms that for feasible primal-dual instances of
LP can find

(i) a feasible point within 𝑚 calls to any approximate solver to LP with precision (𝑛𝜅)−𝑂(1), and

(ii) an optimal point within 𝑚𝑛 calls to any approximate solver to LP with precision (𝑛𝜅)−𝑂(1).

The running time is dominated by the calls to the approximate solvers.

For the dual 𝒟 with integer constraint matrix A, polynomial diameter bounds were given in
terms of the maximum subdeterminant ΔA [Bon+14; BR13; DH16; EV17]. These arguments can be
strengthened to using a parametrization by a ‘discrete curvature measure’ 𝛿A⊤ ≥ 1/(𝑛Δ2

A). The best
such bound was given by Dadush and Hähnle [DH16] as 𝑂(𝑑3 log(𝑑/𝛿A⊤)/𝛿A⊤), using a shadow
vertex simplex algorithm.

By relating 𝛿A⊤ to 𝜅A we are able to show that the diameter is also polynomially bounded in 𝜅A.

Theorem VII (Theorem 3.3.12). The diameter of 𝒫 is bounded by 𝑂(𝑛3𝑚𝜅A log(𝜅A + 𝑛)).

Unlike for the simplex method, it can be shown that there is always a circuit direction which
relative to the optimal solution improves the objective geometrically. Similarly to the blackbox
approach, this can be used to show constructive bounds on the circuit diameter.

Theorem VIII (Theorem 8.1.4). The circuit diameter of 𝒫 is 𝑂(𝑚2 log(𝜅A + 𝑛)).

Interestingly, we can extend these results to capacitated LP formulations without significantly
increasing the diameter.

System 1.3. Capacitated Linear Program (CLP)

Data: A quadruple (A, 𝑏, 𝑐, 𝑢), where A is an 𝑚 × 𝑛 matrix and 𝑏 ∈ R𝑚 and 𝑐, 𝑢 ∈ R𝑛 .

Capacitated Primal

min
𝑥

⟨𝑐, 𝑥⟩

s.t. A𝑥 = 𝑏,

0 ≤ 𝑥 ≤ 𝑢

Capacitated Dual

max
𝑦, 𝑠

⟨𝑦, 𝑏⟩ − ⟨𝑢, 𝑡⟩

s.t. A⊤𝑦 + 𝑠 − 𝑡 = 𝑐,

𝑠, 𝑡 ≥ 0

Theorem IX (Theorem 8.1.5). The circuit diameter of the feasible region in Capacitated-Primal is
𝑂(𝑚2 log(𝜅A + 𝑛) + 𝑛 log(𝑛)).
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Beyond Linear Programs

System 1.4. Fractional Linear Program (FLP)

Data: A tuple (A, 𝑏, 𝑐, 𝑞), where A is an 𝑚 × 𝑛 matrix and 𝑏 ∈ R𝑚 and 𝑐 ∈ R𝑛 , 𝑑 ∈ R𝑛 and
⟨𝑞, 𝑥⟩ > 0 for all 𝑥 ∈ Primal(A, 𝑏).

min
𝑥

⟨𝑐, 𝑥⟩
⟨𝑞, 𝑥⟩ s.t. A𝑥 = 𝑏, 𝑥 ≥ 0 . (1.3)

In the last chapter of this thesis we look into Fractional Linear Programming. The discrete
Newton method solves Fractional LP by reducing it to a sequence of LP with objective function
⟨𝑐, 𝑥⟩ − 𝜆⟨𝑞, 𝑥⟩,𝜆 ∈ R. We develop a novel accelerated discrete Newton method, for which we
show improved running times and simplified analyses for problems such as linear fractional
combinatorial optimization and parametric submodular function minimization.

We also develop a proximity-based solver for Fractional LP in terms of 𝜅A.

Theorem X (Theorem 9.3.1). System 1.4 can be solved within 𝑂(𝑛 log𝜅A) calls to an exact solver to LP
with the same constraint matrix A.
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2 Preliminaries

We let N = {1, 2, . . .} denote the positive integers, Z the integers, Q the rational numbers and R
the real numbers. Further, let R ≔ R ∪ {±∞}, R++ the set of positive reals, and R+ the set of
nonnegative reals. We let [𝑛] ≔ {1, . . . , 𝑛}. For 𝑘 ∈ N, a number 𝑞 ∈ Q is 1/𝑘-integral if it is an
integer multiple of 1/𝑘. Let P ⊆ N denote the set of primes.

For a prime number 𝑝 ∈ P, the 𝑝-adic valuation for Z is the function 𝜈𝑝 : Z→ N ∪ {∞} defined by

𝜈𝑝(𝑛) ≔
{

max{ 𝑣 ∈ N : 𝑝𝑣 | 𝑛 } if 𝑛 ≠ 0

∞ if 𝑛 = 0.
(2.1)

Linear Algebra. We denote the support of a vector 𝑥 ∈ R𝑛 by supp(𝑥) ≔ {𝑖 ∈ [𝑛] : 𝑥𝑖 ≠ 0}. We
let 1𝑛 denote the 𝑛-dimensional all-ones vector, or simply 1, whenever the dimension is clear from
the context. Analogously 0𝑛 (and 0) are the all-zero vectors. Let 𝑒 𝑖 denote the 𝑖-th vector in the
standard basis.

For vectors 𝑣, 𝑤 ∈ R𝑛 we denote by min{𝑣, 𝑤} the vector 𝑧 ∈ R𝑛 with 𝑧𝑖 = min{𝑣𝑖 , 𝑤𝑖}, 𝑖 ∈ [𝑛];
analogously for max{𝑣, 𝑤}. Further, we use the notation 𝑣+ ≔ max{𝑣, 0𝑛} and 𝑣− ≔ max{−𝑣, 0𝑛};
note that both 𝑣+ and 𝑣− are nonnegative vectors. For two vectors 𝑥, 𝑦 ∈ R𝑛 , we let ⟨𝑥, 𝑦⟩ = 𝑥⊤𝑦

denote their scalar product and we let [𝑥, 𝑦] = { (1 − 𝜆)𝑥 + 𝜆𝑦 : 0 ≤ 𝜆 ≤ 1 } denote the line-segment
connecting 𝑥 and 𝑦. We use the notation 𝑥𝑦 ∈ R𝑛 to denote the Hadamard product 𝑥𝑦 = (𝑥𝑖𝑦𝑖)𝑖∈[𝑛].
Further, with 𝑝 ∈ Q, we also use the notation 𝑥𝑝 to denote the vector (𝑥𝑝

𝑖
)𝑖∈[𝑛]. Similarly, for

𝑥 ∈ R𝑛 , 𝑦 ∈ (R \ {0})𝑛 , we let 𝑥/𝑦 denote the vector (𝑥𝑖/𝑦𝑖)𝑖∈[𝑛].
For sets 𝑆, 𝑇 ⊆ Rwe let 𝑆 · 𝑇 = { 𝑠𝑡 : 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 }.
We let I𝑛 ∈ R𝑛×𝑛 denote the 𝑛-dimensional identity matrix and 𝔇𝑛 denote the set of all positive

definite 𝑛 × 𝑛 diagonal matrices. For a vector 𝑣 ∈ R𝑛 , we denote by diag(𝑣) the diagonal matrix
whose 𝑖-th diagonal entry is 𝑣𝑖 .

For a matrix A ∈ R𝑚×𝑛 , let A1 ,A2 , . . . ,A𝑛 ∈ R𝑛 denote the column vectors, and A1 ,A2 , . . . ,A𝑚 ∈
R𝑚 denote the transposed row vectors.

For 𝐼 ⊆ [𝑚] and 𝐽 ⊆ [𝑛]we let A𝐼 ,𝐽 denote the submatrix of A restricted to the set of rows in 𝐼 and
columns in 𝐽. We also use A𝐼 ,• = A𝐼 ,[𝑛] and A𝐽 = A•,𝐽 = A[𝑚],𝐽 . For 𝑖 ∈ [𝑛], we set A≤𝑖 ≔ A{ 𝑗∈[𝑛]:𝑗≤𝑖}
and A≥𝑖 ≔ A{ 𝑗∈[𝑛]:𝑗≥𝑖}. We define 𝜎𝑖(A) to be the 𝑖-th smallest singular value of A. We let A† ∈ R𝑛×𝑚
denote the Moore–Penrose pseudo-inverse of A. The matrix A is said to be in basis form for a basis 𝐵
if A𝐵 = I𝑚 . We denote by rk(A) its rank, by ker(A) its kernel and by im(A) its image. Analogously,
let range(·) denote the range of a matrix or an operator.

We will use ℓ1 , ℓ2 and ℓ∞ vector norms, denoted as ∥.∥1 , ∥.∥2, and ∥.∥∞, respectively. By ∥𝑣∥, we
always mean the 2-norm ∥𝑣∥2. Further, for a matrix A ∈ R𝑚×𝑛 , ∥A∥ will refer to the ℓ2 → ℓ2 operator
norm, ∥A∥𝐹 =

√∑
𝑖 , 𝑗 |A𝑖 𝑗 |2 to the Frobenius norm, and ∥A∥max = max𝑖 , 𝑗 |A𝑖 𝑗 | to the max-norm.

For an index subset 𝐼 ⊆ [𝑛], we use 𝜋𝐼 : R𝑛 → R𝐼 for the coordinate projection. That is, 𝜋𝐼(𝑥) = 𝑥𝐼 ,
and for a subset 𝑆 ⊆ R𝑛 , 𝜋𝐼(𝑆) = { 𝑥𝐼 : 𝑥 ∈ 𝑆 }. We let R𝑛

𝐼
=

{
𝑥 ∈ R𝑛 : 𝑥[𝑛]\𝐼 = 0

}
.

For a subspace𝑊 ⊆ R𝑛 , we let𝑊𝐼 = 𝜋𝐼(𝑊 ∩R𝑛𝐼 ).
We will often use the following identity:
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Proposition 2.0.1. For ∅ ≠ 𝐼 ⊆ [𝑛] and a linear subspace𝑊 ⊆ R𝑛 , 𝜋𝐼(𝑊)⊥ = 𝜋𝐼(𝑊⊥ ∩R𝑛𝐼 ) holds.

For a subspace 𝑊 ⊆ R𝑛 , we define by Π𝑊 : R𝑛 → R𝑛 the orthogonal projection onto 𝑊 and let
𝑊+ ≔𝑊 ∩R𝑛+.

For a vector 𝑥 ∈ R𝑛 and a real threshold 𝜏 ∈ R+ define the essential support ess(𝑥, 𝜏) ∈ R𝑛 as

ess(𝑥, 𝜏)𝑖 ≔
{
𝑥𝑖 if |𝑥𝑖 | ≥ 𝜏,

0 otherwise
(2.2)

Given a concave function 𝑓 : R → R, let dom( 𝑓 ) ≔ { 𝑥 : −∞ < 𝑓 (𝑥) < ∞} be the effective do-
main of 𝑓 . For a point 𝑥0 ∈ dom( 𝑓 ), denote the set of supergradients of 𝑓 at 𝑥0 as 𝜕 𝑓 (𝑥0) ≔
{ 𝑔 : 𝑓 (𝑥) ≤ 𝑓 (𝑥0) + 𝑔(𝑥 − 𝑥0) ∀𝑥 ∈ R }. If 𝑥0 is in the interior of dom( 𝑓 ), then 𝜕 𝑓 (𝑥0) = [ 𝑓 ′−(𝑥0), 𝑓 ′+(𝑥0)],
where 𝑓 ′−(𝑥0) and 𝑓 ′+(𝑥0) are the left and right derivatives.

The linear spaces {0} and R𝑛 will be called trivial subspaces; all other subspaces are nontrivial. A
linear subspace of R𝑛 is a rational linear space if it admits a basis of rational vectors. Equivalently, a
rational linear space can be represented as the image of a rational matrix. For an integer vector
𝑣 ∈ Z𝑛 , let lcm(𝑣) denote the least common multiple and gcd(𝑣) denote the greatest common divisor of
the entries |𝑣𝑖 |, 𝑖 ∈ [𝑛].

For a set of vectors 𝑉 ⊆ R𝑛 we let span(𝑉) denote the linear space spanned by the vectors in 𝑉 .
For a matrix A ∈ R𝑚×𝑛 , span(A) ⊆ R𝑚 is the subspace spanned by the columns of A.

Matroids. A matroid on a finite ground set 𝐸 is given asℳ = (𝐸,ℐ), where ℐ ⊆ 2𝐸 is a nonempty
collection of independent sets. This collection is required to satisfy the independence axioms:

(I1) Non-Emptiness: ∅ ∈ ℐ.

(I2) Monotonicity: if 𝑋 ∈ ℐ then 𝑌 ∈ ℐ for all 𝑌 ⊆ 𝑋, and

(I3) Exchange property: if 𝑋,𝑌 ∈ ℐ, |𝑋 | < |𝑌 |, then there exists a 𝑦 ∈ 𝑌 \ 𝑋 such that 𝑋 ∪ {𝑦} ∈ ℐ.

Bases and Circuits. For a linear subspace𝑊 ⊆ R𝑛 and a matrix A such that𝑊 = ker(A), a circuit
𝐶 ⊆ [𝑛] is an inclusion-wise minimal dependent set of columns of A. Analogously, a basis 𝐵 ⊆ [𝑛]
is an inclusion-wise maximal independent set of columns of A.

These notions only depend on the subspace𝑊 , and not on the particular representation A; an
equivalent definition is that 𝐶 ⊆ [𝑛] is a circuit if and only if𝑊 ∩R𝑛

𝐶
is one-dimensional and that

no strict subset of 𝐶 has this property. Equivalently, 𝐵 is a basis if 𝑊 ∩ R𝑛
𝐵
= {0}, but no strict

superset of 𝐵 has this property. The set of bases of𝑊 is denoted by ℬ𝑊 . The set of circuits of𝑊 is
denoted by 𝒞𝑊 .

For a subset 𝐼 ⊆ [𝑛], we let cl(𝐼) denote its closure in the matroidal sense.
That is, cl(𝐼) = 𝐽 is the unique maximal set containing 𝐽 ⊇ 𝐼 such that rk(A𝐽) = rk(A𝐼).

Equivalently,
cl(𝐼) = 𝐼 ∪ { 𝑗 ∈ [𝑛] \ 𝐼 : ∃𝐶 ∈ 𝒞𝑊 , 𝑗 ∈ 𝐶 ⊆ 𝐼 ∪ { 𝑗} }

For a linear space 𝑊 ⊆ R𝑛 , 𝑔 ∈ 𝑊 is an elementary vector if 𝑔 is a support minimal nonzero
vector in 𝑊 , that is, no ℎ ∈ 𝑊 \ {0} exists such that supp(ℎ) ⊊ supp(𝑔), where supp denotes the
support of a vector. A circuit in𝑊 is the support of some elementary vector; these are precisely the
circuits in the associated linear matroidℳ(𝑊). We let ℰ(𝑊) ⊆ 𝑊 and 𝒞𝑊 ⊆ 2𝑛 denote the set of
elementary vectors and circuits in the space𝑊 , respectively.

A circuit basis of a subspace𝑊 ⊆ R𝑛 is a set ℱ ⊆ ℰ(𝑊) of rk(𝑊) linearly independent elementary
vectors, i.e., span(ℱ ) =𝑊 .
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Linear matroids. For a linear subspace𝑊 ⊆ R𝑛 , letℳ(𝑊) = ([𝑛],ℐ) denote the associated linear
matroid, i.e., the matroid defined by the set of circuits 𝒞𝑊 . Here, ℐ denotes the set of independent
sets; 𝑆 ∈ ℐ if and only if there exists no 𝑧 ∈𝑊 \ {0} with supp(𝑧) ⊆ 𝑆; the maximal independent
sets are the bases. We refer the reader to [Sch03, Chapter 39] or [Fra11, Chapter 5] for relevant
definitions and background on matroid theory.

Assume rk(A) = 𝑚 and 𝑊 = ker(A) for A ∈ R𝑚×𝑛 . Then 𝐵 ⊆ [𝑛], |𝐵| = 𝑚 is a basis in
ℳ(A) ≔ℳ(𝑊) if and only if A𝐵 is nonsingular; then, A′ = A−1

𝐵
A is in basis form for 𝐵 such that

ker(A′) =𝑊 .
The matroidℳ is separable if the ground set [𝑛] can be partitioned into two nonempty subsets
[𝑛] = 𝑆 ∪ 𝑇 such that 𝐼 ∈ ℐ if and only if 𝐼 ∩ 𝑆, 𝐼 ∩ 𝑇 ∈ ℐ. In this case, the matroid is the direct
sum of its restrictions to 𝑆 and 𝑇. In particular, every circuit is fully contained in 𝑆 or in 𝑇.
For the linear matroidℳ(A), separability means that ker(A) = ker(A𝑆) ⊕ ker(A𝑇). In this case,
we have 𝜅A = max{𝜅A𝑆

, 𝜅A𝑇
} and ¤𝜅A = lcm{ ¤𝜅A𝑆

, ¤𝜅A𝑇
}; solving 1.1 can be decomposed into two

subproblems, restricted to the columns in A𝑆 and in A𝑇 .
Thus, for most concepts and problems considered in this thesis, we can focus on the non-separable

components ofℳ(𝑊). The following characterization will turn out to be very useful, see e.g.
[Fra11, Theorem 5.2.5].

Proposition 2.0.2 (See Proposition 3.2.21). A matroidℳ = ([𝑛],ℐ) is non-separable if and only if for
any 𝑖 , 𝑗 ∈ [𝑛], there exists a circuit containing 𝑖 and 𝑗.

Conformal circuit decompositions. We say that the vector 𝑦 ∈ R𝑛 conforms to 𝑥 ∈ R𝑛 if 𝑥𝑖𝑦𝑖 > 0
whenever 𝑦𝑖 ≠ 0. Given a subspace𝑊 ⊆ R𝑛 , a conformal circuit decomposition of a vector 𝑧 ∈𝑊
is a decomposition

𝑧 =

ℎ∑
𝑘=1

𝑔𝑘 ,

where ℎ ≤ 𝑛 and 𝑔1 , 𝑔2 , . . . , 𝑔ℎ ∈ ℰ(𝑊) are elementary vectors that are conformal with 𝑧. A
fundamental result on elementary vectors asserts the existence of a conformal circuit decomposition,
see e.g. [Ful68; Roc69].

We write 𝑦 ⊑ 𝑥 if 𝑦 conforms to 𝑥 and |𝑦𝑖 | ≤ |𝑥𝑖 | for all 𝑖 ∈ [𝑛].

Lemma 2.0.3. For every subspace𝑊 ⊆ R𝑛 , every 𝑧 ∈𝑊 admits a conformal circuit decomposition.

Proof. Let 𝐹 ⊆ 𝑊 be the set of vectors conformal with 𝑧. The set 𝐹 is a polyhedral cone; its faces
correspond to inequalities of the form 𝑦𝑘 ≥ 0, 𝑦𝑘 ≤ 0, or 𝑦𝑘 = 0. The rays (edges) of 𝐹 are of the form
{ 𝛼𝑔 : 𝛼 ≥ 0 } for 𝑔 ∈ ℰ(𝑊). As 𝑧 ∈ 𝐹, it can be written as a conic combination of at most 𝑛 rays by
the Minkowski–Weyl theorem. Such a decomposition yields a conformal circuit decomposition. □

Computational Model. We use the real model of computation, allowing basic arithmetic opera-
tions +, −, ×, /, comparisons, and square root computations. Exact square root computations could
be omitted by using approximate square roots; we assume exact computations for simplicity.

Throughout, we use 𝑂(·) to hide polylogarithmic factors in 𝑚 and 𝑛, and we use poly(·) to denote
polynomial running time in the arguments.

LP formulation We write the feasible regions of Primal(𝑊, 𝑑) and Dual(𝑊, 𝑐) as

𝒫 ≔ { 𝑥 ∈ R𝑛 : 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0 } , 𝒟 ≔
{
𝑠 ∈ R𝑛 : 𝑠 ∈𝑊⊥ + 𝑐, 𝑠 ≥ 0

}
. (2.3)
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3 Circuit imbalance measures and linear
programming

We study properties and applications of various circuit imbalance measures associated
with linear spaces. These measures describe possible ratios between nonzero entries
of support-minimal nonzero vectors of the space. The fractional circuit imbalance
measure turns out to be a crucial parameter in the context of linear programming,
and two integer variants can be used to describe integrality properties of associated
polyhedra.

We give an overview of the properties of these measures, and survey classical and
recent applications, in particular, for linear programming algorithms with running time
dependence on the constraint matrix only, and for circuit augmentation algorithms.
We also present new bounds on the diameter and circuit diameter of polyhedra in
terms of the fractional circuit imbalance measure.

This chapter is based on joint work with Farbod Ekbatani and László A. Végh [ENV22].

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Properties of the imbalance measures . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Bounds on subdeterminants . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Fractional integrality characterization . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Self-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Matrix representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.5 A basic matroid property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.6 The triangle inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Connections to other condition numbers . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 The condition number �̄� and the lifting operator . . . . . . . . . . . . . . . 34
3.3.2 The condition number 𝛿 and bounds on diameters of polyhedra . . . . . . 36

3.4 Optimizing circuit imbalances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Finding circuits: a detour in matroid theory . . . . . . . . . . . . . . . . . . 41
3.4.2 Perfect balancing: 𝜅∗

𝑊
= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Proximity via Hoffman-bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Circuits, integer proximity, and Graver bases . . . . . . . . . . . . . . . . . . . . . . 51
3.7 A decomposition conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.A On Example 3.2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

20



3 CIRCUIT IMBALANCE MEASURES 3.1 Introduction

3.1 Introduction

Recall that an elementary vector in a subspace is a support-minimal nonzero vector. Elementary
vectors were first studied in the 1960s by Camion [Cam64], Tutte [Tut65], Fulkerson [Ful68], and
Rockafellar [Roc69]. Circuits play a crucial role in matroid theory and have been extremely well
studied. For regular subspaces (i.e., kernels of totally unimodular matrices), elementary vectors
have ±1 entries; this fact has been at the heart of several arguments in network optimization since
the 1950s.

The focus of this chapter is on various circuit imbalance measures. We give an overview of
classical and recent applications, and their relationship with other condition measures. We will
mainly focus on applications in linear programming, mentioning in passing also their relevance to
integer programming.

Three circuit imbalance measures. There are multiple ways to quantify how ‘imbalanced’
elementary vectors of a subspace can be. We define three different measures that capture various
fractionality and integrality properties.

For every 𝐶 ∈ 𝒞𝑊 , the elementary vectors with support 𝐶 form a one-dimensional subspace of
𝑊 . We pick a representative 𝑔𝐶,𝑊 ∈ ℰ(𝑊) from this subspace. If𝑊 is not a rational subspace, we
select 𝑔𝐶,𝑊 arbitrarily. For rational subspaces, we select 𝑔𝐶,𝑊 as an integer vector with the largest
common divisor of the coordinates being 1; this choice is unique up to multiplication by −1. When
clear from the context, we omit the index𝑊 and simply write 𝑔𝐶 . We now define the fractional
circuit imbalance measure and two variants of integer circuit imbalance measure.

Definition 3.1.1 (Circuit imbalances). For a non-trivial linear subspace 𝑊 ⊆ R𝑛 , let us define the
following notions:

• The fractional circuit imbalance measure of𝑊 is

𝜅𝑊 ≔ max

{ ����� 𝑔𝐶𝑗𝑔𝐶
𝑖

����� : 𝐶 ∈ 𝒞𝑊 , 𝑖 , 𝑗 ∈ 𝐶
}
.

• If𝑊 is a rational linear space, the lcm-circuit imbalance measure is

¤𝜅𝑊 ≔ lcm
{

lcm(𝑔𝐶) : 𝐶 ∈ 𝒞𝑊
}
.

• If𝑊 is a rational linear space, the max-circuit imbalance measure is

�̄�𝑊 ≔ max
{
∥𝑔𝐶 ∥∞ : 𝐶 ∈ 𝒞𝑊

}
.

For trivial subspaces 𝑊 , we define 𝜅𝑊 = ¤𝜅𝑊 = �̄�𝑊 = 1. Further, we say that the rational subspace 𝑊 is
anchored if every vector 𝑔𝐶 , 𝐶 ∈ 𝒞𝑊 has a ±1 entry.

Equivalently, in an anchored subspace every elementary vector 𝑔 ∈ ℰ(𝑊) has a nonzero entry
such that all other entries are integer multiples of this entry.

The term circuit imbalance measure will refer to the fractional measure 𝜅𝑊 . Note that 1 ≤ 𝜅𝑊 ≤
�̄�𝑊 ≤ ¤𝜅𝑊 and 𝜅𝑊 = 1 implies �̄�𝑊 = ¤𝜅𝑊 = 1. This case plays a distinguished role and turns out to
be equivalent to𝑊 being a regular linear space (see Theorem 3.2.4).

Another important case is when ¤𝜅𝑊 = 𝑝𝛼 is a prime power. In this case, 𝑊 is anchored, and
𝜅𝑊 = �̄�𝑊 = ¤𝜅𝑊 . The linear space will often be represented as𝑊 = ker(A) for a matrix A ∈ R𝑚×𝑛 .
We will use ℰ(A), 𝒞A, 𝜅A, ¤𝜅A, �̄�A to refer to the corresponding quantities in ker(A).
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3 CIRCUIT IMBALANCE MEASURES 3.2 Properties of the imbalance measures

An earlier systematic study of elementary vectors was done in Lee’s work [Lee89]. He mainly
focused on the max-circuit imbalance measure; we give a quick comparison to the results in
Section 3.2. The fractional circuit imbalance measure played a key role in the paper [DHNV20] on
layered-least-squares interior point methods; it turns out to be a close proxy to the well-studied
condition number �̄�𝑊 . As far as the authors are aware, the lcm-circuit imbalance measure has not
been explicitly studied previously.

Overview and contributions. Section 3.2 gives an overview of fundamental properties of 𝜅𝑊 and
¤𝜅𝑊 . In particular, Section 3.2.1 relates circuit imbalances to subdeterminant bounds. We note that
many extensions of totally unimodular matrices focus on matrices with bounded subdeterminants.
Working with circuit imbalances directly can often lead to stronger and conceptually cleaner
results. Section 3.2.2 presents an extension of the Hoffman-Kruskal characterization of TU matrices.
Section 3.2.3 shows an important self-duality property of 𝜅𝑊 and ¤𝜅𝑊 . Section 3.2.4 studies ‘nice’
matrix representations of subspaces with given lcm-circuit imbalances. Section 3.2.6 proves
a multiplicative triangle-inequality for 𝜅𝑊 . Many of these results were previously shown by
Lee [Lee89], Appa and Kotnyek [AK04], and by Dadush et al. [DHNV20]. We present them in a
unified framework, extend some of the results, and provide new proofs.

Section 3.3 reveals connections between 𝜅𝑊 and the well-studied condition numbers �̄� studied
in the context of interior point methods, and 𝛿 studied—among other topics—in the analysis of the
shadow simplex method. In particular, we show that previous diameter bounds for polyhedra can
be translated to strong diameter bounds in terms of the condition number 𝜅𝑊 (Theorem 3.3.12).

Section 3.4 studies the best possible values of 𝜅𝑊 that can be achieved by rescaling the variables.
We present the algorithm and min-max characterization from [DHNV20]. Further, we characterize
when a subspace can be rescaled to a regular one; we also give a new proof of a theorem from [Lee89].

Section 3.6 gives an outlook to integer programming, showing the relationship between the
max-circuit imbalance and Graver bases. Finally, Section 3.7 formulates a conjecture on circuit
decompositions with bounded fractionality.

3.2 Properties of the imbalance measures

Comparison to well-scaled frames. Lee’s work [Lee89] on ‘well-scaled frames’ investigated the
following closely related concepts. For a set 𝑆 ⊆ Q the rational linear space 𝑊 is 𝑆-regular if for
every elementary vector 𝑔 ∈ ℰ(𝐹), there exists a 𝜆 ≠ 0 such that all nonzero entries of 𝜆𝑔 are in
𝑆. For 𝑆 = {−𝑘, . . . , 𝑘}, the subspace is called 𝑘-regular. For 𝑘,Ω ∈ N, a subspace is 𝑘-adic of order
Ω if it is 𝑆-regular for 𝑆 = {±1,±𝑘, . . . ,±𝑘Ω}. The frame of the subspace 𝑊 refers to the set of
elementary vectors ℰ(𝑊).

Using our terminology, a subspace is 𝑘-regular if and only if �̄�𝑊 = 𝑘, and every 𝑘-adic subspace is
anchored. Many of the properties in this section were explicitly or implicitly shown in Lee [Lee89].
However, it turns out that many properties are simpler and more natural to state in terms of either
𝜅𝑊 and ¤𝜅𝑊 . Roughly speaking, the fractional circuit imbalance 𝜅𝑊 is the key quantity of interest
for continuous properties, particularly relevant for proximity results in linear programming. On
the other hand, the lcm-circuit imbalance ¤𝜅𝑊 captures most clearly the integrality properties. The
max-circuit imbalance �̄�𝑊 interpolates between these two, although, as already noted by Lee, it is
the right quantity for proximity results in integer programming (see Section 3.6).

Appa and Kotnyek [AK04] also use the term 𝑘-regularity in a different sense, as a natural
extension of unimodularity. This turns out to be strongly related to ¤𝜅𝑊 ; see Lemma 3.2.3 and
Corollary 3.2.9.
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3 CIRCUIT IMBALANCE MEASURES 3.2 Properties of the imbalance measures

The key lemma on basis forms. The following simple proposition turns out to be extremely
useful in deriving properties of 𝜅𝑊 and ¤𝜅𝑊 . The first statement is from [DNV20].

Proposition 3.2.1. For every matrix A ∈ R𝑚×𝑛 with rk(A) = 𝑚,

𝜅A = max
{
∥A−1

𝐵 A∥max : A𝐵 non-singular 𝑚 × 𝑚-submatrix of A
}
.

Moreover, for each nonsingular A𝐵, all nonzero entries of A−1
𝐵

A have absolute values between 1/𝜅A and 𝜅A

and are 1/ ¤𝜅A-integral.

Proof. Consider the matrix A′ = A−1
𝐵

A for any non-singular 𝑚 × 𝑚 submatrix A𝐵. Let us renumber
the columns such that 𝐵 corresponds to the first 𝑚 columns. Then, for every 𝑚 + 1 ≤ 𝑗 ≤ 𝑛, the
𝑗th column of A′ corresponds to an elementary vector 𝑔 where 𝑔𝑗 = 1, and 𝑔𝑖 = −A′

𝑖 𝑗
for 𝑖 ∈ [𝑚].

Hence, ∥A′∥max gives a lower bound on 𝜅A. This also implies that all nonzero entries are between
1/𝜅A and 𝜅A. To see that all entries of 𝐴′ are 1/ ¤𝜅𝐴-integral, note that 𝑔 = 𝑔′/𝛼 for a vector 𝑔′ where
all entries are integer divisors of ¤𝜅A. Since 𝑔𝑗 = 1, it follows that 𝛼 itself is an integer divisor of ¤𝜅A.

To see that the maximum in the first statement is achieved, take the elementary vector 𝑔𝐶 that
attains the maximum in the definition of 𝜅A; let 𝑔𝐶

𝑗
be the minimum absolute value element. Let

us select a basis 𝐵 such that 𝐶 \ { 𝑗} ⊆ 𝐵. Then, the largest absolute value in the 𝑗-th column of
A−1
𝐵

A will be 𝜅A. □

3.2.1 Bounds on subdeterminants

For an integer matrix A ∈ Z𝑚×𝑛 , we define

ΔA ≔ max
{
| det(B)| : B is a nonsingular submatrix of A

}
, and

¤ΔA ≔ lcm
{
| det(B)| : B is a nonsingular submatrix of A

}
.

(3.1)

The matrix is TU if ΔA = 1: thus, all subdeterminants are 0 or ±1. This class of matrices plays a
foundational role in combinatorial optimization, see e.g., [Sch98, Chapters 19-20]. A significant
example is the node-arc incidence matrix of a directed graph. A key property is that they define
integer polyhedra, see Theorem 3.2.5 below. A polynomial-time algorithm is known to decide
whether a matrix is TU, based on the deep decomposition theorem by Seymour from 1980 [Sey80].

The next statement is implicit in [Lee89, Proposition 5.3].

Proposition 3.2.2. For every integer matrix A ∈ Z𝑚×𝑛 , �̄�A ≤ ΔA and ¤𝜅A ≤ ¤ΔA.

Proof. Let 𝐶 ∈ 𝒞A be a circuit, and select a submatrix Â ∈ Z(|𝐶 |−1)×|𝐶 | of A where the columns
are indexed by 𝐶, and the rows are linearly independent. Let Â−𝑖 be the square submatrix
resulting from deleting the column corresponding to 𝑖 from Â. From Cramer’s rule, we see that
|𝑔𝐶
𝑖
| = | det(Â−𝑖)|/𝛼 for some 𝛼 ∈ Q, 𝛼 ≥ 1. This implies both claims �̄�A ≤ ΔA and ¤𝜅A ≤ ¤ΔA. □

In Propositions 3.2.18 and 3.2.19, we show that for any matrix A ∈ Q𝑚×𝑛 there exists a matrix
Ã ∈ Z𝑚×𝑛 such that ker(A) = ker(Ã) and ¤ΔÃ ≤ ( ¤𝜅A)𝑚 .

To see an example where ΔA can be much larger than 𝜅A, let A ∈ Z𝑛×(𝑛2) be the node-edge
incidence matrix of a complete undirected graph on 𝑛 nodes (see Figure 3.1); assume 𝑛 is divisible
by 3. The determinant corresponding to any submatrix corresponding to an odd cycle is ±2. Let 𝐻
be an edge set of 𝑛

3 node-disjoint triangles. Then 𝐴𝐻 is a square submatrix with determinant ±2𝑛/3.
In fact, ΔA = 2𝑛/3 in this case, since ΔA for a node-edge incidence matrix equals the maximum
number of node disjoint odd cycles, see [GKS95]. On the other hand, 𝜅A = �̄�A = ¤𝜅A ∈ {1, 2} for the
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(b) the two types of circuits for incidence matrix in undirected graphs

Figure 3.1: Showcased difference in 𝜅 and Δ.

incidence matrix A of any undirected graph; see Section 3.2.2. The difference between the two is
displayed in Figure 3.1.

For TU-matrices, the converse of Proposition 3.2.2 is also true. In 1956, Heller and Tompkins
[Hel57; HT56] introduced the Dantzig property. A matrix A ∈ R𝑚×𝑛 has the Dantzig property if A−1

𝐵
A

is a 0,±1-matrix for every nonsingular 𝑚 × 𝑚 submatrix A𝐵. According to Proposition 3.2.1, this is
equivalent to 𝜅A = 1. Theorem 3.2.4 below can be attributed to Cederbaum [Ced57, Proposition
(v)]; see also Camion’s PhD thesis [Cam64, Theorem 2.4.5(f)]. The key is the following lemma that
we formulate for general 1/ ¤𝜅A for later use.

Lemma 3.2.3. Let A =

[
I𝑚 A′

]
∈ R𝑚×𝑛 . Then, for any nonsingular square submatrix M of A, the

inverse M−1 is 1/ ¤𝜅A-integral, with non-zero entries between 1/𝜅A and 𝜅A in absolute value.

Proof. Let M be any 𝑘 × 𝑘 nonsingular submatrix of A; w.l.o.g., let us assume that it uses the first 𝑘
rows of A. Let 𝐵 be the set of columns of M, along with the 𝑚 − 𝑘 additional columns 𝑖 ∈ [𝑘 + 1, 𝑚],
i.e., the last 𝑚 − 𝑘 unit vectors from I𝑚 . Thus, A𝐵 ∈ R𝑚×𝑚 is also nonsingular. After permuting the
columns, this can be written in the form

A𝐵 =

[
M 0
L I𝑚−𝑘

]
(3.2)
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3 CIRCUIT IMBALANCE MEASURES 3.2 Properties of the imbalance measures

for some L ∈ Z(𝑚−𝑘)×𝑘 . We now use Proposition 3.2.1 for Ã = A−1
𝐵

A. Note that the first 𝑚 columns
of Ã correspond to A−1

𝐵
. Moreover, we see that

A−1
𝐵 =

[
M−1 0
−LM−1 I𝑚−𝑘

]
(3.3)

Thus, M−1 is 1/ ¤𝜅A-integral, with non-zero entries between 1/𝜅A and 𝜅A completing the proof. □

Appa and Kotnyek define 𝑘-regular matrices as follows: a rational matrix A′ ∈ R𝑚×𝑛 is 𝑘-regular
if and only if the inverse of all nonsingular submatrices is 1/𝑘-integral. From the above statement,
it follows that A′ is 𝑘-regular in this sense for 𝑘 = 𝜅[I𝑚 A′]. See also Corollary 3.2.9.

Theorem 3.2.4 (Cederbaum, 1957). Let𝑊 ⊂ R𝑛 be a linear subspace. Then, the following are equivalent.

(i) 𝜅𝑊 = �̄�𝑊 = ¤𝜅𝑊 = 1.

(ii) There exists a TU matrix A, such that𝑊 = ker(A).

(iii) For any matrix A in basis form such that𝑊 = ker(A), A is a TU-matrix.

Proof. (iii)⇒ (ii) is straightforward, and (ii)⇒ (i) follows by Proposition 3.2.2. It remains to show
(i)⇒ (iii). Let rk(𝑊) = 𝑛 − 𝑚, and consider any A ∈ R𝑚×𝑛 in basis form such that𝑊 = ker(A). For
simplicity of notation, assume the basis is formed by the first 𝑚 columns, that is, A = [I𝑚 A′] for
some A′ ∈ R𝑚×(𝑛−𝑚).

Proposition 3.2.1 implies that all entries of A are 0 and ±1. Consider any nonsingular square
submatrix M of A. By Lemma 3.2.3, M−1 is also a 0, ±1 matrix. Consequently, both det(M) and
det(M−1) are nonzero integers, which implies that | det(M)| = 1, as required. □

3.2.2 Fractional integrality characterization

Hoffman and Kruskal [HK56] gave the following characterization of TU matrices. A polyhedron
𝑃 ⊆ R𝑛 is integral if all vertices (i..e., basic feasible solutions) are integer.

Theorem 3.2.5 (Hoffman and Kruskal, 1956). An integer matrix A ∈ Z𝑚×𝑛 is TU if and only if for every
𝑏 ∈ Z𝑚 , the polyhedron

{ 𝑥 ∈ R𝑛 : A𝑥 ≤ 𝑏, 𝑥 ≥ 0 } (3.4)

is integral.

Since ¤𝜅 is a property of the subspace, it will be more convenient to work with the standard
equality form of an LP. Here as well as in Section 3.3.2, we use the following straightforward
correspondence between the two forms. Recall that an edge of a polyhedron is a bounded one
dimensional face; every edge is incident to exactly two vertices. The following statement is standard
and easy to verify.

Lemma 3.2.6. Let A ∈ R𝑚×𝑛 be of the form A =

[
A′ I𝑚

]
for A′ = R𝑚×(𝑛−𝑚). For a vector 𝑏 ∈ R𝑚 , let

𝑃𝑏 ≔ { 𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 𝑥 ≥ 0 } and 𝑃′𝑏 ≔ { 𝑥
′ ∈ R𝑛−𝑚 : A′𝑥′ ≤ 𝑏, 𝑥′ ≥ 0 } . (3.5)

Let 𝐼 = [𝑛 − 𝑚] denote the index set of A′. Then, 𝑃′
𝑏
= 𝜋𝐼(𝑃𝑏), i.e., 𝑃′

𝑏
is the projection of 𝑃𝑏 to the

coordinates in 𝐼. For every vertex 𝑥 of 𝑃𝑏 , 𝑥′ = 𝑥𝐼 is a vertex of 𝑃′
𝑏
, and conversely, for every vertex 𝑥′ of 𝑃′

𝑏
,

there exists a unique vertex 𝑥 of 𝑃 such that 𝑥𝐼 = 𝑥′. There is a one-to-one correspondence between the edges
of 𝑃𝑏 and 𝑃′

𝑏
. Further, if 𝑏 ∈ Z𝑚 , then 𝑃𝑏 is 1/𝑘-integral if and only if 𝑃′

𝑏
is 1/𝑘-integral.
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3 CIRCUIT IMBALANCE MEASURES 3.2 Properties of the imbalance measures

Using Theorem 3.2.4 and Lemma 3.2.6, we can formulate Theorem 3.2.5 in subspace language.

Corollary 3.2.7. Let 𝑊 ⊆ R𝑛 be a linear space. Then, 𝜅𝑊 = 1 if and only if for every 𝑑 ∈ Z𝑛 , the
polyhedron

{ 𝑥 ∈ R𝑛 : 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0 } (3.6)

is integral.

Proof. Let 𝑛′ = 𝑛 − 𝑚 = dim(𝑊). W.l.o.g., assume the last 𝑚 variables form a basis, and let us
represent 𝑊 in a basis form as 𝑊 = ker(A) for 𝐴 =

[
A I𝑚

]
, where A′ ∈ R𝑚×𝑛′ . It follows by

Theorem 3.2.4 that 𝜅𝑊 = 1 if and only if 𝐴 is TU, which is further equivalent to A′ being TU.
Further, note that the system { 𝑥 ∈ R𝑛 : 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0 } coincides with

𝑃𝑏 =
{
𝑥 ∈ R𝑛 :

[
A′ I𝑚

]
𝑥 = 𝑏, 𝑥 ≥ 0

}
, (3.7)

where 𝑏 = A𝑑.
Note that 𝑏 = A𝑑 is integer whenever 𝑑 ∈ Z𝑚 . Moreover, we can obtain every integer vector in

𝑏 ∈ Z𝑚 this way, since A contains an identity matrix. According to Lemma 3.2.6, 𝑃𝑏 is integral if
and only if 𝑃′

𝑏
= {𝑥 ∈ R𝑛−𝑚 : A′𝑥′ ≤ 𝑏, 𝑥′ ≥ 0} is integral. The claim follows by Theorem 3.2.5. □

We provide the following natural generalization. Related statements, although in substantially
more complicated forms, were given in [Lee89, Proposition 6.1 and 6.2].

Theorem 3.2.8. Let𝑊 ⊆ R𝑛 be a linear space. Then, ¤𝜅𝑊 is the smallest integer 𝑘 ∈ Z such that for every
𝑑 ∈ Z𝑛 , the polyhedron { 𝑥 ∈ R𝑛 : 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0 } is 1/𝑘-integral.

Proof. Let dim(𝑊) = 𝑛 −𝑚, and let us represent𝑊 = ker(A) for A ∈ R𝑚×𝑛 . Then, 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0
can be written as A𝑥 = A𝑑, 𝑥 ≥ 0. Let 𝑥 be a basic feasible solution (i.e., vertex) of this system.
Then, 𝑥 = A−1

𝐵
A𝑑. By Proposition 3.2.1, A−1

𝐵
A is 1/ ¤𝜅𝑊 -integral. Thus, if 𝑑 ∈ Z𝑛 then 𝑥 must be also

1/ ¤𝜅𝑊 -integral.
Let us now show the converse direction. Assume { 𝑥 ∈ R𝑛 : 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0 } is 1/𝑘-integral for

every 𝑑 ∈ Z𝑛 . For a contradiction, assume there exists a circuit 𝐶 ∈ 𝒞𝑊 such that the entries of
the elementary vector are not all divisors of 𝑘 (or that 𝑔𝐶 is not even a rational vector if𝑊 is not a
rational space). In particular, select an index ℓ ∈ 𝐶 such that 𝑔𝐶

ℓ
∤ 𝑘, or such that (1/𝑔𝐶

ℓ
)𝑔𝐶 is not

rational.
Let us select a basis 𝐵 ⊆ [𝑛] such that 𝐶 \ 𝐵 = {ℓ }. For simplicity of notation, let 𝐵 = [𝑚]. We can

represent𝑊 = ker(A) in a basis form as A =

[
I𝑚 A′

]
. Let 𝑔 ∈ R𝑛 be defined by 𝑔ℓ = 1, 𝑔𝑗 = −A𝑗ℓ

for 𝑗 ∈ 𝐵 and 𝑔𝑗 = 0 otherwise; thus, 𝑔 = (1/𝑔𝐶
ℓ
)𝑔𝐶 .

Let us pick an integer 𝑡 ∈ N, 𝑡 ≥ ∥𝑔∥∞, and define 𝑑 ∈ Z𝑛 by 𝑑 𝑗 = 𝑡 for 𝑗 ∈ 𝐵, 𝑑ℓ = −1, and 𝑑 𝑗 = 0
otherwise. Then, the basic solution of 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0 corresponding to the basis 𝐵 is obtained as
𝑥 𝑗 = 𝑡 + 𝑔𝑗 for 𝑗 ∈ 𝐵 and 𝑥 𝑗 = 0 for 𝑗 ∈ [𝑛] \ 𝐵. The choice of 𝑡 guarantees 𝑥 ≥ 0. By the assumption,
𝑥 is 1/𝑘-integer, and therefore 𝑔 is also 1/𝑘-integer. Recall that 𝑔 = (1/𝑔𝐶

ℓ
)𝑔𝐶 , where either 𝑔𝐶 ∈ Z𝑛

with lcm(𝑔𝐶) = 1 and 𝑔𝐶
ℓ
∤ 𝑘, or 𝑔 is not rational. Both cases give a contradiction. □

Using again Lemma 3.2.6, we can write this theorem in a form similar to the Hoffman-Kruskal
theorem.

Corollary 3.2.9. Let A =

[
A′ I𝑚

]
∈ R𝑚×𝑛 . Then, ¤𝜅A is the smallest value 𝑘 such that for every 𝑏 ∈ Z𝑚 ,

the polyhedron
{ 𝑥′ ∈ R𝑛−𝑚 : A′𝑥′ ≤ 𝑏, 𝑥′ ≥ 0 } (3.8)

is 1/𝑘-integral.
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Appa and Kotnyek [AK04, Theorem 17] show that 𝑘-regularity of A′ (in the sense that the inverse
of every square submatrix is 1/𝑘-integral) is equivalent to the property above.

Subspaces with ¤𝜅A = 2. The case ¤𝜅𝑊 = 2 is a particularly interesting class. As already noted, it
includes incidence matrices of undirected graphs, and according to Theorem 3.2.8, it corresponds
to half-integer polytopes. This class includes the following matrices, first studied by Edmonds and
Johnson [EJ70]; the following result follows e.g., from [AK04; GS86; HMNT93].

Theorem 3.2.10. Let A ∈ Z𝑚×𝑛 such that for each column 𝑗 ∈ [𝑛], ∑𝑚
𝑖=1 |A𝑖 𝑗 | ≤ 2. Then ¤𝜅A ∈ {1, 2}.

Appa and Kotnyek [AK04] define binet matrices as A′ = A−1
𝐵

A for a matrix A as in Theorem 3.2.10
for a basis 𝐵. These matrices have ¤𝜅A′ ∈ {1, 2} since they define the same subspace.

Deciding whether a matrix has ¤𝜅A = 2 (or more generally, ¤𝜅A = 𝑘 for a fixed constant 𝑘) is an
interesting open question: is it possible to extend Seymour’s decomposition [Sey80] from TU
matrices? The matrices in Theorem 3.2.10 could be a natural building block of such a decomposition.

3.2.3 Self-duality

We next show that both 𝜅𝑊 and ¤𝜅𝑊 are self-dual. These rely on the following duality property of
circuits. We introduce the following more refined quantities that will also come useful later on.

Definition 3.2.11 (Pairwise Circuit Imbalances). For a space𝑊 ⊆ R𝑛 and variables 𝑖 , 𝑗 ∈ [𝑛] we define

𝒦𝑊
𝑖𝑗 ≔

{ ���� 𝑔𝑗𝑔𝑖
���� : {𝑖 , 𝑗} ⊆ supp(𝑔), 𝑔 ∈ ℰ(𝑊)

}
, 𝜅𝑊𝑖𝑗 ≔ max𝒦𝑊

𝑖𝑗 ,

¤𝒦𝑊
𝑖𝑗 ≔

{
lcm(𝑝, 𝑞) : 𝑝, 𝑞 ∈ N, gcd(𝑝, 𝑞) = 1,

𝑝

𝑞
∈ 𝒦𝑊

𝑖𝑗

}
.

(3.9)

We call 𝜅𝑊
𝑖𝑗

the pairwise imbalance between 𝑖 and 𝑗.

Cleary, 𝜅𝑊 = max𝑖 , 𝑗∈[𝑛] 𝜅𝑊𝑖𝑗 for a nontrivial linear space𝑊 . We use the following simple lemma.

Lemma 3.2.12. Consider a matrix A ∈ R𝑚×𝑛 in basis form for 𝐵 ⊆ [𝑛], i.e., A𝐵 = I𝑚 . Let𝑊 = ker(A);
thus,𝑊⊥ = span(A⊤). The following hold.

(i) The rows of A form a circuit basis of𝑊⊥, denoted as ℰ𝐵(𝑊⊥).

(ii) For any two rows A𝑖 ,A𝑗 , 𝑖 , 𝑗 ∈ 𝐵, 𝑖 ≠ 𝑗, and 𝑘 ∈ [𝑛] \ 𝐵, the vector ℎ = A𝑗𝑘A𝑖 − A𝑖𝑘A𝑗 fulfills
ℎ ∈ ℰ(𝑊⊥).

Proof. For part (i), the rows are linearly independent and span𝑊⊥. Therefore, every 𝑔 ∈𝑊⊥ must
have supp(𝑔) ∩ 𝐵 ≠ ∅, and if supp(𝑔) ∩ 𝐵 = {𝑖} then 𝑔 = 𝑔𝑖A𝑖 . These two facts imply that each A𝑖

is support minimal in𝑊⊥, that is, A𝑖 ∈ ℰ(𝑊⊥).
For part (ii), there is nothing to prove if A𝑖𝑘 = 0 or A𝑗𝑘 = 0; for the rest, assume both are nonzero.

Assume for a contradiction ℎ ∉ ℰ(𝑊⊥); thus, there exists a 𝑔 ∈𝑊⊥, 𝑔 ≠ 0 and supp(𝑔) ⊊ supp(ℎ).
We have supp(ℎ) ∩ 𝐵 = {𝑖 , 𝑗}. If supp(𝑔) ∩ 𝐵 ⊊ {𝑖 , 𝑗}, as above we get that 𝑔 = 𝑔𝑖A𝑖 or 𝑔 = 𝑔𝑗A𝑗 ,
a contradiction since ℎ𝑘 = 0 but A𝑖𝑘 ,A𝑗𝑘 ≠ 0. Hence, supp(𝑔) ∩ 𝐵 = {𝑖 , 𝑗}. By part (i), we have
𝑔 = 𝑔𝑖A𝑖 + 𝑔𝑗A𝑗 ; and since ℎ𝑘 = 0 it follows that 𝑔𝑖/𝑔𝑗 = −A𝑗𝑘/A𝑖𝑘 ; thus, 𝑔 is a scalar multiple of ℎ,
a contradiction. □

Lemma 3.2.13. For any 𝑖 , 𝑗 ∈ [𝑛] we have𝒦𝑊
𝑖𝑗

=

{
𝛼−1 : 𝛼 ∈ 𝒦𝑊⊥

𝑗𝑖

}
. Equivalently: for every elementary

vector 𝑔 ∈ ℰ(𝑊) with indices 𝑖 , 𝑗 ∈ supp(𝑔) there exists an elementary vector ℎ ∈ ℰ(𝑊⊥) such that
|ℎ𝑖/ℎ 𝑗 | = |𝑔𝑗/𝑔𝑖 |.
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Proof. Let 𝑔 ∈ ℰ(𝑊) such that 𝑖 , 𝑗 ∈ supp(𝑔). If supp(𝑔) = {𝑖 , 𝑗} then any ℎ ∈ ℰ(𝑊⊥) with
𝑖 ∈ supp(ℎ) fulfills 𝑔𝑖ℎ𝑖 + 𝑔𝑗ℎ 𝑗 = ⟨𝑔, ℎ⟩ = 0, so 𝑗 ∈ supp(ℎ) and |ℎ𝑖/ℎ 𝑗 | = |𝑔𝑗/𝑔𝑖 |.

Else, there exists 𝑘 ∈ supp(𝑔) \ {𝑖 , 𝑗}. Let us select a basis 𝐵 ofℳ(𝑊) with supp(𝑔) \ 𝐵 = {𝑘}.
Let A ∈ R𝑚×𝑛 be a matrix in basis form for 𝐵 with ker(A) = 𝑊 , and let ℎ = A𝑗𝑘A𝑖 − A𝑖𝑘A𝑗 , an
elementary vector in ℰ(𝑊⊥) by Lemma 3.2.12(ii).

By the construction, |ℎ𝑖/ℎ 𝑗 | = |A𝑗𝑘/A𝑖𝑘 |. On the other hand,
〈
𝑔,A𝑖

〉
= 0 and supp(𝑔) \ 𝐵 = {𝑘}

implies 𝑔𝑖 = −𝑔𝑘A𝑖𝑘 and similarly
〈
𝑔,A𝑗

〉
= 0 implies 𝑔𝑗 = −𝑔𝑘A𝑗𝑘 . The claim follows. □

For 𝜅𝑊 , duality is immediate from the above:

Proposition 3.2.14 ([DHNV20]). For any linear subspace𝑊 ⊆ R𝑛 , we have 𝜅𝑊 = 𝜅𝑊⊥ .

Let us now show duality also for ¤𝜅𝑊 ; this was shown in [Lee89, Lemma 2.1] in a slightly different
form.

Proposition 3.2.15. For any rational linear subspace𝑊 ⊆ R𝑛 , we have ¤𝜅𝑊 = ¤𝜅𝑊⊥ .

Proof. Recall the 𝑝-adic valuation 𝜈𝑝(𝑛) defined in (2.1). It suffices to show that 𝜈𝑝( ¤𝜅𝑊 ) = 𝜈𝑝( ¤𝜅𝑊⊥)
for any prime 𝑝 ∈ P. We can reformulate as

𝜈𝑝( ¤𝜅𝑊 ) = 𝜈𝑝
(
lcm

{
lcm(𝑔𝐶) : 𝐶 ∈ 𝒞𝑊

})
= max

{
𝜈𝑝(lcm(𝑔𝐶)) : 𝐶 ∈ 𝒞𝑊

}
= max

{
𝜈𝑝(𝛼) : 𝑖 , 𝑗 ∈ [𝑛], 𝛼 ∈ ¤𝒦𝑊

𝑖𝑗

}
.

Lemma 3.2.13 implies that the last expression is the same for𝑊 and𝑊⊥. □

We next show that 𝜅𝑊 and ¤𝜅𝑊 are monotone under projections and restrictions of the subspace.

Lemma 3.2.16. For any linear subspace𝑊 ⊆ R𝑛 , 𝐽 ⊆ [𝑛] and 𝑖 , 𝑗 ∈ 𝐽, we have

𝒦𝜋𝐽 (𝑊)
𝑖 𝑗

⊆ 𝒦𝑊
𝑖𝑗 , 𝒦

𝑊𝐽

𝑖 𝑗
⊆ 𝒦𝑊

𝑖𝑗 ,
¤𝒦𝜋𝐽 (𝑊)
𝑖 𝑗

⊆ ¤𝒦𝑊
𝑖𝑗 , and ¤𝒦𝑊𝐽

𝑖 𝑗
⊆ ¤𝒦𝑊

𝑖𝑗 .

Proof. Let 𝑔 ∈ ℰ(𝑊𝐽). Then (𝑔, 0[𝑛]\𝐽) ∈ ℰ(𝑊) and so𝒦𝑊𝐽

𝑖 𝑗
⊆ 𝒦𝑊

𝑖𝑗
. Note that 𝜋𝐽(𝑊) = ((𝑊⊥)𝐽)⊥ and

so by Lemma 3.2.13,

𝒦𝜋𝐽 (𝑊)
𝑖 𝑗

=

{
𝛼−1 : 𝛼 ∈ 𝒦 (𝑊

⊥)𝐽
𝑗𝑖

}
⊆

{
𝛼−1 : 𝛼 ∈ 𝒦𝑊⊥

𝑗𝑖

}
= 𝒦𝑊

𝑖𝑗 . (3.10)

The same arguments extend to ¤𝒦 𝑖 𝑗 . □

Proposition 3.2.17. For any linear subspace𝑊 ⊆ R𝑛 and 𝐽 ⊆ [𝑛], we have

𝜅𝑊𝐽
≤ 𝜅𝑊 , 𝜅𝜋𝐽 (𝑊) ≤ 𝜅𝑊 , ¤𝜅𝑊𝐽

≤ ¤𝜅𝑊 , and ¤𝜅𝜋𝐽 (𝑊) ≤ ¤𝜅𝑊 .

3.2.4 Matrix representations

Proposition 3.2.1 already tells us that any rational matrix of the form A =

[
I𝑚 A′

]
is 1/ ¤𝜅A-integral,

and according to Lemma 3.2.3, the inverse of every non-singular square submatrix of A is also 1/ ¤𝜅A-
integral. It is natural to ask whether every linear subspace𝑊 can be represented as𝑊 = ker(A) for
an integer matrix A with the same property on the inverse matrices.
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We show that this is true if the dual space is anchored but false in general. Recall that this means
that every elementary vector 𝑔𝐶 , 𝐶 ∈ 𝒞𝑊⊥ has a ±1 entry. In particular, ¤𝜅𝑊 = 𝑝𝛼 for some prime
number 𝑝 ∈ P implies that both𝑊 and𝑊⊥ are anchored; in this case we also have 𝜅𝑊 = ¤𝜅𝑊 .

In [Lee89, Section 7], it is shown that if 𝐵 is a basis minimizing | det(A𝐵)| for a full rank A ∈ R𝑚×𝑛 ,
then every nonzero entry in A−1

𝐵
A is at least 1 in absolute value. Moreover, a simple greedy

algorithm is proposed (called 1-OPT) that finds such a basis within 𝑚 pivots for 𝑘-adic spaces.
Our next statement can be seen as the variant of this for anchored-spaces, using the lcm-circuit
imbalance ¤𝜅A. We note that finding a basis minimizing | det(A𝐵)| is computationally hard in
general [Kha95b].

Proposition 3.2.18. Let𝑊 ⊆ R𝑛 , dim(𝑊) = 𝑛 − 𝑚 be a rational subspace such that𝑊⊥ is an anchored
space. Then there exists an integer matrix A ∈ Z𝑚×𝑛 such that ker(A) =𝑊 , and

(i) All entries of A divide ¤𝜅𝑊 .

(ii) For all non-singular submatrices M of A, M−1 is 1
¤𝜅𝑊 -integral.

(iii) ¤ΔA is an integer divisor of ( ¤𝜅𝑊 )𝑚 .

Proof. Let Ā ∈ Q𝑚×𝑛 be an arbitrary matrix with ker(Ā) =𝑊 . By performing row operations we
can convert Ā into A =

[
D A′

]
∈ Z𝑚×𝑛 where D ∈ 𝔇𝑚 is positive diagonal and A′ ∈ Z𝑚×(𝑛−𝑚)

(after possibly permuting the columns). If D = I𝑚 , then we are already done. Property (i)
follows by Proposition 3.2.1; property (ii) follows by Lemma 3.2.3, and property (iii) holds since
det(M) · det(M−1) = 1, det(M) ∈ Z, and det(M−1) is 1

( ¤𝜅𝑊 )𝑚 -integral.

If D is not the identity matrix, then we show that A can be brought to the form
[
I𝑚 A′′

]
with an

integer A′′ by performing further basis exchanges. Let us assume that gcd(A𝑖) = 1 for all rows A𝑖 ,
𝑖 ∈ [𝑚]. By Lemma 3.2.13, A𝑖 ∈ ℰ(𝑊⊥). Assume D𝑖𝑖 = A𝑖𝑖 > 1 for some 𝑖 ∈ [𝑚]. As A𝑖 is a circuit
and𝑊⊥ is anchored, there exists an index 𝑘 ∈ [𝑛] such that |A𝑖𝑘 | = 1.

Let us perform a basis exchange between columns 𝑖 and 𝑘. That is, subtract integer multiples of
row 𝑖 from the other rows to turn column 𝑘 into 𝑒 𝑖 . We then swap columns 𝑖 and 𝑘 and obtain the
matrix again in the form

[
D′ A′′

]
. Notice that the matrix remains integral, D′

𝑖𝑖
= 1, and D′

𝑗 𝑗
= D𝑗 𝑗

for 𝑗 ∈ [𝑚], 𝑗 ≠ 𝑖. Hence, repeating this procedure at most 𝑛 times, we can convert the matrix to the
integer form

[
I𝑚 A′

]
, completing the proof. □

Note that the proof gives an algorithm to find such a basis representation using a Gaussian
elimination and at most 𝑚 additional pivot operations. If 𝑊⊥ is not anchored, we show the
following weaker statement.

Proposition 3.2.19. Let𝑊 ⊆ R𝑛 , dim(𝑊) = 𝑛 − 𝑚 be a rational subspace. Then there exists an integer
matrix A ∈ Z𝑚×𝑛 with ker(A) =𝑊 such that

(i) All entries of A divide ¤𝜅𝑊 ;

(ii) For all non-singular submatrices M of A, M−1 is 1
( ¤𝜅𝑊 )2 -integral.

(iii) ¤ΔA is an integer divisor of ( ¤𝜅𝑊 )𝑚 .

Proof. The proof is an easy consequence of Proposition 3.2.1 and Lemma 3.2.3. Consider any
basis form A =

[
I𝑚 A′

]
with ker(A) = 𝑊 (after possibly permuting the columns). According

to Proposition 3.2.1, all entries of A are 1/ ¤𝜅𝑊 integral. By Lemma 3.2.13, the rows A𝑖 ∈ ℰ(𝑊⊥)
for 𝑖 ∈ [𝑚]. We can write A𝑖 = 𝑔 𝑖/𝑑𝑖 for some 𝑔 𝑖 ∈ ℰ(𝑊⊥) ∩Z𝑚 and 𝑑𝑖 ∈ Q such that gcd(𝑔 𝑖) = 1
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for each 𝑖 ∈ [𝑚]. By the definition of ¤𝜅A, the entries of each 𝑔 𝑖 are divisors of ¤𝜅A. Since A𝑖𝑖 = 1
it follows that 𝑑𝑖 ∈ Z and 𝑑𝑖 | ¤𝜅A. Let D ∈ 𝔇𝑚 be the diagonal matrix with entries D𝑖𝑖 = 𝑑𝑖 .
Then, Ā = DA is an integer matrix where all entries divide ¤𝜅A, proving (i). Part (ii) follows by
Lemma 3.2.3 and noting that the subdeterminants get multiplied by a submatrix D−1.

For part (iii), let us start use a basis 𝐵 such that | det(A𝐵)| is maximal; w.l.o.g. assume 𝐵 = [𝑚].
Then, in the basis form

[
I𝑚 A′

]
for 𝐵, all subdeterminants are ≤ 1. This holds as for any submatrix

M ∈ Q𝑘×𝑘 of A′ with det(M) ≠ 0 we have that augmenting the columns of M by the columns 𝑖 ∈ 𝐵

such that 𝑖 is not a row of M results in a basis 𝐵𝑀 with | det(M)| =
����det

( [
I𝑚 A′

]
𝐵𝑀

)���� ≤ det(I𝑚) = 1

by assumption on 𝐵. After multiplying by D as above, Ā = DA, all subdeterminants will be
≤ det(D) ≤ ( ¤𝜅A)𝑚 . □

Note that parts (i) and (ii) are true for any choice of the basis form, whereas (iii) requires one
to select A𝐵 with maximum determinant. The maximum subdeterminant is NP-hard even to
approximate better than 𝑐𝑚 for some 𝑐 > 1 [DEFM14]. However, it is easy to see that even if we
start with an arbitrary basis, then ¤ΔA | ( ¤𝜅𝑊 )2𝑚 , since every subdeterminant of A−1

𝐵
A is at most

( ¤𝜅𝑊 )𝑚 follows by Lemma 3.2.3.
We now give an example to illustrate why Proposition 3.2.18(ii) cannot hold for arbitrary values

of ¤𝜅𝑊 . The proof is given in the Appendix.

Example 3.2.20. Consider the matrix

A =

[
1 3 4 3
0 13 9 10

]
. (3.11)

For this matrix ¤𝜅A = 5850 = 2×32×52×13 holds, and there exists no Ã ∈ Z2×4 such that ker(Ã) = ker(A)
and the inverse of every nonsingular 2 × 2 submatrix of Ã is 1/5850-integral.

3.2.5 A basic matroid property

We need some simple concepts and results from matroid theory. We refer the reader to [Sch03,
Chapter 39] or [Fra11, Chapter 5] for definitions and background. Letℳ = ([𝑛],ℐ) be a matroid
on ground set [𝑛] with independent sets ℐ ⊆ 2[𝑛]. The rank rk(𝑆) of a set 𝑆 ⊆ [𝑛] is the maximum
size of an independent set contained in 𝑆. The maximal independent sets are called bases. All bases
have the same cardinality rk([𝑛]).

For the matrix A ∈ R𝑚×𝑛 , we will work with the linear matroidℳ(A) = ([𝑛],ℐ(A)), where
a subset 𝐼 ⊆ [𝑛] is independent if the columns {A𝑖 : 𝑖 ∈ 𝐼 } are linearly independent. Note that
rk([𝑛]) = 𝑚 under the assumption that 𝐴 has full row rank.

Recall that the circuits of the matroid are the inclusion-wise minimal non-independent sets. Let
𝐼 ∈ ℐ be an independent set, and 𝑖 ∈ [𝑛] \ 𝐼 such that 𝐼 ∪ {𝑖} ∉ ℐ. Then, there exists a unique circuit
𝐶(𝐼 , 𝑖) ⊆ 𝐼 ∪ {𝑖} that is called the fundamental circuit of 𝑖 with respect to 𝐼. Note that 𝑖 ∈ 𝐶(𝐼 , 𝑖).

Recall that the matroidℳ is separable if the ground set [𝑛] can be partitioned to two nonempty
subsets [𝑛] = 𝑆 ∪ 𝑇 such that 𝐼 ∈ ℐ if and only if 𝐼 ∩ 𝑆, 𝐼 ∩ 𝑇 ∈ ℐ. In this case, the matroid is the
direct sum of its restrictions to 𝑆 and 𝑇. In particular, every circuit is fully contained in 𝑆 or in 𝑇.

For the linear matroidℳ(A), separability means that ker(A) = ker(A𝑆) × ker(A𝑇). In this case,
solving System 1.1 can be decomposed into two subproblems, restricted to the columns in A𝑆 and
in A𝑇 , and 𝜅A = max{𝜅A𝑆

, 𝜅A𝑇
}.

Hence, we can focus on non-separable matroids. The following characterization is well-known, see
e.g. [Fra11, Theorems 5.2.5, 5.2.7–5.2.9]. For a hypergraph 𝐻 = ([𝑛], ℰ), we define the underlying
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graph 𝐻𝐺 = ([𝑛], 𝐸) such that (𝑖 , 𝑗) ∈ 𝐸 if there is a hyperedge 𝑆 ∈ ℰ with 𝑖 , 𝑗 ∈ 𝑆. That is, we add
a clique corresponding to each hyperedge. The hypergraph is called connected if the underlying
graph 𝐺 = ([𝑛], 𝐸) is connected.

Proposition 3.2.21. For a matroidℳ = ([𝑛],ℐ), the following are equivalent:

(i) ℳ is non-separable.

(ii) The hypergraph of the circuits is connected.

(iii) For any base 𝐵 ofℳ, the hypergraph formed by the fundamental circuits 𝒞𝐵 = { 𝐶(𝐵, 𝑖) : 𝑖 ∈ [𝑛] \ 𝐵 }
is connected.

(iv) For any 𝑖 , 𝑗 ∈ [𝑛], there exists a circuit containing 𝑖 and 𝑗.

Proof. The implications (i)⇔ (ii), (iii)⇒ (ii), and (iv)⇒ (ii) are immediate from the definitions.
For the implication (ii)⇒ (iii), assume for a contradiction that the hypergraph of the fundamental

circuits with respect to 𝐵 is not connected. This means that we can partition [𝑛] = 𝑆 ∪ 𝑇 such
that for each 𝑖 ∈ 𝑆, 𝐶(𝐵, 𝑖) ⊆ 𝑆, and for each 𝑖 ∈ 𝑇, 𝐶(𝐵, 𝑖) ⊆ 𝑇. Consequently, rk(𝑆) = |𝐵 ∩ 𝑆 |,
rk(𝑇) = |𝐵∩𝑇 |, and therefore rk([𝑛]) = rk(𝑆)+ rk(𝑇). It is easy to see that this property is equivalent
to separability to 𝑆 and 𝑇; see e.g. [Fra11, Theorem 5.2.7] for a proof.

Finally, for the implication (ii)⇒ (iv), consider the undirected graph ([𝑛], 𝐸)where (𝑖 , 𝑗) ∈ 𝐸 if
there is a circuit containing both 𝑖 and 𝑗. This graph is transitive according to [Fra11, Theorem
5.2.5]: if (𝑖 , 𝑗), (𝑗 , 𝑘) ∈ 𝐸, then also (𝑖 , 𝑘) ∈ 𝐸. Consequently, whenever ([𝑛], 𝐸) is connected, it must
be a complete directed graph. □

3.2.6 The triangle inequality

An interesting additional fact about circuit imbalances is that the logarithm of the weights satisfy
the triangle inequality; this was shown in [DHNV20]. Here, we formulate a stronger version and
give a simpler proof. Throughout, we assume thatℳ(𝑊) is non-separable. Thus, according to
Proposition 3.2.21, for any 𝑖 , 𝑗 ∈ [𝑛] there is a circuit 𝐶 ∈ 𝒞𝑊 with 𝑖 , 𝑗 ∈ 𝐶.

Theorem 3.2.22. Let𝑊 ⊆ R𝑛 be a linear space, and assumeℳ(𝑊) is non-separable. Then,

(i) for any distinct 𝑖 , 𝑗 , 𝑘 ∈ [𝑛],𝒦𝑊
𝑖𝑗
⊆ 𝒦𝑊

𝑖𝑘
· 𝒦𝑊

𝑘𝑗
; and

(ii) for any distinct 𝑖 , 𝑗 , 𝑘 ∈ [𝑛], 𝜅𝑖 𝑗 ≤ 𝜅𝑖𝑘 · 𝜅𝑘 𝑗 .

Proof of part (i) in [DHNV20]. Let A ∈ R𝑚×𝑛 be a full-rank matrix with 𝑊 = ker(A). If 𝐶 = {𝑖 , 𝑗},
then the columns A𝑖 ,A𝑗 are linearly dependent. Writing A𝑖 = 𝜆A𝑗 , we have 𝜆 = −𝑔𝐶

𝑗
/𝑔𝐶

𝑖
. Let

ℎ be any circuit solution with 𝑖 , 𝑘 ∈ supp(ℎ), and hence 𝑗 ∉ supp(ℎ). By assumption, the vector
ℎ′ = ℎ − ℎ𝑖𝑒 𝑖 + 𝜆ℎ𝑖𝑒 𝑗 will satisfy Aℎ′ = 0 and have 𝑖 ∉ supp(ℎ′), 𝑗 , 𝑘 ∈ supp(ℎ′). We know that ℎ′ is
a circuit solution, because any circuit 𝐶′ ⊂ supp(ℎ′) could, by the above process in reverse, be used
to produce a kernel solution with strictly smaller support than ℎ, contradicting the assumption
that ℎ is a circuit solution. Now we have |ℎ′

𝑗
/ℎ′

𝑘
| · |ℎ𝑘/ℎ𝑖 | = |ℎ′𝑗/ℎ𝑖 | = |𝜆| by construction. Thus, ℎ

and ℎ′ are the circuit solutions we are looking for.
Now assume 𝐶 ≠ {𝑖 , 𝑗}. If 𝑘 ∈ 𝐶, the statement is trivially true with 𝐶 = 𝐶1 = 𝐶2, so assume

𝑘 ∉ 𝐶. Pick 𝑙 ∈ 𝐶, 𝑙 ∉ {𝑖 , 𝑗} and set 𝐵 = 𝐶 \ {𝑙}. Assume without loss of generality that 𝐵 ⊆ [𝑚]
and apply row operations to A such that A𝐵,𝐵 = I𝐵×𝐵 is an identity submatrix and A[𝑚]\𝐵,𝐵 = 0.
Then the column A𝑙 has support given by 𝐵, for otherwise 𝑔𝐶 could not be in the kernel. The given
circuit solution satisfies 𝑔𝐶𝑡 = −A𝑡 ,𝑙 𝑔

𝐶
𝑙

for all 𝑡 ∈ 𝐵, and in particular 𝑔𝐶
𝑗
/𝑔𝐶

𝑖
= A𝑗 ,𝑙/A𝑖 ,𝑙 .
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Take any circuit solution ℎ ∈ ker(A) such that 𝑙 , 𝑘 ∈ supp(ℎ) and such that 𝐶 ∪ supp(ℎ) is
inclusion-wise minimal. Such a vector exists by Proposition 3.2.21(iv). Now let 𝐽 = supp(ℎ) \ 𝐶.
Because A[𝑚]\𝐵,𝐶 = 0 and Aℎ = 0, we must have 0 ≠ ℎ𝐽 ∈ ker(A[𝑚]\𝐵,𝐽). We show that we can
uniquely lift any vector 𝑥 ∈ ker(A𝐵,𝐶∪{𝑘}) to a vector 𝑥′ ∈ ker(A𝐶∪𝐽)with 𝑥′

𝐶∪𝑘 = 𝑥. Since this lift
will send circuit solutions to circuit solutions by uniqueness, it suffices to find our desired circuits
as solutions to the smaller linear system.

We first prove that dim(ker(A[𝑚]\𝐵,𝐽)) = 1. For suppose that dim(ker(A[𝑚]\𝐵,𝐽)) ≥ 2, then |𝐽 | ≥ 2
and there would exist some vector 𝑦 ∈ ker(A[𝑚]\𝐵,𝐽) linearly independent of ℎ𝐽 with 𝑘 ∈ supp(𝑦).
This vector could be uniquely lifted to a vector �̄� ∈ ker(A), and we could then find a linear
combination ℎ + 𝛼 �̄� such that supp(ℎ + 𝛼 �̄�) ⊊ 𝐶 ∪ 𝐽 but 𝑙 , 𝑘 ∈ supp(ℎ + 𝛼 �̄�). The existence of such
a vector contradicts the minimality of 𝐶 ∪ supp(ℎ). As such, we know that dim(ker(A[𝑚]\𝐵,𝐽)) = 1.

This clear linear relation between any two entries in 𝐽 for any vector in ker(A[𝑚]\𝐵,𝐽) implies that
we can apply row operations to A such that A𝐵,𝐽 has non-zero entries only in the column A𝐵,{𝑘}.
Note that these row operations leave A𝐶 unchanged because A[𝑚]\𝐵,𝐶 = 0. From this, we can see
that any element in ker(A𝐵,𝐶∪{𝑘}) can be uniquely lifted to an element in ker(A𝐶∪𝐽). Hence we can
focus on ker(A𝐵,𝐶∪{𝑘}).

If A𝑖 ,𝑘 = A𝑗 ,𝑘 = 0, then any 𝑥 ∈ ker(A𝐵,𝐶∪{𝑘}) satisfies 𝑥𝑖 + A𝑖 ,𝑙𝑥𝑙 = 𝑥 𝑗 + A𝑗 ,𝑙𝑥𝑙 = 0 and, in
particular, any circuit 𝑙 , 𝑘 ∈ �̄� ⊂ 𝐶 ∪ {𝑘} contains {𝑖 , 𝑗} ⊂ �̄� and fulfills |𝑔𝐶

𝑗
/𝑔𝐶

𝑖
| = |A𝑗 ,𝑙/A𝑖 ,𝑙 | =

|𝑔�̄�
𝑗
/𝑔�̄�

𝑖
| = |𝑔�̄�

𝑗
/𝑔�̄�

𝑘
| |𝑔�̄�

𝑘
/𝑔�̄�

𝑖
|. Choosing 𝐶1 = 𝐶2 = �̄� concludes the case.

Otherwise, we know that A𝑖 ,𝑘 ≠ 0 or A𝑗 ,𝑘 ≠ 0, meaning that ker(A{𝑖 , 𝑗},{𝑖 , 𝑗 ,𝑙 ,𝑘}) contains at least
one circuit solution with 𝑘 in its support. Observe that any circuit in ker(A{𝑖 , 𝑗},{𝑖 , 𝑗 ,𝑙 ,𝑘}) can be lifted
uniquely to an element in ker(A𝐵,𝐶∪{𝑘}) since A𝐵,𝐵 is an identity matrix and we can set the entries of
𝐵 \ {𝑖 , 𝑗} individually to satisfy the equalities. Note that this lifted vector is a circuit as well, again
by uniqueness of the lift. Hence, we may restrict our attention to the matrix A{𝑖 , 𝑗},{𝑖 , 𝑗 ,𝑙 ,𝑘}. If the
columns A{𝑖 , 𝑗},𝑘 ,A{𝑖 , 𝑗},𝑙 are linearly dependent, then any circuit solution to A{𝑖 , 𝑗},{𝑖 , 𝑗 ,𝑙}𝑥 = 0, 𝑥𝑙 ≠ 0,
such as 𝑔𝐶{𝑖 , 𝑗 ,𝑙}, is easily transformed into a circuit solution to A{𝑖 , 𝑗},{𝑖 , 𝑗 ,𝑘}𝑥 = 0, 𝑥𝑘 ≠ 0, and we are
done.

If A{𝑖 , 𝑗},𝑘 ,A{𝑖 , 𝑗},𝑙 are independent, we can write A{𝑖 , 𝑗},{𝑖 , 𝑗 ,𝑙 ,𝑘} =
( 1 0 𝑎 𝑐

0 1 𝑏 𝑑

)
, where 𝑔𝐶

𝑗
/𝑔𝐶

𝑖
= 𝑏/𝑎. For

𝛼 = 𝑎𝑑 − 𝑏𝑐, which is non-zero since 𝛼 = det(( 𝑎 𝑐𝑏 𝑑 )) ≠ 0 by the independence assumption, we can
check that (𝛼, 0,−𝑑, 𝑏)⊤ and (0, 𝛼, 𝑐,−𝑎)⊤ are the circuits we are looking for. □

The alternative proof of Theorem 3.2.22 relies on the following technical lemma that analyzes
the scenario when almost all vectors in𝑊 are elementary.

Lemma 3.2.23. Let𝑊 ⊆ R𝑛 be a subspace s.t.ℳ(𝑊) is non-separable.

(i) If ℰ(𝑊) =
{
𝑔 ∈𝑊 \ {0} : supp(𝑔) ≠ [𝑛]

}
, then𝒦𝑊

𝑖𝑗
⊆ 𝒦𝑊

𝑖𝑘
· 𝒦𝑊

𝑘𝑗
.

(ii) If there exists 𝑔 ∈ ℰ(𝑊) such that |supp(𝑔)| = 𝑛 − 1, then

ℰ(𝑊) =
{
𝑔 ∈𝑊 \ {0} : supp(𝑔) ≠ [𝑛]

}
.

Proof. For part (i), let 𝛿 ∈ 𝒦𝑊
𝑖𝑗

and let 𝑔 ∈ ℰ(𝑊) such that {𝑖 , 𝑗} ⊆ supp(𝑔) and |𝑔𝑗/𝑔𝑖 | = 𝛿. If
𝑘 ∈ supp(𝑔), then |𝑔𝑗/𝑔𝑖 | = |𝑔𝑘/𝑔𝑖 | · |𝑔𝑗/𝑔𝑘 | shows the claim.

Assume 𝑘 ∉ supp(𝑔), and pick ℎ ∈ ℰ(𝑊) such that {𝑖 , 𝑘} ⊆ supp(ℎ) and let ℎ̃ = ℎ 𝑗 𝑔 − 𝑔𝑗ℎ; such
a ℎ exists by Proposition 3.2.21. Then ℎ̃ 𝑗 = 0 and ℎ̃𝑘 ≠ 0, so ℎ̃ ∈ ℰ(𝑊) by the assumption. If ℎ̃𝑖 = 0
then ℎ 𝑗 𝑔𝑖 = 𝑔𝑗ℎ𝑖 and so {𝑖 , 𝑗 , 𝑘} ⊆ supp(ℎ) with ℎ 𝑗/ℎ𝑖 = 𝑔𝑗/𝑔𝑖 , therefore ℎ certifies the statement
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as |ℎ 𝑗/ℎ𝑖 | = |ℎ𝑘/ℎ𝑖 | · |ℎ 𝑗/ℎ𝑘 |. Otherwise, ℎ̃𝑖 ≠ 0 and ℎ′ ≔ ℎ̃𝑖 𝑔 − 𝑔𝑖 ℎ̃ fulfills ℎ′ ∈ ℰ(𝑊) as ℎ′
𝑖
= 0,

{ 𝑗 , 𝑘} ⊆ supp(ℎ′). Now, using that ℎ̃ 𝑗 = 0 and 𝑔𝑘 = 0 it is easy to see that����� ℎ̃𝑘ℎ̃𝑖 · ℎ
′
𝑗

ℎ′
𝑘

����� =
����� ℎ̃𝑘ℎ̃𝑖 · ℎ̃𝑖 𝑔𝑗 − 𝑔𝑖 ℎ̃ 𝑗ℎ̃𝑖 𝑔𝑘 − 𝑔𝑖 ℎ̃𝑘

����� =
����� ℎ̃𝑘ℎ̃𝑖 · ℎ̃𝑖 𝑔𝑗𝑔𝑖 ℎ̃𝑘

����� = ���� 𝑔𝑗𝑔𝑖
���� . (3.12)

We now turn to part (ii). Since there exists 𝑔 ∈ ℰ(𝑊)with supp(𝑔) ≠ 𝑛, we cannot have [𝑛] ∈ 𝒞(𝑊).
Let 𝑔 ∈ ℰ(𝑊) and 𝑖 ∈ [𝑛] such that supp(𝑔) = [𝑛] \ {𝑖}. Consider any ℎ ∈𝑊 , supp(ℎ) ≠ supp(𝑔)

such that supp(ℎ) ≠ [𝑛]. If ℎ ∉ ℰ(𝑊) there exists ℓ ∈ ℰ(𝑊) such that supp(ℓ ) ⊊ supp(ℎ). We
must have 𝑖 ∈ supp(ℓ ), since supp(ℓ ) \ supp(𝑔) ≠ ∅. Then ℎ̃ ≔ ℎ𝑖ℓ − ℓ𝑖ℎ fulfills ℎ̃ ≠ 0, ℎ̃𝑖 = 0 and
supp(ℎ̃) ⊊ [𝑛] \ {𝑖}, a contradiction to 𝑔 ∈ ℰ(𝑊). □

Proof of Theorem 3.2.22. Part (ii) immediately follows from part (i), when taking 𝐶 ∈ 𝒞𝑊 such that
|𝑔𝐶
𝑗
/𝑔𝐶

𝑖
| = 𝜅𝑖 𝑗 . We now prove part (i).

Let 𝛿 ∈ 𝒦𝑊
𝑖𝑗

and 𝐶 ∈ 𝒞𝑊 such that 𝑖 , 𝑗 ∈ 𝐶 and for 𝑔 = 𝑔𝐶 , |𝑔𝑗/𝑔𝑖 | = 𝛿. If 𝑘 ∈ 𝐶 then
|𝑔𝑗/𝑔𝑖 | = |𝑔𝑘/𝑔𝑖 | · |𝑔𝑗/𝑔𝑘 | ∈ 𝒦𝑊

𝑖𝑘
· 𝒦𝑊

𝑘𝑗
. Otherwise, let us select 𝐶′ ∈ 𝒞𝑊 such that 𝑖 , 𝑘 ∈ 𝐶′, and

|𝐶 ∪ 𝐶′ | is minimal. Let ℎ = 𝑔𝐶
′ and 𝐽 = 𝐶′ \ (𝐶 ∪ {𝑘}).

Claim 3.2.23.1. Let 𝐺 = (𝐶 ∪ 𝐶′) \ 𝐽. Then for the space �̂� ≔ 𝜋𝐺(𝑊𝐶∪𝐶′) we have that 𝑔𝐺 , ℎ𝐺 ∈ ℰ(�̂�).

Proof. The statement that ℎ𝐺 ∈ ℰ(�̂�) is clear as ℎ𝐶∪𝐶′ ∈ ℰ(𝑊𝐶∪𝐶′) and the variables we project
out 𝐽 fulfill 𝐽 ⊆ supp(ℎ). For the statement on 𝑔𝐺 assume that there exists �̂� ∈ ℰ(�̂�) such
that supp(�̂�) ⊊ supp(𝑔𝐺). Then there exists a lift �̃� ∈ ℰ(𝑊𝐶∪𝐶′) of �̂� and some ℓ ∈ 𝐽 such that
ℓ ∈ supp(�̃�); note also that �̃�𝑘 = 𝑔𝑘 = 0. The vector ℎ̂ ≔ ℎℓ �̃� − �̃�ℓ ℎ fulfills ℓ ∉ supp(ℎ̂) and
𝑘 ∈ supp(ℎ̂).

Now pick any circuit ℎ̃ ∈ ℰ(�̂�) such that 𝑘 ∈ supp(ℎ̃) and supp(ℎ̃) ⊆ supp(ℎ̂). Note that
𝐽 ∪ {𝑘} is independent, as 𝐽 ∪ {𝑘} ⊆ 𝐶′ \ {𝑖} ⊊ 𝐶′. Therefore, supp(ℎ̃) ∩ supp(𝑔) ≠ ∅. Hence,
for 𝑇 ≔ 𝐶 ∪ supp(ℎ̃) we have thatℳ(𝑊𝑇) is non-separable. In particular there exists a circuit
ℎ′ ∈ ℰ(𝑊𝑇) such that 𝑖 , 𝑘 ∈ supp(ℎ′). As 𝑇 ⊆ (𝐶 ∪ 𝐶′) \ {ℓ }, this is a contradiction to the minimal
choice of 𝐶′. ■

As supp(ℎ𝐷)∪ supp(𝑔𝐷) = 𝐷 and supp(ℎ𝐷)∩ supp(𝑔𝐷) ≠ ∅we have that ℰ(𝑊 ′) is non-separable.
Further |supp(𝑔𝐷)| = |𝐷 | − 1, so we can apply Lemma 3.2.23 to learn 𝛿 ∈ 𝒦𝑊′

𝑖 𝑗
⊆ 𝒦𝑊′

𝑖𝑘
· 𝒦𝑊′

𝑘 𝑗
. We

can conclude 𝛿 ∈ 𝒦𝑊
𝑖𝑘
· 𝒦𝑊

𝑘𝑗
from Lemma 3.2.16. □

If 𝜅𝑊 = 1, then the reverse inclusion𝒦𝑊
𝑖𝑘
· 𝒦𝑊

𝑘𝑗
⊆ 𝒦𝑊

𝑖𝑗
trivially holds, since 1 is the only element

in these sets. In Proposition 3.4.9, we give a necessary and sufficient condition for𝒦𝑊
𝑖𝑗

= 𝒦𝑊
𝑖𝑘
· 𝒦𝑊

𝑘𝑗
.

One may ask under which circumstances an element 𝛼 ∈ 𝒦𝑊
𝑖𝑘
· 𝒦𝑊

𝑘𝑗
is also contained in𝒦𝑊

𝑖𝑗
. We

give a partial answer by stating a sufficient condition in a restrictive setting. For a basis 𝐵 ofℳ(𝑊),
recall ℰ𝐵(𝑊⊥) from Lemma 3.2.12. Then, Lemmas 3.2.12 and 3.2.13 together imply:

Lemma 3.2.24. Given a basis 𝐵 ⊆ [𝑛] inℳ(𝑊) and 𝑔, ℎ ∈ ℰ𝐵 ⊆ ℰ(𝑊⊥) such that 𝑖 ∈ supp(𝑔) ∩ 𝐵,
𝑗 ∈ supp(ℎ) ∩ 𝐵 and 𝑘 ∈ supp(𝑔) ∩ supp(ℎ). Then |ℎ 𝑗/ℎ𝑘 | · |𝑔𝑘/𝑔𝑖 | ∈ 𝒦𝑊

𝑖𝑗
.
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3.3 Connections to other condition numbers

3.3.1 The condition number �̄� and the lifting operator

For a full row rank matrix A ∈ R𝑚×𝑛 , the condition number �̄�A can be defined in the following two
equivalent ways:

�̄�A ≔ sup
{ A⊤

(
ADA⊤

)−1AD
 : D ∈ 𝔇𝑛

}
= sup

{
∥A⊤𝑦∥
∥𝑝∥ : 𝑦 minimizes

D1/2(A⊤𝑦 − 𝑝)
 for some 0 ≠ 𝑝 ∈ R𝑛 and D ∈ 𝔇𝑛

}
.

(3.13)

We provide a further definition which might help in developing some intuition:

�̄�A = sup
{ D−1ΠDA⊤D

 : D ∈ 𝔇𝑛

}
. (3.14)

The interpretation in Equation (3.14) is as follows. If the matrix in the argument is applied to a
vector 𝑦 ∈ R𝑛 , then we first rescale the entries according to the norm corresponding to D to obtain
D𝑦. Then, an orthogonal projection of D𝑦 onto the rescaled space im(DA⊤) is performed. Finally,
the rescaling is undone via multiplication by D−1.

This condition number was first studied by Dikin [Dik67], Stewart [Ste89], and Todd [Tod90].
There is an extensive literature on the properties and applications of �̄�A, as well as its relations to
other condition numbers. In particular, it plays a key role in layered-least-squares interior point
methods, see Chapter 4. We refer the reader to the papers [HT02; MT03; VY96] for further results
and references.

It is important to note that—similarly to𝜅A and ¤𝜅A—�̄�A only depends on the subspace𝑊 = ker(A).
Hence, we can also write �̄�𝑊 for a subspace 𝑊 ⊆ R𝑛 , defined to be equal to �̄�A for some matrix
A ∈ R𝑘×𝑛 with𝑊 = ker(A). We will use the notations �̄�A and �̄�𝑊 interchangeably. The following
characterization reveals the connection between 𝜅A and �̄�A.

Proposition 3.3.1 ([TTY01]). For a full row rank matrix A ∈ R𝑚×𝑛 ,

�̄�A = max
{
∥A−1

𝐵 A∥ : A𝐵 is a non-singular 𝑚 × 𝑚-submatrix of A
}
. (3.15)

Together with Proposition 3.2.1, this shows that the difference between �̄�A and 𝜅A is in using ℓ2

instead of ℓ∞ norm. This immediately implies the upper bound and a slightly weaker lower bound
in the next theorem.

Approximating the condition number �̄�A is known to be hard; by the same token, �̄�A also cannot
be approximated by any polynomial factor. The proof relies on the hardness of approximating the
minimum subdeterminant by Khachiyan [Kha95b].

Theorem 3.3.2 (Tunçel [Tun99]). Approximating �̄�A up to a factor of 2poly(𝑛) is NP-hard.

The next lemma summarizes some important known properties of �̄�A.

Proposition 3.3.3. Let A ∈ R𝑚×𝑛 with full row rank and𝑊 = ker(A).

(i) If the entries of A are all integers, then �̄�A is bounded by 2𝑂(𝐿A), where 𝐿A is the input bit length of A.

(ii) �̄�𝑊 = �̄�𝑊⊥ .

Proof. Part (i) was proved in [VY96, Lemma 24]. The duality statement (ii) was shown in
[GL97]. □

34



3 CIRCUIT IMBALANCE MEASURES 3.3 Connections to other condition numbers

In connection with �̄�A, it is worth mentioning the lifting map, a key concept in the algorithms
presented in Chapter 4.

Definition 3.3.4. For ∅ ≠ 𝐼 ⊆ [𝑛] we define 𝐿𝑊
𝐼

: 𝜋𝐼(𝑊) →𝑊 by

𝐿𝑊𝐼 (𝑝) ≔ arg min{ ∥𝑧∥ : 𝑧𝐼 = 𝑝, 𝑧 ∈𝑊 }.

Note that 𝐿𝑊
𝐼

is the unique linear map from 𝜋𝐼(𝑊) to 𝑊 such that 𝐿𝑊
𝐼
(𝑝)𝐼 = 𝑝 and 𝐿𝑊

𝐼
(𝑝) is

orthogonal to𝑊 ∩R𝑛[𝑛]\𝐼 .

Lemma 3.3.5. Let𝑊 ⊆ R𝑛 be an (𝑛 − 𝑚)-dimensional linear subspace. Let the columns of B ∈ R𝑛×(𝑛−𝑚)
denote an orthonormal basis of𝑊 . Then, viewing 𝐿𝑊

𝐼
as a matrix in R𝑛×|𝐼 | ,

𝐿𝑊𝐼 = BB†𝐼 ,• .

Proof. If 𝑝 ∈ 𝜋𝐼(𝑊), then 𝑝 = B𝐼 ,•𝑦 for some 𝑦 ∈ R𝑛−𝑚 . By the well-known property of the pseudo-
inverse we get B†

𝐼 ,•
𝑝 = arg min𝑝=B𝐼 ,•𝑦 ∥𝑦∥. This solution satisfies 𝜋𝐼(BB†

𝐼 ,•
𝑝) = 𝑝 and BB†

𝐼 ,•
𝑝 ∈ 𝑊 .

Since the columns of B form an orthonormal basis of𝑊 , we have ∥BB†
𝐼 ,•
𝑝∥ = ∥B†

𝐼 ,•
𝑝∥. Consequently,

BB†
𝐼 ,•
𝑝 is the minimum-norm point with the above properties. □

The condition number �̄�𝑊 can be equivalently defined as the maximum norm of any lifting map
for an index subset.

Proposition 3.3.6 ([DHNV20; OLe90; Ste89]). For a linear subspace𝑊 ⊆ R𝑛 ,

�̄�𝑊 = max
{
∥𝐿𝑊𝐼 ∥ : 𝐼 ⊆ [𝑛], 𝐼 ≠ ∅

}
. (3.16)

Proof. With Lemma 3.3.5 the statement is equivalent to

�̄�𝑊 = max
{
∥BB†𝐼 ,•∥ : ∅ ≠ 𝐼 ⊆ [𝑛]

}
. (3.17)

The direction ≥ was proved in [Ste89], and the direction ≤ in [OLe90]. □

Even though 𝐿𝑊
𝐼

is defined with respect to the ℓ2-norm, it can also be used to characterize 𝜅𝑊 .

Proposition 3.3.7 ([DNV20]). For a linear subspace𝑊 ⊆ R𝑛 ,

𝜅𝑊 = max

{
∥𝐿𝑊

𝐼
(𝑝)∥∞
∥𝑝∥1

: 𝐼 ⊆ [𝑛], 𝐼 ≠ ∅, 𝑝 ∈ 𝜋𝐼(𝑊) \ {0}
}
. (3.18)

Proof. We first show that for any 𝐼 ≠ ∅, and 𝑝 ∈ 𝜋𝐼(𝑊) \ {0}, ∥𝐿𝑊𝐼 (𝑝)∥∞ ≤ 𝜅𝑊 ∥𝑝∥1 holds. Let
𝑧 = 𝐿𝑊

𝐼
(𝑝), and take a conformal decomposition 𝑧 =

∑ℎ
𝑘=1 𝑔

𝑘 as in Lemma 2.0.3. For each 𝑘 ∈ [ℎ], let
𝐶𝑘 = supp(𝑔𝑘). We claim that all these circuits must intersect 𝐼. Indeed, assume for a contradiction
that one of them, say 𝐶1 is disjoint from 𝐼, and let 𝑧′ =

∑ℎ
𝑘=2 𝑔

𝑘 . Then, 𝑧′ ∈ 𝑊 and 𝑧′
𝐼
= 𝑧𝐼 = 𝑝.

Thus, 𝑧′ also lifts 𝑝 to 𝑊 , but ∥𝑧′∥2 < ∥𝑧∥2, contradicting the definition of 𝑧 = 𝐿𝑊
𝐼
(𝑝) as the

minimum-norm lift of 𝑝.
By the definition of 𝜅𝑊 , ∥𝑔𝑘 ∥∞ ≤ 𝜅𝑊 ∥𝑔𝑘𝐼 ∥1 for each 𝑘 ∈ [ℎ]. The claim follows since 𝑝 = 𝑧𝐼 =∑ℎ
𝑘=1 𝑔

𝑘
𝐼
, moreover, conformity guarantees that ∥𝑝∥1 =

∑ℎ
𝑘=1 ∥𝑔𝑘𝐼 ∥1. Therefore,

∥𝑧∥∞ ≤
ℎ∑
𝑘=1
∥𝑔𝑘 ∥∞ ≤ 𝜅𝑊

ℎ∑
𝑘=1
∥𝑔𝑘𝐼 ∥1 = 𝜅𝑊 ∥𝑝∥1 .
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We have thus shown that the maximum value in the statement is at most 𝜅𝑊 . To show that equality
holds, let 𝐶 ∈ 𝒞𝑊 be the circuit and 𝑔𝐶 ∈𝑊 the corresponding elementary vector and 𝑖 , 𝑗 ∈ 𝐶 such
that 𝜅𝑊 = |𝑔𝐶

𝑗
/𝑔𝐶

𝑖
|.

Let us set 𝐼 = ([𝑛] \ 𝐶) ∪ {𝑖}, and define 𝑝𝑘 = 0 if 𝑘 ∈ [𝑛] \ 𝐶 and 𝑝𝑖 = 𝑔𝐶
𝑖

. Then 𝑝 ∈ 𝜋𝐼(𝑊),
and the unique extension to 𝑊 is 𝑔𝐶 ; thus, 𝐿𝑊

𝐼
(𝑝) = 𝑔𝐶 . We have ∥𝐿𝑊

𝐼
(𝑝)∥∞ = |𝑔𝐶

𝑗
|. Noting that

∥𝑝∥1 = |𝑔𝐶
𝑖
|, it follows that 𝜅𝑊 = ∥𝐿𝑊

𝐼
(𝑝)∥∞/∥𝑝∥1. □

The following theorem closely relates 𝜅 and �̄�. Related results have already appeared in [HT02;
Vav94].

Theorem 3.3.8 ([DHNV20; DNV20]). For a matrix A ∈ R𝑚×𝑛 we have
√

1 + 𝜅2
A ≤ �̄�A ≤ 𝑛𝜅A.

Proof. For the first inequality, let 𝐶 ∈ 𝒞𝑊 be the circuit and 𝑖 ≠ 𝑗 ∈ 𝐶 such that |𝑔𝑗/𝑔𝑖 | = 𝜅𝑊 for
the corresponding solution 𝑔 = 𝑔𝐶 . Let us use the characterization of �̄�𝑊 in Proposition 3.3.6. Let
𝐼 = ([𝑛] \ 𝐶) ∪ {𝑖}, and 𝑝 = 𝑔𝑖𝑒

𝑖 , that is, the vector with 𝑝𝑖 = 𝑔𝑖 and 𝑝𝑘 = 0 for 𝑘 ≠ 𝑖. Then, the
unique vector 𝑧 ∈𝑊 such that 𝑧𝐼 = 𝑝 is 𝑧 = 𝑔. Therefore,

�̄�𝑊 ≥ min
𝑧∈𝑊,𝑧𝐼=𝑝

∥𝑧∥
∥𝑝∥ =

∥𝑔∥
|𝑔𝑖 |
≥

√
|𝑔𝑖 |2 + |𝑔𝑗 |2

|𝑔𝑖 |
=

√
1 + 𝜅2

𝑊
.

The second inequality is immediate from Proposition 3.3.6 and Proposition 3.3.7, and the inequalities
between ℓ1, ℓ2, and ℓ∞ norms. The proof of the slightly weaker �̄�𝑊 ≤

√
1 + (𝑛𝜅𝑊 )2 follows from

Lemma 4.2.2. □

The next lemma will be needed to prove Lemma 4.2.2 and also to analyze the LLS algorithm. Let
us say that the vector 𝑦 ∈ R𝑛 conforms to 𝑥 ∈ R𝑛 if 𝑥𝑖𝑦𝑖 > 0 whenever 𝑦𝑖 ≠ 0.

Lemma 3.3.9. For 𝑖 ∈ 𝐼 ⊆ [𝑛] with 𝑒 𝑖
𝐼
∈ 𝜋𝐼(𝑊), let 𝑧 = 𝐿𝑊

𝐼
(𝑒 𝑖
𝐼
). Then for any 𝑗 ∈ supp(𝑧) we have

𝜅𝑊
𝑖𝑗
≥ |𝑧 𝑗 |.

Proof. We consider the cone 𝐹 ⊆ 𝑊 of vectors that conform to 𝑧. The faces of 𝐹 are bounded by
inequalities of the form 𝑧𝑘𝑦𝑘 ≥ 0 or 𝑦𝑘 = 0. The edges (rays) of 𝐹 are of the form { 𝛼𝑔 : 𝛼 ≥ 0 } with
supp(𝑔) ∈ 𝒞𝑊 . It is easy to see from the Minkowski–Weyl theorem that 𝑧 can be written as

𝑧 =

ℎ∑
𝑘=1

𝑔𝑘 ,

where ℎ ≤ 𝑛, 𝐶1 , 𝐶2 , . . . , 𝐶ℎ ∈ 𝒞𝑊 are circuits, and the vectors 𝑔1 , 𝑔2 , . . . , 𝑔ℎ ∈𝑊 conform to 𝑧 and
supp(𝑔𝑘) = 𝐶𝑘 for all 𝑘 ∈ [ℎ]. Note that 𝑖 ∈ 𝐶𝑘 for all 𝑘 ∈ [ℎ], as otherwise, 𝑧′ = 𝑧 − 𝑔𝑘 would also
satisfy 𝑧′

𝐼
= 𝑒 𝑖

𝐼
, but ∥𝑧′∥ < ∥𝑧∥ due to 𝑔𝑘 being conformal to 𝑧, a contradiction to the definition of 𝑧.

At least one 𝑘 ∈ [ℎ] contributes at least as much to |𝑧 𝑗 | =
∑ℎ
𝑘=1 |𝑔𝑘𝑗 |∑ℎ
𝑘=1 𝑔

𝑘
𝑖

as the average. Hence we find

𝜅𝑊
𝑖𝑗
≥ |𝑔𝑘

𝑗
/𝑔𝑘

𝑖
| ≥ |𝑧 𝑗 |. □

3.3.2 The condition number 𝛿 and bounds on diameters of polyhedra

Another related condition number is 𝛿, defined as follows:
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Definition 3.3.10. Let 𝑉 ⊆ R𝑛 be a set of vectors. Then 𝛿𝑉 is the largest value such that for any set of
linearly independent vectors {𝑣𝑖 : 𝑖 ∈ 𝐼} ⊆ 𝑉 and 𝜆 ∈ R𝐼 ,∑

𝑖∈𝐼
𝜆𝑖𝑣𝑖

 ≥ 𝛿𝑉 max
𝑖∈𝐼
|𝜆𝑖 | · ∥𝑣𝑖 ∥ .

For a matrix M ∈ R𝑚×𝑛 , we let 𝛿M denote the value associated with the rows M1 ,M2 , . . . ,M𝑚 of M.

This can be equivalently characterized as follows: for a subset { 𝑣𝑖 : 𝑖 ∈ 𝐼 } ⊆ 𝑉 and 𝑣 𝑗 ∈ 𝑉 ,
𝑣 𝑗 ∉𝑊 = span({ 𝑣𝑖 : 𝑖 ∈ 𝐼 }), the sine of the angle between the vector 𝑣 𝑗 and the subspace𝑊 is at
least 𝛿𝑉 (see e.g., for the equivalence [DVZ]).

A line of work studied this condition number in the context of the simplex algorithm and
diameter bounds. The diameter of a polyhedron 𝑃 is the diameter of the vertex-edge graph
associated with 𝑃; Hirsch’s famous conjecture from 1957 asserted that the diameter of a polytope
(a bounded polyhedron) in 𝑛 dimensions with 𝑚 facets is at most 𝑚 − 𝑛. This was disproved by
Santos in 2012 [San12], but the polynomial Hirsch conjecture, i.e., a poly(𝑛, 𝑚) diameter bound
remains wide open.

Consider the LP in standard inequality form with 𝑛 variables and 𝑚 constraints as

max⟨𝑐, 𝑥⟩ s.t. 𝑥 ∈ 𝑃 , 𝑃 = { 𝑥 ∈ R𝑛 : A𝑥 ≤ 𝑏 } , (3.19)

for A ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 . Using a randomized dual simplex algorithm, Dyer and Frieze [DF94]
showed the polynomial Hirsch conjecture for TU matrices. Bonifas et al. [Bon+14] strengthened and
extended this to the bounded subdeterminant case, showing a diameter bound of𝑂(𝑛4Δ2

A log(𝑛ΔA))
for integer constraint matrices A ∈ Z𝑚×𝑛 . Note that this is independent of the number of constraints
𝑚.

Brunsch and Röglin [BR13] analyzed the shadow vertex simplex algorithm in terms of the
condition number ΔA, noting that for integer matrices 𝛿A ≥ 1/(𝑛Δ2

A). They gave a diameter
bound 𝑂(𝑚𝑛2/𝛿2

A). Eisenbrand and Vempala [EV17] used a different approach to derive a bound
poly(𝑛, 1/𝛿A) that is independent of 𝑚. Dadush and Hähnle [DH16] further improved these
bounds to 𝑂(𝑛3 log(𝑛/𝛿A)/𝛿A).

In recent work, Dadush et al. [DVZ] considered (3.19) in the oracle model, where for each point
𝑥 ∈ R𝑛 , the oracle returns 𝑥 ∈ 𝑃 or a violated inequality ⟨𝑎𝑖 , 𝑥⟩ ≤ 𝑏𝑖 from the system A𝑥 ≤ 𝑏. Their
algorithm finds exact primal and dual solutions using 𝑂(𝑛2 log(𝑛/𝛿𝑀)) oracle calls, where

M =

[
0 1
A 𝑏

]
. (3.20)

The running time is independent of the cost function 𝑐. They also show the following relation
between 𝜅 and 𝛿:

Lemma 3.3.11 ([DVZ]).

(i) Let A ∈ R𝑚×𝑛 be a matrix with full row rank and 𝑚 < 𝑛, with ∥𝑎𝑖 ∥ = 1 for all columns 𝑖 ∈ [𝑛].
Then, 𝜅A ≤ 1/𝛿A⊤ .

(ii) Let A ∈ R𝑚×𝑛 be in basis form A =

[
I𝑚 A′

]
. Then, 1/𝛿A⊤ ≤ 𝑚𝜅2

A.

(iii) If 𝐵 is the basis maximizing | det(A𝐵)|, then for Ā = A−1
𝐵

A, it holds that 1/𝛿Ā⊤ ≤ 𝑚𝜅A.

37



3 CIRCUIT IMBALANCE MEASURES 3.3 Connections to other condition numbers

Proof. Part (i): Let 𝑔 ∈ ℰ(𝐴) be an elementary vector. Select an arbitrary 𝑖 ∈ supp(𝑔), and let
𝐽 = supp(𝑔) \ {𝑖}. Then, the columns { 𝑔𝑖 : 𝑖 ∈ 𝐽 } are linearly independent, and −𝑔𝑖𝑎𝑖 =

∑
𝑗∈𝐽 𝑔𝑗𝑎 𝑗 .

Thus,

|𝑔𝑖 | · ∥𝑎𝑖 ∥ =

∑𝑗∈𝐽 𝑔𝑗𝑎 𝑗
 ≥ 𝛿A⊤ max

𝑗∈𝐽
|𝑔𝑗 | · ∥𝑎 𝑗 ∥ ,

and using that all columns have unit norm, we get |𝑔𝑗/𝑔𝑖 | ≤ 1/𝛿A⊤ for all 𝑗 ∈ 𝐽. This shows that
𝜅A ≤ 1/𝛿A⊤ .

Parts (ii) and (iii): Let A =

[
I𝑚 A′

]
in basis form, and let 𝛼 = max𝑖∈[𝑛] ∥A𝑖 ∥. Let us first show

1
𝛿A⊤
≤
√
𝑚𝛼𝜅A . (3.21)

Take any set {A𝑖 : 𝑖 ∈ 𝐼} of linearly independent columns of A, along with coefficients 𝜆 ∈ R𝐼 .
Without loss of generality, assume |𝐼 | = 𝑚, i.e., 𝐼 is a basis, by allowing 𝜆𝑖 = 0 for some coefficients.
Let 𝑧 =

∑
𝑖∈𝐼 𝜆𝑖A𝑖 . Then, 𝜆 = A−1

𝐼
𝑧. Lemma 3.2.3 implies that every column of A−1

𝐼
has 2-norm at

most
√
𝑚𝜅A. Hence, |𝜆𝑖 | ≤

√
𝑚𝜅A∥𝑧∥ holds for all 𝑖 ∈ 𝐼, implying (3.21).

Then, part (ii) follows since ∥A𝑖 ∥ ≤
√
𝑚𝜅A by Proposition 3.2.1. For part (iii), let 𝐵 be a basis

maximizing | det(A𝐵)|. Then, ∥A−1
𝐵

A∥∞ ≤ 1. Indeed, if there is an entry |A𝑖 𝑗 | > 1, then we can
obtain a larger determinant by exchanging 𝑖 for 𝑗. This implies 𝛼 ≤

√
𝑚. □

Using this correspondence between 𝛿 and 𝜅, we can derive the following bound on the diameter
of polyhedra in standard form from [DH16]. This verifies the polynomial Hirsch-conjecture
whenever 𝜅A is polynomially bounded.

Theorem 3.3.12. Consider a polyhedron in the standard equality form

𝑃 = { 𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 𝑥 ≥ 0 } (3.22)

for A ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚 . Then, the diameter of 𝑃 is at most 𝑂((𝑛 − 𝑚)3𝑚𝜅A log(𝜅A + 𝑛)).

Proof. Without loss of generality, we can assume that A has full row rank. Changing to a standard
basis representation does neither change the geometry (in particular, the diameter) of 𝑃, nor the
value of 𝜅A. Let 𝐵 be the basis maximizing det(A𝐵), and let us replace A by A−1

𝐵
𝐴; w.l.o.g. assume

that 𝐵 is the set of the last 𝑚 columns. Hence, A =

[
A′ I𝑚

]
for A′ ∈ R𝑚×(𝑛−𝑚). According to

Lemma 3.2.6, 𝑃 has the same diameter as 𝑃′ defined as

𝑃′ = { 𝑥′ ∈ R𝑛−𝑚 : A′𝑥′ ≤ 𝑏, 𝑥′ ≥ 0 } , (3.23)

in other words, 𝑃′ = { 𝑥′ ∈ R𝑛−𝑚 : C𝑥′ ≤ 𝑑 }, where

C =

[
−I𝑛−𝑚

A′

]
and 𝑑 =

[
0
𝑏

]
. (3.24)

There is a one-to-one correspondence between the vertices and edges of 𝑃 and 𝑃′, and hence, the
two polyhedra have the same diameter. Thus, [DH16] gives a bound 𝑂((𝑛 − 𝑚)3 log(𝑛/𝛿C)/𝛿C)
on the diameter of 𝑃′. By the choice of 𝐵, from Lemma 3.3.11(iii), we obtain the diameter bound
𝑂((𝑛 − 𝑚)3𝑚𝜅C⊤ log(𝜅C⊤ + 𝑛)). We claim that 𝜅C⊤ = 𝜅A. Indeed, the kernels of A =

[
A′ I𝑚

]
and
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C⊤ =

[
−I𝑛−𝑚 (A′)⊤

]
represent orthogonal complements, thus 𝜅C⊤ = 𝜅A by Proposition 3.2.14.

This completes the proof. □

The diameter bound in [DH16] is proved constructively, using the shadow simplex method.
However, in the proof we choose 𝐵 maximizing | det(A𝐵)|, a hard computational problem to
solve even approximately [DEFM14]. However, we do not actually require a (near) maximizing
subdeterminant. For the argument, we only need to find a basis 𝐵 ⊆ [𝑛] such that for Ā = A−1

𝐵
A,

∥Ā∥∞ ≤ 𝜇 for some constant 𝜇 > 1. Then, (3.21), gives 1/𝛿�̄�⊤ ≤ 𝑚𝜇𝜅A.
Such a basis 𝐵 corresponds to approximate local subdeterminant maximization, and can be

found using the following simple algorithm proposed by Knuth [Knu85]. As long as there is
an entry |A𝑖 𝑗 | > 𝜇, then swapping 𝑖 for 𝑗 increases | det(A𝐵)| by a factor |A𝑖 𝑗 | > 𝜇. Using that
| det(A𝐵)| ≤ ( ¤𝜅𝑊 )𝑚 by Proposition 3.2.19, the algorithm terminates in 𝑂(𝑚 log( ¤𝜅𝑊/𝜇)) iterations.

We also note that 𝛿A was also studied for lattice basis reduction by Seysen [Sey93]. A related
quantity has been used to characterize Hoffman constants (introduced in Section 3.5), see [GHR95;
KT95; PVZ20].

3.4 Optimizing circuit imbalances

Recall that 𝔇𝑛 is the set of 𝑛 × 𝑛 positive definite diagonal matrices. For every D ∈ 𝔇𝑛 , AD
represents a column rescaling. This is a natural symmetry in linear programming, and particularly
relevant in the context of interior point algorithms.

The condition number 𝜅AD may vastly differ from 𝜅A. In terms of the subspace𝑊 = ker(A), this
amounts to rescaling the subspace by D−1; we denote this by D−1𝑊 . It is natural to ask for the best
possible value that can be achieved by rescaling:

𝜅∗𝑊 ≔ inf{ 𝜅D𝑊 : D ∈ 𝔇𝑛 } , and �̄�∗𝑊 ≔ inf{ 𝜅D𝑊 : D ∈ 𝔇𝑛 } .

In most algorithmic and polyhedral results in this thesis, the 𝜅𝑊 dependence can be replaced by
𝜅∗
𝑊

dependence. For example, the diameter bound in Theorem 3.3.12 is true in the stronger form
with 𝜅∗

𝑊
, since the diagonal rescaling maintains the geometry of the polyhedron.

A key result in [DHNV20] shows that an approximately optimal rescaling can be found. It
will be stated and proven in Theorem 3.4.7 in this section. This is in surprising contrast with the
inapproximability result Theorem 3.3.2. Note that there is no contradiction since the approximation
factor (𝜅∗

𝐴
)2 is not bounded as 2poly(𝑛) in general.

The key idea of the proof of Theorem 3.4.7 is to analyze the pairwise imbalances 𝜅𝑖 𝑗 = 𝜅𝑊
𝑖𝑗

introduced in Section 3.2.3. In the 4-dimensional example Example 3.4.3, we have 𝜅34 = 𝜅43 = 𝑀.
Let D ∈ 𝔇 and let 𝑑 ∈ R𝑛 denote the diagonal elements; i.e., the rescaling multiplies the 𝑖-th
coordinate of every 𝑤 ∈𝑊 by 𝑑𝑖 . Then, we can see that 𝜅D𝑊

𝑖𝑗
= 𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 . In particular, for any pair

of variables 𝑖 and 𝑗, 𝜅D𝑊
𝑖𝑗

𝜅D𝑊
𝑗𝑖

= 𝜅𝑖 𝑗𝜅 𝑗𝑖 . Consequently, we get a lower bound 𝜅𝑖 𝑗𝜅 𝑗𝑖 ≤ (𝜅∗𝑊 )2.
Theorem 3.4.7 is based on a combinatorial min-max characterization that extends this idea. For

the rest of this section, let us assume that the matroidℳ(𝑊) is non-separable. In case it is separable,
we can obtain 𝜅∗

𝑊
by taking a maximum over the non-separable components.

Let 𝐺 = ([𝑛], 𝐸) be the complete directed graph on 𝑛 vertices with edge weights 𝜅𝑖 𝑗 . Sinceℳ(𝑊)
is assumed to be non-separable, Proposition 3.2.21 implies that 𝜅𝑖 𝑗 > 0 for any 𝑖 , 𝑗 ∈ [𝑛]. We will
refer to this weighted digraph as the circuit ratio digraph.
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Figure 3.2: circuit imbalances 𝜅 in the circuit ratio digraph under rescaling 𝑑 > 0 of variables

Let 𝐻 be a cycle in 𝐺, that is, a sequence of indices 𝑖1 , 𝑖2 , . . . , 𝑖𝑘 , 𝑖𝑘+1 = 𝑖1. We use |𝐻 | = 𝑘 to
denote the length of the cycle. (In this terminology, cycles refer to objects in 𝐺, whereas circuits to
objects in 𝒞𝑊 .)

We use the notation 𝜅(𝐻) = 𝜅𝑊 (𝐻) =
∏𝑘

𝑗=1 𝜅
𝑊
𝑖 𝑗 𝑖 𝑗+1

. The observation for length-2 cycles remains
valid in general: 𝜅(𝐻) is invariant under any rescaling. This leads to the lower bound (𝜅(𝐻))1/|𝐻 | ≤
𝜅∗
𝑊

. The best of these bounds turns out to be tight:

A min-max theorem. We next provide a combinatorial min-max characterization of 𝜅∗
𝑊

. Consider
the circuit ratio digraph 𝐺 = ([𝑛], 𝐸) on the node set [𝑛] where (𝑖 , 𝑗) ∈ 𝐸 if 𝜅𝑖 𝑗 > 0, that is, there
exists a circuit 𝐶 ∈ 𝒞 with 𝑖 , 𝑗 ∈ 𝐶. We will refer to 𝜅𝑖 𝑗 = 𝜅𝑊

𝑖𝑗
as the weight of the edge (𝑖 , 𝑗). (Note

that (𝑖 , 𝑗) ∈ 𝐸 if and only if (𝑗 , 𝑖) ∈ 𝐸, but the weight of these two edges can be different.)
Let 𝐻 be a cycle in 𝐺, that is, a sequence of indices 𝑖1 , 𝑖2 , . . . , 𝑖𝑘 , 𝑖𝑘+1 = 𝑖1. We use |𝐻 | = 𝑘 to

denote the length of the cycle. (In our terminology, ‘cycles’ always refer to objects in 𝐺, whereas
‘circuits’ refer to the minimum supports in ker(A).)

We use the notation 𝜅(𝐻) = 𝜅𝑊 (𝐻) =
∏𝑘

𝑗=1 𝜅
𝑊
𝑖 𝑗 𝑖 𝑗+1

. For a vector 𝑑 ∈ R𝑛++, we denote 𝜅𝑑
𝑊
(𝐻) =

𝜅diag(𝑑)𝑊 (𝐻). A simple but important observation is that such a rescaling does not change the
value associated with the cycle, that is,

𝜅𝑑𝑊 (𝐻) = 𝜅𝑊 (𝐻) ∀𝑑 ∈ R𝑛++ for any cycle 𝐻 in 𝐺 . (3.25)

Theorem 3.4.1. For a subspace𝑊 ⊂ R𝑛 , we have

𝜅∗𝑊 = min
𝑑>0

𝜅𝑑𝑊 = max
{
𝜅𝑊 (𝐻)1/|𝐻 | : 𝐻 is a cycle in 𝐺

}
. (3.26)

Proof. For the direction 𝜅𝑊 (𝐻)1/|𝐻 | ≤ 𝜅∗
𝑊

we use (3.25). Let 𝑑 > 0 be a scaling and 𝐻 a cycle. We
have 𝜅𝑑

𝑖𝑗
≤ 𝜅𝑑

𝑊
for every 𝑖 , 𝑗 ∈ [𝑛], and hence 𝜅𝑊 (𝐻) = 𝜅𝑑

𝑊
(𝐻) ≤ (𝜅𝑑

𝑊
)|𝐻 | . Since this inequality holds

for every 𝑑 > 0, it follows that 𝜅𝑊 (𝐻) ≤ (𝜅∗𝑊 )|𝐻 | .
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For the reverse direction, consider the following optimization problem.

min 𝑡

𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 ≤ 𝑡 ∀(𝑖 , 𝑗) ∈ 𝐸
𝑑 > 0.

(3.27)

For any feasible solution (𝑑, 𝑡) and 𝜆 > 0, we get another feasible solution (𝜆𝑑, 𝑡) with the same
objective value. As such, we can strengthen the condition 𝑑 > 0 to 𝑑 ≥ 1 without changing the
objective value. This makes it clear that the optimum value is achieved by a feasible solution.

Any rescaling 𝑑 > 0 provides a feasible solution with objective value 𝜅𝑑, which means that the
optimal value 𝑡∗ of (3.27) is 𝑡∗ = 𝜅∗. Moreover, with the variable substitution 𝑧𝑖 = log 𝑑𝑖 , 𝑠 = log 𝑡,
(3.27) can be written as a linear program:

min 𝑠

log𝜅𝑖 𝑗 + 𝑧 𝑗 − 𝑧𝑖 ≤ 𝑠 ∀(𝑖 , 𝑗) ∈ 𝐸
𝑧 ∈ R𝑛 .

(3.28)

This is the dual of a minimum-mean cycle problem with respect to the cost function log(𝜅𝑖 𝑗).
Therefore, an optimal solution corresponds to the cycle maximizing

∑
𝑖 𝑗∈𝐻 log𝜅𝑖 𝑗/|𝐻 |, or in other

words, maximizing 𝜅(𝐻)1/|𝐻 | . □

Whereas this formulation verifies Theorem 3.4.1, it does not give a polynomial-time algorithm to
compute 𝜅∗

𝑊
. The caveat is that the values 𝜅𝑊

𝑖𝑗
are typically not available; in fact, approximating

them up to a factor 2𝑂(𝑚) is NP-hard, as follows from the work of Tunçel [Tun99].
Nevertheless, the following corollary of Theorem 3.4.1 shows that any arbitrary circuit containing

𝑖 and 𝑗 yields a (𝜅∗)2 approximation to 𝜅𝑖 𝑗 .

Corollary 3.4.2. Let us be given a linear subspace 𝑊 ⊆ R𝑛 and 𝑖 , 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗, and a circuit 𝐶 ∈ 𝒞𝑊
with 𝑖 , 𝑗 ∈ 𝐶. Let 𝑔 ∈𝑊 be the corresponding vector with supp(𝑔) = 𝐶. Then,

𝜅𝑊
𝑖𝑗(

𝜅∗
𝑊

)2 ≤
|𝑔𝑗 |
|𝑔𝑖 |
≤ 𝜅𝑊𝑖𝑗 .

Proof. The second inequality follows by definition. For the first inequality, note that the same
circuit 𝐶 yields |𝑔𝑖/𝑔𝑗 | ≤ 𝜅𝑊

𝑗𝑖
(𝐶) ≤ 𝜅𝑊

𝑗𝑖
. Therefore, |𝑔𝑗/𝑔𝑖 | ≥ 1/𝜅𝑊

𝑗𝑖
.

From Theorem 3.4.1 we see that 𝜅𝑊
𝑖𝑗
𝜅𝑊
𝑗𝑖
≤ (𝜅∗

𝑊
)2, giving 1/𝜅𝑊

𝑗𝑖
≥ 𝜅𝑊

𝑖𝑗
/(𝜅∗

𝑊
)2, completing the

proof. □

In Section 3.4.1, we use techniques from matroid theory and linear algebra to efficiently identify
a circuit for any pair of variables that are contained in the same circuit.

The following example shows that 𝜅∗ ≤ �̄�∗ can be arbitrarily big.

Example 3.4.3. Take𝑊 = span((0, 1, 1, 𝑀)⊤ , (1, 0, 𝑀, 1)⊤), where 𝑀 > 0. Then {2, 3, 4} and {1, 3, 4}
are circuits with 𝜅𝑊34({2, 3, 4}) = 𝑀 and 𝜅𝑊43({1, 3, 4}) = 𝑀. Hence, by Theorem 3.4.1, we see that 𝜅∗ ≥ 𝑀.

3.4.1 Finding circuits: a detour in matroid theory

To prove Theorem 3.4.6, showing how to efficiently obtain a family �̂� ⊆ 𝒞𝑊 such that for any
𝑖 , 𝑗 ∈ [𝑛], �̂� includes a circuit containing both 𝑖 and 𝑗, provided there exists such a circuit.
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We give a different proof of (iii)⇒ (iv) in Lemma 3.4.5 that will be convenient for our algorithmic
purposes. First, we need a simple lemma that is commonly used in matroid optimization, see e.g.
[Fra11, Lemma 13.1.11] or [Sch03, Theorem 39.13].

Lemma 3.4.4. Let 𝐼 be an independent set of a matroidℳ = ([𝑛],ℐ), and 𝑈 = {𝑢1 , 𝑢2 , . . . , 𝑢ℓ } ⊆ 𝐼,
𝑉 = {𝑣1 , 𝑣2 , . . . , 𝑣ℓ } ⊆ [𝑛] \ 𝐼 such that 𝐼 ∪ {𝑣𝑖} is dependent for each 𝑖 ∈ [ℓ ]. Further, assume that for
each 𝑡 ∈ [ℓ ], 𝑢𝑡 ∈ 𝐶(𝐼 , 𝑣𝑡) and 𝑢𝑡 ∉ 𝐶(𝐼 , 𝑣ℎ) for all ℎ < 𝑡. Then, (𝐼 \𝑈) ∪𝑉 ∈ ℐ.

We give a sketch of the proof. First, we note that for each 𝑡 ∈ [ℓ ], 𝑢𝑡 ∈ 𝐶(𝐼 , 𝑣𝑡) means that
exchanging 𝑣𝑡 for 𝑢𝑡 maintains independence. The statement follows by induction on ℓ : we consider
the independent set 𝐼′ = (𝐼 \ {𝑢ℓ }) ∪ {𝑣ℓ }. We can apply induction for 𝐼′, 𝑈′ = {𝑢1 , 𝑢2 , . . . , 𝑢ℓ−1},
and 𝑉′ = {𝑣1 , 𝑣2 , . . . , 𝑣ℓ−1}, noting that the assumption guarantees that 𝐶(𝐼′, 𝑣𝑡) = 𝐶(𝐼 , 𝑣𝑡) for all
𝑡 ∈ [ℓ − 1]. Based on this lemma, we show the following exchange property.

Lemma 3.4.5. Let 𝐵 be a basis of the matroidℳ = ([𝑛],ℐ), and let 𝑈 = {𝑢1 , 𝑢2 , . . . , 𝑢ℓ } ⊆ 𝐵, and
𝑉 = {𝑣1 , 𝑣2 , . . . , 𝑣ℓ , 𝑣ℓ+1} ⊆ [𝑛] \ 𝐵. Assume 𝐶(𝐵, 𝑣1) ∩𝑈 = {𝑢1}, 𝐶(𝐵, 𝑣ℓ+1) ∩𝑈 = {𝑢ℓ }, and for each
2 ≤ 𝑡 ≤ ℓ , 𝐶(𝐵, 𝑣𝑡) ∩𝑈 = {𝑢𝑡−1 , 𝑢𝑡}. Then (𝐵 \𝑈) ∪𝑉 contains a unique circuit 𝐶, and 𝑉 ⊆ 𝐶.

The situation described here corresponds to a minimal path in the hypergraph 𝒞𝐵 of the
fundamental circuits with respect to a basis 𝐵. The hyperedges 𝐶(𝐵, 𝑣𝑖) form a path from 𝑣1 to 𝑣ℓ+1

such that no shortcut is possible (note that this is weaker than requiring a shortest path).

Proof of Lemma 3.4.5. Note that 𝑆 = (𝐵 \ 𝑈) ∪ 𝑉 ∉ ℐ since |𝑆 | > |𝐵| and 𝐵 is a basis. For any
𝑖 ∈ [ℓ + 1], we can use Lemma 3.4.4 to show that 𝑆 \ {𝑣𝑖} = (𝐵 \𝑈) ∪ (𝑉 \ {𝑣𝑖}) ∈ ℐ (and thus, is a
basis). To see this, we apply Lemma 3.4.4 for the ordered sets 𝑉′ = {𝑣1 , . . . , 𝑣𝑖−1 , 𝑣ℓ+1 , 𝑣ℓ , . . . , 𝑣𝑖+1}
and𝑈′ = {𝑢1 , . . . , 𝑢𝑖−1 , 𝑢ℓ , 𝑢ℓ−1 , . . . , 𝑢𝑖}.

Consequently, every circuit in 𝑆 must contain the entire set 𝑉 . The uniqueness of the circuit in 𝑆
follows by the well-known circuit axiom asserting that if 𝐶, 𝐶′ ∈ 𝒞, 𝐶 ≠ 𝐶′ and 𝑣 ∈ 𝐶 ∩ 𝐶′, then
there exists a circuit 𝐶′′ ∈ 𝒞 such that 𝐶′′ ⊆ (𝐶 ∪𝐶′) \ {𝑣}, contradicting the claim that every circuit
in 𝑆 contains the entire set 𝑉 . □

We are ready to describe the algorithm that will be used to obtain lower bounds on all 𝜅𝑖 𝑗 values.

Theorem 3.4.6. Given A ∈ R𝑚×𝑛 , there exists an 𝑂(𝑛2𝑚2) time algorithm Find-Circuits(A) that
obtains a decomposition ofℳ(A) to a direct sum of non-separable linear matroids, and returns a family
�̂� of circuits such that if 𝑖 and 𝑗 are in the same non-separable component, then there exists a circuit in �̂�
containing both 𝑖 and 𝑗. Further, for each 𝑖 ≠ 𝑗 in the same component, the algorithm returns a value �̂�𝑖 𝑗 as
the the maximum of |𝑔𝑗/𝑔𝑖 | such that 𝑔 ∈𝑊 , supp(𝑔) = 𝐶 for some 𝐶 ∈ �̂� containing 𝑖 and 𝑗. For these
values, �̂�𝑖 𝑗 ≤ 𝜅𝑖 𝑗 ≤ (𝜅∗)2�̂�𝑖 𝑗 .

Proof. Once we have found the set of circuits �̂�, and computed �̂�𝑖 𝑗 as in the statement, the
inequalities �̂�𝑖 𝑗 ≤ 𝜅𝑖 𝑗 ≤ (𝜅∗)2�̂�𝑖 𝑗 follow easily. The first inequality is by the definition of 𝜅𝑖 𝑗 , and the
second inequality is from Corollary 3.4.2.

We now turn to the computation of �̂�. We first obtain a basis 𝐵 ⊆ [𝑛] of ker(A) via Gauss-Jordan
elimination in time 𝑂(𝑛𝑚2). Recall the assumption that 𝐴 has full row-rank. Let us assume that
𝐵 = [𝑚] is the set of first 𝑚 indices. The elimination transforms it to the basis form A =

[
I𝑚 H

]
,

where H ∈ R𝑚×(𝑛−𝑚) corresponds to the non-basis elements. In this form, the fundamental circuit
𝐶(𝐵, 𝑖) is the support of the 𝑖-th column of A together with 𝑖 for every 𝑚 + 1 ≤ 𝑖 ≤ 𝑛. We let 𝒞𝐵
denote the set of all these fundamental circuits.

We construct an undirected graph 𝐺 = (𝐵, 𝐸) as follows. For each 𝑖 ∈ [𝑛] \ 𝐵, we add a clique
between the nodes in 𝐶(𝐵, 𝑖) \ {𝑖}. This graph can be constructed in 𝑂(𝑛𝑚2) time.
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The connected components of 𝐺 correspond to the connected components of 𝒞𝐵 restricted to
𝐵. Thus, due to the equivalence shown in Proposition 3.2.21 we can obtain the decomposition by
identifying the connected components of 𝐺. For the rest of the proof, we assume that the entire
hypergraph is connected; connectivity can be checked in 𝑂(𝑚2) time.

We initialize �̂� as 𝒞𝐵. We will then check all pairs 𝑖 , 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗. If no circuit 𝐶 ∈ �̂� exists with
𝑖 , 𝑗 ∈ 𝐶, then we will add such a circuit to �̂� as follows.

Assume first 𝑖 , 𝑗 ∈ [𝑛] \ 𝐵. We can find a shortest path in 𝐺 between the sets 𝐶(𝐵, 𝑖) \ {𝑖}
and 𝐶(𝐵, 𝑗) \ { 𝑗} in time 𝑂(𝑚2). This can be represented by the sequences of points 𝑉 =

{𝑣1 , 𝑣2 , . . . , 𝑣ℓ+1} ⊆ [𝑛] \ 𝐵, 𝑣1 = 𝑖, 𝑣ℓ+1 = 𝑗, and 𝑈 = {𝑢1 , 𝑢2 , . . . , 𝑢ℓ } ⊆ 𝐵 as in Lemma 3.4.5.
According to the lemma, 𝑆 = (𝐵 \𝑈) ∪𝑉 contains a unique circuit 𝐶 that contains all 𝑣𝑡 ’s, including
𝑖 and 𝑗.

We now show how this circuit can be identified in 𝑂(𝑚) time, along with the vector 𝑔𝐶 . Let A𝑆

be the submatrix corresponding to the columns in 𝑆. Since 𝑔 = 𝑔𝐶 is unique up to scaling, we can
set 𝑔𝑣1 = 1. Note that for each 𝑡 ∈ [ℓ ], the row of A𝑆 corresponding to 𝑢𝑡 contains only two nonzero
entries: A𝑢𝑡𝑣𝑡 and A𝑢𝑡𝑣𝑡+1 . Thus, the value 𝑔𝑣1 = 1 can be propagated to assigning unique values to
𝑔𝑣2 , 𝑔𝑣3 , . . . , 𝑔𝑣ℓ+1 . Once these values are set, there is a unique extension of 𝑔 to the indices 𝑡 ∈ 𝐵∩ 𝑆
in the basis. Thus, we have identified 𝑔 as the unique element of ker(A𝑆) up to scaling. The circuit
𝐶 is obtained as supp(𝑔). The above procedure can be implemented in 𝑂(𝑚) time.

The argument easily extends to finding circuits for the case {𝑖 , 𝑗} ∩ 𝐵 ≠ ∅. If 𝑖 ∈ 𝐵, then
for any choice of 𝑉 = {𝑣1 , 𝑣2 , . . . , 𝑣ℓ+1} and 𝑈 = {𝑢1 , 𝑢2 , . . . , 𝑢ℓ } as in Lemma 3.4.5 such that
𝑖 ∈ 𝐶(𝐵, 𝑣1) and 𝑖 ∉ 𝐶(𝐵, 𝑣𝑡) for 𝑡 > 1, the unique circuit in (𝐵 \𝑈) ∪𝑉 also contains 𝑖. This follows
from Lemma 3.4.4 by taking 𝑉′ = {𝑣ℓ+1 , 𝑣ℓ , . . . , 𝑣1} and 𝑈′ = {𝑢ℓ , . . . , 𝑢1 , 𝑖}, which proves that
𝑆 \ {𝑖} = (𝐵 \𝑈′) ∪ 𝑉′ ∈ ℐ. Similarly, if 𝑗 ∈ 𝐵 with 𝑗 ∈ 𝐶(𝐵, 𝑣ℓ+1) and 𝑗 ∉ 𝐶(𝐵, 𝑣𝑡) for 𝑡 < ℓ + 1,
taking 𝑉′′ = 𝑉 and𝑈′′ = {𝑢1 , . . . , 𝑢ℓ , 𝑗} gives 𝑆 \ { 𝑗} ∈ ℐ.

The bottleneck for the running time is finding the shortest paths for the 𝑛(𝑛 − 1) pairs, in time
𝑂(𝑚2) each. □

Theorem 3.4.7. There is an 𝑂(𝑛2𝑚2 + 𝑛3) time algorithm that for any matrix A ∈ R𝑚×𝑛 computes an
estimate 𝜉 of �̄�𝑊 such that

𝜉 ≤ �̄�𝑊 ≤ 𝑛(�̄�∗𝑊 )
2𝜉

and a D ∈ 𝔇 such that
�̄�∗𝑊 ≤ �̄�D𝑊 ≤ 𝑛(�̄�∗𝑊 )

3 .

Proof. Let us run the algorithm Finding-Circuits(𝐴) described in Theorem 3.4.6 to obtain the
values �̂�𝑖 𝑗 such that �̂�𝑖 𝑗 ≤ 𝜅𝑖 𝑗 ≤ (𝜅∗𝑊 )2�̂�𝑖 𝑗 . We let 𝐺 = ([𝑛], 𝐸) be the circuit ratio digraph, that is,
(𝑖 , 𝑗) ∈ 𝐸 if 𝜅𝑖 𝑗 > 0.

To show the first statement on approximating �̄�, we simply set 𝜉 = max(𝑖 , 𝑗)∈𝐸 �̂�𝑖 𝑗 . Then,

𝜉 ≤ 𝜅𝑊 ≤ �̄�𝑊 ≤ 𝑛𝜅𝑊 ≤ 𝑛(𝜅∗𝑊 )
2𝜉 ≤ 𝑛(�̄�∗𝑊 )2𝜉

follows by Theorem 3.3.8.
For the second statement on finding a nearly optimal rescaling for �̄�∗𝑊 , we consider the following

optimization problem, which is an approximate version of (3.27) from Theorem 3.4.1.

min 𝑡

�̂�𝑖 𝑗𝑑 𝑗/𝑑𝑖 ≤ 𝑡 ∀(𝑖 , 𝑗) ∈ 𝐸
𝑑 > 0.

(3.29)
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Let �̂� be an optimal solution to (3.29) with value 𝑡. We will prove that 𝜅�̂� ≤ (𝜅∗
𝑊
)3.

First, observe that 𝜅�̂�
𝑖 𝑗
= 𝜅𝑖 𝑗 �̂� 𝑗/�̂�𝑖 ≤ (𝜅∗𝑊 )2�̂�𝑖 𝑗 �̂� 𝑗/�̂�𝑖 ≤ (𝜅

∗
𝑊
)2𝑡 for any (𝑖 , 𝑗) ∈ 𝐸. Now, let 𝑑∗ > 0

be such that 𝜅𝑑∗ = 𝜅∗
𝑊

. The vector 𝑑∗ is a feasible solution to (3.29), and so 𝑡 ≤ max𝑖≠𝑗 �̂�𝑖 𝑗𝑑∗𝑗/𝑑
∗
𝑖
≤

max𝑖≠𝑗 𝜅𝑖 𝑗𝑑∗𝑗/𝑑
∗
𝑖
= 𝜅𝑑

∗ . Hence we find that �̂� gives a rescaling with

�̄�
𝑊𝐷
≤ 𝑛𝜅�̂� ≤ 𝑛(𝜅∗𝑊 )

3 ≤ 𝑛(�̄�𝑊 )3 ,

where we again used Theorem 3.3.8.
We can obtain the optimal value 𝑡 of (3.29) by solving the corresponding maximum-mean cycle

problem (see Theorem 3.4.1). It is easy to develop a multiplicative version of the standard dynamic
programming algorithm of the classical minimum-mean cycle problem (see e.g. [AMO93, Theorem
5.8]) that allows finding the optimum to (3.29) directly, in the same 𝑂(𝑛3) time.

It is left to find the labels 𝑑𝑖 > 0, 𝑖 ∈ [𝑛] such that �̂�𝑖 𝑗𝑑 𝑗/𝑑𝑖 ≤ 𝑡 for all (𝑖 , 𝑗) ∈ 𝐸. We define
the following weighted directed graph. We associate the weight 𝑤𝑖 𝑗 = log 𝑡 − log �̂�𝑖 𝑗 with every
(𝑖 , 𝑗) ∈ 𝐸, and add an extra source vertex 𝑟 with edges (𝑟, 𝑖) of weight 𝑤𝑟𝑖 = 0 for all 𝑖 ∈ [𝑛].

By the choice of 𝑡, this graph does not contain any negative weight directed cycles. We can
compute the shortest paths from 𝑟 to all nodes in 𝑂(𝑛3) using the Bellman-Ford algorithm; let 𝜎𝑖
be the shortest path label for 𝑖. We then set 𝑑𝑖 = exp(𝜎𝑖). One can avoid computing logarithms by
using a multiplicative variant of the Bellman-Ford algorithm instead.

The running time of the whole algorithm will be bounded by 𝑂(𝑛2𝑚2 + 𝑛3). The running time
is dominated by the 𝑂(𝑛2𝑚2) complexity of Finding-Circuits(𝐴) and the 𝑂(𝑛3) complexity of
solving the minimum-mean cycle problem and shortest path computation. □

3.4.2 Perfect balancing: 𝜅∗
𝑊

= 1

Let us now show that 𝜅∗A = 1 can be efficiently checked.

Theorem 3.4.8. There exists a strongly polynomial algorithm, that given a matrix A ∈ R𝑚×𝑛 , returns one
of the following outcomes:

(a) A diagonal matrix D ∈ 𝔇𝑛 such that 𝜅AD = 1 showing that 𝜅∗A = 1. The algorithm also returns
the exact value of 𝜅A. Further, if ker(A) is a rational linear space, then we can select D with integer
diagonal entries that divide ¤𝜅A.

(b) The answer 𝜅∗A > 1, along with a cycle of circuits 𝐻 such that 𝜅A(𝐻) > 1.

Proof. As noted above, we can assume without loss of generality that the matroid ℳ(𝑊) is
non-separable, as we can reduce the problem to solving on all connected components separately.

We obtain estimates �̂�𝑖 𝑗 for every edge (𝑖 , 𝑗) of the circuit ratio graph using a circuit 𝐶 ∈ 𝒞𝑊
with 𝑖 , 𝑗 ∈ 𝐶. Assuming that 𝜅∗

𝑊
= 1, Corollary 3.4.2 implies that �̂�𝑖 𝑗 = 𝜅𝑖 𝑗 holds and the rescaling

factors 𝑑𝑖 must satisfy
�̂�𝑖 𝑗𝑑 𝑗 = 𝑑𝑖 ∀𝑖 , 𝑗 ∈ [𝑛] . (3.30)

If this system is infeasible, then using the circuits that provided the estimates �̂�𝑖 𝑗 , we can obtain a
cycle 𝐻 such that 𝜅A(𝐻) > 1, that is, outcome (b). Let us now assume that (3.30) is feasible; then
it has a unique solution 𝑑 up to scalar multiplication. We define D ∈ 𝔇𝑛 with diagonal entries
D𝑖𝑖 = 𝑑𝑖 .

Since ℳ(𝑊) is non-separable, we can conclude that 𝜅∗A = 1 if and only if 𝜅AD = 1. By
Theorem 3.2.4, this holds if and only if A′ = A−1

𝐵
AD is a TU-matrix for any basis 𝐵.
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We run Seymour’s algorithm [Sey80] for A′. If it confirms that A is TU (certified by a construction
sequence), then we return outcome (a). In this case, |𝑔𝐶

𝑗
/𝑔𝐶

𝑖
| is the same for any circuit 𝐶 with

𝑖 , 𝑗 ∈ 𝐶; therefore 𝜅𝑖 𝑗 = �̂�𝑖 𝑗 , and we can return 𝜅A = max(𝑖 , 𝑗)∈𝐸 �̂�𝑖 𝑗 .
Otherwise, Seymour’s algorithm finds a 𝑘 × 𝑘 submatrix T of A′ with det(T) ∉ {0,±1}. As in

the proof of Proposition 3.2.2, we can recover a circuit 𝐶 in 𝒞A′ = 𝒞AD with two entries 𝑖 , 𝑗 ∈ 𝐶
such that | �̄�𝑗 | ≠ | �̄�𝑖 | for the corresponding elementary vector �̄� ∈ ℰ(AD). Note that �̂�𝑖 𝑗𝑑 𝑗 = 𝑑𝑖 for
the rescaled estimates. Hence, the circuit 𝐶′ with 𝑖 , 𝑗 ∈ 𝐶′ used to obtain the estimate 𝜅𝑖 𝑗 , together
with 𝐶 certifies that 𝜅∗A > 1 as required for outcome (b).

Finally, if ker(A) is a rational linear space and we concluded 𝜅∗A = 1, then let us select the
solution 𝑑𝑖 to (3.30) such that 𝑑 ∈ Z𝑛 and gcd(𝑑) = 1. We claim that 𝑑𝑖 | ¤𝜅𝑊 for all 𝑖. Indeed, let
𝑘 = lcm(𝑑). For each pair 𝑖 , 𝑗 ∈ [𝑛], 𝑑 𝑗/𝑑𝑖 = 𝑟/𝑞 for two integers 𝑟, 𝑞 | ¤𝜅A. Hence, for any prime
𝑝 ∈ P, 𝜈𝑝(𝑘) ≤ 𝜈𝑝( ¤𝜅A), implying 𝑘 | ¤𝜅A. □

Let𝑊 ⊆ R𝑛 be a linear space such thatℳ(𝑊) is non-separable. Recall from Theorem 3.2.22 that
𝒦𝑊

𝑖𝑗
⊆ 𝒦𝑊

𝑖𝑘
· 𝒦𝑊

𝑘𝑗
for all 𝑖 , 𝑗 , 𝑘 ∈ [𝑛]. We now characterize when equality holds for all triples.

Proposition 3.4.9. Let𝑊 ⊆ R𝑛 be a linear space such thatℳ(𝑊) is non-separable. Then, the following
are equivalent:

(i) 𝜅∗
𝑊

= 1,

(ii) |𝒦𝑊
𝑖𝑗
| = 1 for all 𝑖 , 𝑗 ∈ [𝑛],

(iii) 𝒦𝑊
𝑖𝑗

= 𝒦𝑊
𝑖𝑘
· 𝒦𝑊

𝑘𝑗
holds for all distinct 𝑖 , 𝑗 , 𝑘 ∈ [𝑛].

Proof. (i)⇔ (ii): Consider any rescaling D ∈ 𝔇𝑛 with diagonal entries 𝑑𝑖 = D𝑖𝑖 . Then,𝒦𝐷𝑊
𝑖𝑗

= {1},
and 𝒦𝐷𝑊

𝑖𝑗
=

𝑑𝑗
𝑑𝑖
𝒦𝑊

𝑖𝑗
. Hence, if 𝜅𝐷𝑊 = 1 for some 𝐷 ∈ 𝔇𝑛 , then 𝒦𝐷𝑊

𝑖𝑗
= {1} implying |𝒦𝑊

𝑖𝑗
| = 1 for

every 𝑖 , 𝑗 ∈ [𝑛]. If |𝒦𝑊
𝑖𝑗
| > 1 for some 𝑖 , 𝑗, it follows that 𝜅𝐷𝑊 ≠ 1 for any diagonal rescaling.

(ii)⇒ (iii): We have 𝒦𝑊
𝑖𝑗
⊆ 𝒦𝑊

𝑖𝑘
· 𝒦𝑊

𝑘𝑗
by Theorem 3.2.22. If all three sets are of size one, then

equality must hold.
(iii)⇒ (i): Let 𝑖 , 𝑗 ∈ [𝑛] arbitrary but distinct and let us define

Γ𝑖 𝑗 ≔ { 𝜅(𝐻) | 𝐻 closed walk in 𝐺, (𝑖 , 𝑗) ∈ 𝐸(𝐻) } .

Note that either Γ𝑖 𝑗 = {1} or Γ𝑖 𝑗 is infinite as any cycle 𝐻 can be traversed multiple times to form a
closed walk. Note that by (iii) we have for any 𝑖 , 𝑗 ∈ [𝑛] that

Γ𝑖 𝑗 ⊆
⋃{

Π(𝑘,ℓ )∈𝐸(𝐻)𝒦 𝑘,ℓ

�� 𝐻 closed walk in 𝐺, (𝑖 , 𝑗) ∈ 𝐸(𝐻)
}
= 𝒦 𝑖 𝑗 · 𝒦 𝑗𝑖 . (3.31)

The set𝒦 𝑖 𝑗 · 𝒦 𝑗𝑖 is finite, implying that Γ𝑖 𝑗 = {1}. This, together with Theorem 3.4.1 gives (i). □

A surprising finding by Lee [Lee89; Lee90] is that if ¤𝜅𝑊 is an odd prime power, then 𝜅∗
𝑊

= 1
holds.1 We first present a proof sketch following the lines of the one in [Lee89; Lee90]. We also
present a second, almost self-contained proof, relying only on basic results on TU matrices.

Theorem 3.4.10 (Lee [Lee89; Lee90]). Each 𝑊 for which ¤𝜅𝑊 = 𝑝𝛼 where 𝑝 ∈ P, 𝑝 > 2, 𝛼 ∈ N, then
𝜅∗
𝑊

= 1.

Proof. A theorem by Tutte [Tut65] asserts that𝑊 can be represented as the kernel of an unimodular
matrix, i.e. 𝜅∗

𝑊
= 1 or𝑊 has a minor𝑊 ′ such that 𝒞(𝑊 ′) � 𝒞(𝑈4

2 )where𝑈4
2 is the uniform matroid

1The statement in the paper is slightly more general, for 𝑘-adic subspaces with 𝑘 > 2; the proof is essentially the same.
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on four elements such that the independent sets are the sets of cardinality at most two. Here, a
matroid minor corresponds to iteratively either deleting variables or projecting variables out. In the
first case we are done, so let us consider the second case. Note that𝑊 ′ ⊂ R4 and by Lemma 3.2.16
we have that for all 𝑖 , 𝑗 ∈ [4] we have that𝒦𝑊′

𝑖 𝑗
⊆ 𝒦𝑊

𝑖𝑗
and so in particular ¤𝜅𝑊′ = 𝑝𝛽 for some 𝛽 ≤ 𝛼.

An easy consequence of the proof of Proposition 3.2.18 and the congruence 𝒞(𝑊 ′) � 𝒞(𝑈4
2 ) is that

𝑊 ′ can be represented by A′, i.e., ker(A′) =𝑊 ′ such that

A′ =

[
1 0 𝑝𝛾1 𝑝𝛾2

0 1 𝑝𝛾3 𝑝𝛾4

]
(3.32)

for 𝛾𝑖 ∈ N ∪ {0} and 𝑖 ∈ [4]. Further, by 𝒞(𝑊 ′) � 𝒞(𝑈4
2 ) and ΔA′ | ¤𝜅𝑊′ (Proposition 3.2.18) we have

that

0 ≠ det

[
𝑝𝛾1 𝑝𝛾2

𝑝𝛾3 𝑝𝛾4

]
= 𝑝𝛾1+𝛾4 − 𝑝𝛾2+𝛾3 | 𝑝𝛽 . (3.33)

It is immediate that (3.33) cannot be fulfilled for 𝑝 > 2. □

Alternative Proof of Theorem 3.4.10. Let A ∈ R𝑚×𝑛 be such that A = ker(𝑊) satisfying the properties
in Proposition 3.2.18 in basis form A =

[
I𝑚 A′

]
; for simplicity, assume the identity matrix is in

the first 𝑚 columns. Let 𝐺 =
(
[𝑛], 𝐸(𝐺)

)
be a directed multigraph associated with A with edge set

𝐸(𝐺) = ⋃
𝑘∈[𝑚] 𝐸𝑘(𝐺) where 𝐸𝑘(𝐺) =

{
(𝑖 , 𝑗) : A𝑘𝑖A𝑘 𝑗 ≠ 0

}
. Further, define 𝛾 : 𝐸(𝐺) → R+ where

for 𝑒 ∈ 𝐸𝑘 we let 𝛾(𝑒) = |A𝑘 𝑗/A𝑘𝑖 |. For a directed cycle 𝐶 in 𝐺 we define 𝛾(𝐶) ≔ ∏
𝑒∈𝐸(𝐶) 𝛾(𝑒).

Claim 3.4.10.1. All cycles 𝐶 in 𝐺 fulfill 𝛾(𝐶) = 1.

Proof. For a contradiction, assume that there exists a cycle 𝐶 such that 𝛾(𝐶) ≠ 1 and let 𝐶 be a
shortest cycle with this property. Then 𝐶 has no chord 𝑓 ∈ 𝐸(𝐺), as otherwise 𝐶 ∪ { 𝑓 } contains
two shorter cycles 𝐶1 , 𝐶2 such that 𝛾(𝐶1)𝛾(𝐶2) = 𝛾(𝐶) ≠ 1 and so in particular 𝛾(𝐶1) ≠ 1 or
𝛾(𝐶2) ≠ 1. This also means that the support of the corresponding submatrix A𝐼 ,𝐽 of A where
𝐼 ≔ { 𝑖 ∈ [𝑚] : 𝐸𝑖(𝐺) ∩ 𝐸(𝐶) ≠ 0 } and 𝐽 ≔ 𝑉(𝐶) is exactly the set of non-zeros of an incidence
matrix of a cycle. We have that det(A𝐼 ,𝐽) ≠ 0 as the corresponding cycle 𝐶 has 𝛾(𝐶) ≠ 1. Recall the
Leibniz determinant formula. As A𝐼 ,𝐽 is supported on the incidence matrix of a cycle there exist only
two bĳective maps 𝜙,𝜓 : 𝐼 → 𝐽, 𝜙 ≠ 𝜓 such that

∏
𝑖∈𝐼 A𝑖 ,𝜙(𝑖) ≠ 0 ≠

∏
𝑖∈𝐼 A𝑖 ,𝜓(𝑖) is non-vanishing.

One of the maps corresponds to traversing the cycle forward, the other corresponds to traversing it
backwards. As all the entries of 𝐴 are powers of 𝑝 we therefore have that 0 ≠ det(A𝐼 ,𝐽) = ±𝑝𝛼 ± 𝑝𝛽
for some 𝛼, 𝛽 ∈ N. This contradicts Proposition 3.2.18(iii) for 𝑝 > 2. □

The above claim implies the existence of a rescaling of rows and columns Ã ≔ LAR where
L ∈ 𝔇𝑛 , R ∈ 𝔇𝑚 such that Ã ∈ {−1, 0, 1}𝑚×𝑛 . If Ã is TU, then we are done by Proposition 3.2.2 as
now 𝜅∗

𝑊
= 1. Otherwise, we use a result by Gomory (see [Cam65] and [Sch98, Theorem 19.3]) that

states that any matrix B with entries in {−1, 0, 1} that is not TU has a submatrix B′with | det(B′)| = 2.
Let 𝐼 ⊆ [𝑚] and 𝐽 ⊆ [𝑛] such that | det(Ã𝐼 ,𝐽)| = 2. Note that w.l.o.g. the diagonal entries of L and
R are of the form 𝑝𝛼 for some 𝛼 ∈ Z. Therefore, | det(A𝐼 ,𝐽)| =

∏
𝑖∈𝐼 L𝑖𝑖

∏
𝑗∈𝐽 R𝑗 𝑗 | det(Ã𝐼 ,𝐽)| = 2𝑝𝛽

for some 𝛽 ∈ Z. As | det(A𝐼 ,𝐽)| ∈ Nwe must have 𝛽 ≥ 0 and 2 | | det(A𝐼 ,𝐽)|. This again contradicts
Proposition 3.2.18(iii) for 𝑝 > 2. □
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3.5 Proximity via Hoffman-bounds

Hoffman’s seminal work [Hof52] has analyzed proximity of LP solutions. Given

𝑃 = { 𝑥 ∈ R𝑛 : A𝑥 ≤ 𝑏 } , (3.34)

𝑥0 ∈ R𝑛 , and norms ∥.∥𝛼 and ∥.∥𝛽, we are interested in the minimum of ∥𝑥 − 𝑥0∥𝛼 over 𝑥 ∈ 𝑃.
Hoffman showed that this can be bounded as 𝐻𝛼,𝛽(A)∥(A𝑥0 − 𝑏)+∥𝛽, where the Lipschitz-bound
𝐻𝛼,𝛽(A) is a constant that only depends on A and the norms. Such bounds have been shown for
different problem forms and norms; we refer the reader to [PVZ20] for results and references.

We will use a Hoffman-bound for a system of the form 𝑥 ∈ 𝑊 , ℓ ≤ 𝑥 ≤ 𝑢. We show that
𝐻∞,1 = 𝜅𝑊 for such a system. Related bounds using �̄�A have been shown in [HT02]; here, we
present a self-contained proof.

For vectors 𝑑, 𝑐 ∈ R𝑛 , let us define the set

Λ(𝑑, 𝑐) ≔ supp(𝑑−) ∪ supp(𝑐+) . (3.35)

Theorem 3.5.1 (Hoffman Proximity Theorem). Let 𝑊 ⊆ R𝑛 be a subspace and ℓ ∈ (R ∪ {−∞})𝑛 ,
𝑢 ∈ (R ∪ {∞})𝑛 be lower and upper bounds, and assume that 𝑃 = {𝑥 ∈ 𝑊 : ℓ ≤ 𝑥 ≤ 𝑢} is non-empty.
Then, for every 𝑥 ∈ 𝑃 we have

∥ℓ+ + 𝑢−∥1 ≤ ∥𝑥Λ(𝑢,ℓ )∥1 ,

and there exists 𝑥 ∈ 𝑃 such that
∥𝑥∥∞ ≤ 𝜅𝑊 ∥ℓ+ + 𝑢−∥1 .

Proof. Let us start with the first statement. We have supp(𝑢−) ∩ supp(ℓ+) = ∅. If 𝑢𝑖 < 0, then
|𝑥𝑖 | ≥ |𝑢𝑖 |, and if ℓ𝑖 > 0, then |𝑥𝑖 | ≥ |ℓ𝑖 |. Thus, ∥ℓ+ + 𝑢−∥1 ≤ ∥𝑥Λ(𝑢,ℓ )∥1 follows for every 𝑥 ∈ 𝑃.

For the second statement, select 𝑥 ∈ 𝑃 such that ∥𝑥∥1 minimal and let 𝑥 =
∑ℎ
𝑘=1 𝑔

𝑘 be a
sign-consistent circuit decomposition of 𝑥 as in Lemma 2.0.3. For each 𝑘 ∈ [ℎ], we show that
𝐶𝑘 = supp(𝑔𝑘)must either contain an element 𝑖 ∈ 𝐶𝑘 with 𝑥𝑖 = 𝑢𝑖 < 0, or with 𝑥𝑖 = ℓ𝑖 > 0. For a
contradiction, assume that one of them, say 𝐶1, contains no such element. Then, for some 𝜀 > 0,
𝑥′ = (1 − 𝜀)𝑔1 +∑ℎ

𝑘=2 𝑔
𝑘 ∈ 𝑃, giving a contradiction, since ∥𝑥′∥1 < ∥𝑥∥1.

The inequality ∥𝑥∥∞ ≤ 𝜅𝑊 ∥ℓ+ + 𝑢−∥1 then follows as in the proof of Proposition 3.3.7. □

We can derive useful corollaries for feasibility and optimization problems.

Corollary 3.5.2. Let𝑊 ⊆ R𝑛 be a subspace and 𝑑 ∈ R𝑛 . If the primal Primal(𝑊, 𝑑) is feasible, then the
system

𝑥 ∈𝑊 + 𝑑
∥𝑥 − 𝑑∥∞ ≤ 𝜅𝑊 ∥𝑑−∥1

𝑥 ≥ 0,

is also feasible.

Proof. Using the variable 𝑧 = 𝑑 − 𝑥, the system can be equivalently written as 𝑧 ∈𝑊 , 𝑧 ≤ 𝑑. Thus,
Theorem 3.5.1 guarantees a solution with ∥𝑧∥∞ ≤ 𝜅𝑊 ∥𝑑−∥1, as required. □

Corollary 3.5.3. Let𝑊 ⊆ R𝑛 be a subspace and 𝑐, 𝑑 ∈ R𝑛 , and let 𝑐 ≥ 0. If Primal(𝑊, 𝑑) is feasible, then
there is an optimal primal (𝑥, 𝑠) to LP(𝑊, 𝑑, 𝑐) such that

∥𝑥 − 𝑑∥∞ ≤ 𝜅𝑊 ∥𝑑Λ(𝑑,𝑐)∥1 .
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Proof. Let (𝑥∗ , 𝑠∗) be optimal to LP(𝑊, 𝑑, 𝑐). That is, 𝑥∗ minimizes ⟨𝑐, 𝑥⟩ over 𝑥 ∈ 𝑊 + 𝑑, 𝑥 ≥ 0.
Consider the feasibility system 𝑥 ∈ 𝑊 + 𝑑, 𝑥 ≥ 0, and 𝑥𝑖 ≤ 𝑥∗

𝑖
∀𝑖 ∈ supp(𝑐). Note that 𝑥∗ is a

feasible solution. In fact, the inequality 𝑥𝑖 ≤ 𝑥∗𝑖 must be tight for all 𝑖 ∈ supp(𝑐), as otherwise
⟨𝑐, 𝑥⟩ < ⟨𝑐, 𝑥∗⟩, contradicting the optimality of 𝑥∗.

For 𝑧 = 𝑑 − 𝑥, we get the system 𝑧 ∈𝑊 , ℓ ≤ 𝑧 ≤ 𝑑, where ℓ𝑖 = 𝑑𝑖 − 𝑥∗𝑖 if 𝑖 ∈ supp(𝑐), and ℓ𝑖 = −∞
if 𝑐𝑖 = 0. Note that ℓ+

𝑖
≤ 𝑑+

𝑖
, for 𝑖 ∈ supp(𝑐) = supp(𝑐+), and therefore,

∥𝑑Λ(𝑑,𝑐)∥1 = ∥𝑑+supp(𝑐)∥1 + ∥𝑑
−∥1 ≥ ∥ℓ+ + 𝑑−∥1 .

Thus, the claim follows by Theorem 3.5.1. □

We can immediately use this theorem to derive a conclusion on the support of the optimal dual
solutions to LP(𝑊, 𝑑, 𝑐).

Corollary 3.5.4. Let (𝑊, 𝑑, 𝑐) be a feasible instance of LP with 𝑐 ≥ 0 and let

𝑅 ≔
{
𝑖 ∈ [𝑛] : 𝑑𝑖 > 𝜅𝑊 ∥𝑑Λ(𝑑,𝑐)∥1

}
. (3.36)

Then for every optimal dual solution 𝑠∗ to LP(𝑊, 𝑑, 𝑐), we have 𝑠∗
𝑅
= 0.

Proof. By Corollary 3.5.3, there exists an optimal primal solution 𝑥∗ such that for all 𝑟 ∈ 𝑅 we have

𝑥∗𝑟 ≥ 𝑑𝑟 − ∥𝑑 − 𝑥∗∥∞ > 0 . (3.37)

By complementary slackness we must have 𝑠∗𝑟 for all optimal dual solutions 𝑠∗ of LP(𝑊, 𝑑, 𝑐). □

The next lemma can also be used to conclude that a primal variable 𝑠∗
𝑖
= 0 in every solution

(𝑥∗ , 𝑠∗) to 1.2. For integer matrices, a similar statement was given by Cook et al. [CGST86, Theorem
5], see also [Sch98, Theorem 10.5] with a bound in terms of the maximum subdeterminant ΔA. A
variant of this statement is used by Tardos [Tar85, Lemma 1.1] as the main underlying proximity
statement of her algorithm. Ho and Tunçel [HT02, Theorem 6.3] generalized this bound to arbitrary
matrices, using the condition number �̄�A. This implies our statement with 𝑛𝜅𝑊 instead of 𝜅𝑊 + 1.
We note that the arguments in [CGST86; Tar85] are based on Cramer’s rule. In essence, this is used
to bound the circuit imbalances in terms of ΔA. Hence, our formulation with 𝜅𝑊 can be seen as a
natural extension.

Lemma 3.5.5. Let𝑊 ⊆ R𝑛 be a subspace and 𝑐, 𝑑 ∈ R𝑛 . Let (�̃� , 𝑠) be an optimal solution to LP(𝑊, �̃�, 𝑐).
Then there exists an optimal solution (𝑥∗ , 𝑠∗) to LP(𝑊, 𝑑, 𝑐) such that

∥𝑥∗ − �̃�∥∞ ≤ (𝜅𝑊 + 1)∥𝑑 − �̃�∥1 .

Proof. Let 𝑥 = �̃� + 𝑑 − �̃�. Note that𝑊 + 𝑥 =𝑊 + 𝑑, and also𝑊⊥ + 𝑠 =𝑊⊥ + 𝑐. Thus, the systems
LP(𝑊, 𝑑, 𝑐) and LP(𝑊, 𝑥, 𝑠) define the same problem.

We apply Corollary 3.5.3 to (𝑊, 𝑥, 𝑠). This guarantees the existence of an optimal (𝑥∗ , 𝑠∗) to
LP(𝑊, 𝑥, 𝑠) such that ∥𝑥∗ − 𝑥∥∞ ≤ 𝜅𝑊 ∥𝑥Λ(𝑥,𝑠)∥1. Recall that Λ(𝑥, 𝑠) = supp(𝑥−) ∪ supp(𝑠+), and
thus, ∥𝑥Λ(𝑥,𝑠)∥1 = ∥𝑥−∥1 + ∥𝑥+supp(𝑠+)∥1.

Since �̃� ≥ 0, we get that ∥𝑥−∥1 ≤ ∥𝑥supp(𝑥−) − �̃�supp(𝑥−)∥1. Second, by the optimality of (�̃� , 𝑠), we
have �̃�supp(𝑠+) = 0, and thus 𝑥supp(𝑠+) = 𝑥supp(𝑠+) − �̃�supp(𝑠+). These together imply that

∥𝑥∗ − �̃�∥∞ ≤ ∥𝑥∗ − 𝑥∥∞ + ∥𝑥 − �̃�∥∞ ≤ (𝜅𝑊 + 1)∥𝑑 − �̃�∥1 . □

48



3 CIRCUIT IMBALANCE MEASURES 3.5 Proximity via Hoffman-bounds

We can immediately use Lemma 3.5.5 to derive a conclusion on the support of the optimal dual
solutions to System 1.2 with data (𝑊, 𝑑, 𝑐) using the optimal solution with data (𝑊, �̃�, 𝑐).

Theorem 3.5.6. Let𝑊 ⊆ R𝑛 be a subspace and 𝑐, 𝑑 ∈ R𝑛 . Let (�̃� , 𝑠) be an optimal solution to LP(𝑊, �̃�, 𝑐)
and

𝑅 ≔ { 𝑖 ∈ [𝑛] : �̃�𝑖 > (𝜅𝑊 + 1)∥ �̃� − 𝑑∥1 } .

Then for every dual optimal solution 𝑠∗ to System 1.2, we have 𝑠∗
𝑅
= 0.

Proof. By Lemma 3.5.5 there exists an optimal solution (𝑥′, 𝑠′) to LP(𝑊, 𝑑, 𝑐) such that ∥𝑥′ − �̃�∥∞ ≤
(𝜅𝑊+1)∥𝑑− �̃�∥1. Consequently, 𝑥′

𝑅
> 0, implying 𝑠∗

𝑅
= 0 for every dual optimal 𝑠∗ by complementary

slackness. □

Proximity for Capacitated LP. In Section 8.7, we use a dual version of this theorem, also including
upper bound constraints in the primal side. We now adapt the required proximity result to the
following primal and dual LPs, and formulate it in matrix language to conform to the algorithm in
Section 8.7.

Note that any 𝑦 ∈ R𝑚 induces a feasible dual solution with 𝑠𝑖 = (𝑐𝑖−⟨𝑎𝑖 , 𝑦⟩)+ and 𝑡𝑖 = (⟨𝑎𝑖 , 𝑦⟩−𝑐𝑖)+
for 𝑖 ∈ [𝑛]. A primal feasible solution 𝑥 and 𝑦 ∈ R𝑚 are optimal solutions if and only if ⟨𝑎𝑖 , 𝑦⟩ ≤ 𝑐𝑖
if 𝑥𝑖 < 𝑢𝑖 and ⟨𝑎𝑖 , 𝑦⟩ ≥ 𝑐𝑖 if 𝑥𝑖 > 0.

Theorem 3.5.7. Let (𝑥′, 𝑦′) be optimal primal and dual solutions to System 1.3 for input (𝑏, 𝑢, 𝑐′), and
(𝑥′′, 𝑦′′) for input (𝑏, 𝑢, 𝑐′′). Let

𝑅0 ≔
{
𝑖 ∈ [𝑛] : ⟨𝑎𝑖 , 𝑦′⟩ < 𝑐′𝑖 − (𝜅𝑊 + 1)∥𝑐′ − 𝑐′′∥1

}
,

𝑅𝑢 ≔
{
𝑖 ∈ [𝑛] : ⟨𝑎𝑖 , 𝑦′⟩ > 𝑐′𝑖 + (𝜅𝑊 + 1)∥𝑐′ − 𝑐′′∥1

}
.

Then 𝑥′′
𝑖
= 0 for every 𝑖 ∈ 𝑅0 and 𝑥′′

𝑖
= 𝑢𝑖 for every 𝑖 ∈ 𝑅𝑢 .

Proof. Let

Ā =

[
A 0
I𝑛 I𝑛

]
. (3.38)

It is easy to see that 𝜅�̄� = 𝜅A. Let �̄� ∈ R2𝑛 such that Ā�̄� =

[
𝑏

𝑢

]
. With 𝑐 = (𝑐, 0𝑛), the primal

system can be equivalently written as min⟨𝑐, �̄�⟩, �̄� ∈ ker(Ā) + �̄�, �̄� ≥ 0. The statement follows by
Theorem 3.5.6 applied for𝑊 = (ker(Ā))⊥ = im(Ā⊤). □

Subspace and scaling proximity bounds

The reader will have noted that we could have chosen 𝑑 and 𝑐 arbitraily in𝑊 + 𝑑 resp. 𝑊⊥ + 𝑐 as
such shift in subspace does not change the optimality of solutions. Scaling is another operation
under which optimal solutions are invariant. In particular, the set of primal optimal solutions
𝒳∗(𝑊, 𝑑, 𝑐) to LP(𝑊, 𝑑, 𝑐) is the same as𝒳∗(𝑊, 𝑑, 𝑐) for all 𝑐 ∈ { 𝛼𝑧 : 𝑧 ∈𝑊⊥ + 𝑐, 𝛼 > 0 }. To deduce
a further proximity result which projects out this scaling by 𝛼 we introduce following notation.

∢ : R𝑛 ×R𝑛 → [0, 2𝜋), (𝑣, 𝑤) ↦→ arccos
(
⟨𝑣, 𝑤⟩
∥𝑣∥∥𝑤∥

)
. (3.39)

In abuse of notation, we also writ efor subsets𝑈,𝑉 ⊆ R𝑛

∢(𝑈,𝑉) ≔ max
{
∢(𝑢, 𝑣) : 𝑢 ∈ 𝑈 \ {0}, 𝑣 ∈ 𝑉 \ {0}

}
.

49



3 CIRCUIT IMBALANCE MEASURES 3.5 Proximity via Hoffman-bounds

Lemma 3.5.8. Let 𝑊 ⊆ R𝑛 be a subspace and 𝑐, 𝑐, 𝑑 ∈ R𝑛 such that 𝑐 ∉ 𝑊⊥ and ∥𝑐∥ = ∥𝑐∥ = 1. Let
(𝑥, 𝑠) be an optimal solution to LP(𝑊, 𝑑, 𝑐). Then there exists an optimal solution (𝑥∗ , 𝑠∗) to LP(𝑊, 𝑑, 𝑐)
such that

sin
(
∢(𝑠∗ , 𝑠)

)
≤ 𝑛(𝜅𝑊 + 1)∢(𝑐, 𝑐)

cos(∢(𝑐,𝑊)) . (3.40)

Proof. By law of cosine

∥𝑐 − 𝑐∥ =
√
∥𝑐∥2 + ∥𝑐∥2 − 2∥𝑐∥∥𝑐∥ cos

(
∢(𝑐, 𝑐)

)
= 2 sin

(
∢(𝑐, 𝑐)

2

)
≤ ∢(𝑐, 𝑐).

Also 𝑠 ∈𝑊⊥ + 𝑐 and so ∥𝑠∥ ≥ ∥Π𝑊 (𝑐)∥ = cos
(
∢(𝑐,𝑊)

)
∥𝑐∥. Finally, for any two vectors 𝑣, 𝑤 ∈ R𝑛 ,

we have
∥𝑣 − 𝑤∥ ≥ ∥𝑣∥ sin

(
∢(𝑣, 𝑤)

)
,

and so with Lemma 3.5.5

sin ∢(𝑠∗ , 𝑠) ≤ ∥𝑠
∗ − 𝑠∥
∥𝑠∥ ≤

√
𝑛(𝜅𝑊 + 1)∥𝑐 − 𝑐∥1

cos
(
∢(𝑐,𝑊)

) ≤ 𝑛(𝜅𝑊 + 1)∢(𝑐, 𝑐)
cos

(
∢(𝑐,𝑊)

) . □

The following theorem is an angle analogue of Theorem 3.5.6.

Theorem 3.5.9. Let 𝑊 ⊆ R𝑛 be a subspace and 𝑐, 𝑐, 𝑑 ∈ R𝑛 , ∥𝑐∥ = ∥𝑐∥ = 1. Let (�̃� , 𝑠) be an optimal
solution to LP(𝑊, 𝑥, 𝑐) and

𝑅 ≔

{
𝑖 ∈ [𝑛] : 𝑠𝑖

∥𝑠∥ >
𝑛(𝜅𝑊 + 1)∢(𝑐, 𝑐)

cos(∢(𝑐,𝑊))

}
.

Then for every primal optimal solution 𝑥∗ to LP(𝑊, 𝑑, 𝑐), we have 𝑥∗
𝑅
= 0. Note that 𝑅 ≠ ∅ whenever

𝑛(𝜅𝑊+1)∢(𝑐,𝑐)
cos(∢(𝑐,𝑊)) < 1√

𝑛
.

Proof. Any vector 𝑠′ ∈ R𝑛 with 𝑠′
𝑖
= 0 for some coordinate 𝑖 ∈ [𝑛] fulfills ∢(𝑠′, 𝑠) ≥ ∢(𝑠, 𝑠), where

𝑠 ∈ R𝑛 is defined to be 𝑠 𝑗 = 𝑠 𝑗 for all 𝑗 ≠ 𝑖 and 𝑠 𝑗 = 0. But then,

cos(∢(𝑠′, 𝑠)) ≤ cos(∢(𝑠, 𝑠)) = ⟨𝑠, 𝑠⟩
∥𝑠∥∥𝑠∥ =

∥𝑠∥2 − 𝑠2
𝑖

∥𝑠∥
√
∥𝑠∥2 − 𝑠2

𝑖

=

√
1 −

𝑠2
𝑖

∥𝑠2
𝑖
∥
. (3.41)

In particular,

sin(∢(𝑠′, 𝑠)) =
√

1 − cos2(∢(𝑠′, 𝑠)) ≥ 𝑠𝑖

∥𝑠𝑖 ∥
. (3.42)

On the other hand, by Lemma 3.5.8 there exists an optimal solution 𝑠∗ that fulfills

sin
(
∢(𝑠∗ , 𝑠)

)
≤ 𝑛(𝜅𝑊 + 1)∢(𝑐, 𝑐)

cos(∢(𝑐,𝑊)) (3.43)

Hence 𝑠′ ≠ 𝑠∗ whenever 𝑠′𝑟 = 0 for some 𝑟 ∈ 𝑅. Consequently, 𝑠∗
𝑅
> 0, implying 𝑥∗

𝑅
= 0 for every

primal optimal 𝑥∗ by complementary slackness. □
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3.6 Circuits, integer proximity, and Graver bases

We now briefly discuss implications of circuit imbalances to the integer program (IP) of the form

min ⟨𝑐, 𝑥⟩
A𝑥 = 𝑏

𝑥 ≥ 0,

𝑥 ∈ Z𝑛 .

(IP)

Many algorithms for (IP) solve the LP-relaxation first and deduce from the optimal solution
of the relaxation information about the IP itself. The following proximity lemma shows that in
case that (IP) is feasible, the distance of an optimal integral solution to the optimal solution of the
relaxation can be bounded in terms of max-circuit imbalance �̄�𝐴. So, a local search within a radius
of this guaranteed proximity will provide the optimal solution for the IP; see [Lee89, Proposition
4.1].

Lemma 3.6.1. Let 𝑥∗ be an optimal solution to 1.1. Then there exists an optimal solution �̂� to (IP) such that
∥ �̂� − 𝑥∥1 ≤ 𝑛�̄�𝑊 .

Proof. Let �̂� be an optimal solution to (IP) that minimizes ∥ �̂� − 𝑥∗∥1 and consider 𝑤 = 𝑥∗ − �̂� ∈𝑊
and a conformal circuit decomposition 𝑤 =

∑𝑘
𝑖=1 𝜆𝑖 𝑔

𝐶𝑖 for some 𝑘 ≤ 𝑛 and circuits 𝐶1 , . . . , 𝐶𝑘 and
𝜆1 , . . . ,𝜆𝑘 ≥ 0. Then,

〈
𝑐, 𝑔𝐶𝑖

〉
≤ 0 for all 𝑖 ∈ [𝑘] as otherwise 𝑥∗ −𝜆𝑖 𝑔𝐶𝑖 would be a feasible solution

to the primal of 1.1 with strictly better objective than 𝑥∗. Further, note that 𝜆𝑖 ≤ 1 for all 𝑖 ∈ [𝑘] as
otherwise �̂� − 𝑔𝐶𝑖 is a feasible solution to (IP) that has an objective value as least as good as �̂� and
would in ℓ1 norm be strictly closer to 𝑥∗ than �̂�. Therefore,

∥ �̂� − 𝑥∗∥∞ ≤
𝑘∑
𝑖=1
∥𝑔𝐶𝑖 ∥∞ ≤ 𝑛�̄�𝑊 . (3.44)

□

Another popular and well-studied quantity in integer programming is the Graver basis, defined
as follows.

Definition 3.6.2 (Graver basis). The Graver basis of a matrix A, denoted by 𝒢(A), consists of all
𝑔 ∈ ker(A) ∩Z𝑛 such that there exists no ℎ ∈ (ker(A) ∩Z𝑛) \ {𝑔} such that 𝑔 and ℎ are conformal and
|ℎ𝑖 | ≤ |𝑔𝑖 | for all 𝑖 ∈ [𝑛]. We can further define

𝔤1(A) ≔ max
𝑣∈𝒢(A)

∥𝑣∥1 , 𝔤∞(A) ≔ max
𝑣∈𝒢(A)

∥𝑣∥∞. (3.45)

See [LHK12] for extensive treatment of the Graver basis and [Eis+19] for more recent developments.
Elementary vectors, scaled such that its entries have Greatest Common Divisor (gcd) equal to one
belong to the Graver basis: {

𝑔 ∈ ℰ(𝑊) ∩Z𝑛 : gcd(𝑔) = 1
}
⊆ 𝒢(A). (3.46)

We will furthermore see how the max-circuit imbalance measure and Graver basis are related.

Lemma 3.6.3. �̄�A ≤ 𝔤∞(A) ≤ 𝑛�̄�A.

Proof. The first inequality follows from the paragraph above, noting that{
𝑔𝐶 : 𝐶 ∈ 𝒞(𝑊)

}
⊆ 𝒢(A),
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for the normalized elementary vectors 𝑔𝐶 with lcm(𝑔𝐶) = 1. For the second inequality, let 𝑔 ∈ 𝒢(A)
and 𝑔 =

∑𝑘
𝑖=1 𝜆𝑖 𝑔

𝐶𝑖 be a conformal circuit decomposition where 𝑘 ≤ 𝑛. Note that 𝜆𝑖 < 1 for all
𝑖 ∈ [𝑘] as otherwise ℎ 𝑖 would contradict that 𝑔 ∈ 𝒢(A). Therefore,

∥𝑔∥∞ ≤
𝑘∑
𝑖=1

𝜆𝑖 ∥𝑔𝐶𝑖 ∥∞ ≤ 𝑛�̄�A. □

Using the Steinitz lemma, Eisenbrand, Hunkenschröder and Klein [EHK18, Lemma 2] gave a
bound on 𝔤1(A) that only depends on 𝑚 but is independent of 𝑛:

Theorem 3.6.4. Let A ∈ Z𝑚×𝑛 . Then 𝔤1(A) ≤ (2𝑚∥A∥max + 1)𝑚 .

3.7 A decomposition conjecture

Let𝑊 ⊆ R𝑛 be a linear space. As the analogue of maximal augmentations, we say that a conformal
circuit decomposition of 𝑧 ∈𝑊 is maximal if it can be obtained as follows. If 𝑧 ∈𝑊 is an elementary
vector, return the decomposition containing the single vector 𝑧. Otherwise, select an arbitrary
𝑔 ∈ ℰ(𝑊) that is conformal with 𝑧 (in particular, supp(𝑔) ⊊ supp(𝑧)), and set 𝑔1 = 𝛼𝑔 for the
largest value 𝛼 > 0 such that 𝑧 − 𝑔1 is conformal with 𝑧. Then, recursively apply this procedure
to 𝑧 − 𝑔1 to obtain the other elementary vectors 𝑔2 , . . . , 𝑔ℎ . We have ℎ ≤ 𝑛, since the support
decreases by at least one due to the maximal choice of 𝛼. If 𝜅𝑊 = ¤𝜅𝑊 = 1, then it is easy to verify
the following.

Proposition 3.7.1. Let 𝑊 ⊆ R𝑛 be a linear space with 𝜅𝑊 = 1, and let 𝑧 ∈ 𝑊 ∩ Z𝑛 . Then, for every
maximal conformal circuit decomposition 𝑧 =

∑ℎ
𝑘=1 𝑔

𝑘 , we have 𝑔𝑘 ∈ ℰ(𝑊) ∩Z𝑛 .

We formulate a conjecture asserting that this property generalizes for arbitrary ¤𝜅𝑊 values. Note
that in the conjecture, we only require the existence of some (not necessarily maximal) conformal
circuit decomposition.

Conjecture 3.7.1.1. Let𝑊 ⊆ R𝑛 be a rational linear subspace. Then, for every 𝑧 ∈𝑊 ∩Z𝑛 , there exists a
conformal circuit decomposition 𝑧 =

∑ℎ
𝑘=1 𝑔

𝑘 , ℎ ≤ 𝑛 such that each 𝑔𝑘 is a 1/ ¤𝜅𝑊 -integral vector in ℰ(𝑊).

Note that it is equivalent to require the same property for elements of the Graver basis 𝑧 ∈ 𝒢(A).
Hence, the conjecture asserts that every vector in the Graver basis is a nice combination of elementary
vectors.

We present some preliminary evidence towards this conjecture:

Proposition 3.7.2. Let𝑊 ⊆ R𝑛 be a rational linear subspace with 𝜅∗
𝑊

= 1. Then, for every 𝑧 ∈𝑊 ∩Z𝑛 ,
and every maximal conformal circuit decomposition 𝑧 =

∑ℎ
𝑘=1 𝑔

𝑘 , we have that 𝑔𝑘 is a 1/ ¤𝜅-integral vector
in ℰ(𝑊).

Proof. Assume 𝜅D𝑊 = 1 for some D ∈ 𝔇𝑛 . By Theorem 3.4.8, we can select D such that all diagonal
entries 𝑑𝑖 = D𝑖𝑖 ∈ Z and 𝑑𝑖 | ¤𝜅𝑊 . Let 𝑧 =

∑ℎ
𝑘=1 𝑔

𝑘 be any maximal conformal circuit decomposition
of 𝑧 ∈ 𝑊 ∩ Z𝑛 . Now, D𝑧 =

∑ℎ
𝑘=1 D𝑔𝑘 is also a maximal conformal circuit decomposition of

D𝑧 ∈ D𝑊 ∩ Z𝑛 . By Proposition 3.7.1, D𝑔𝑘 ∈ ℰ(D𝑊) ∩ Z𝑛 . Since 𝑑𝑖 | ¤𝜅𝑊 , this implies that 𝑔𝑘 is
1/ ¤𝜅𝑊 -integral. □

By Theorem 3.4.10, this implies the conjecture whenever ¤𝜅𝑊 = 𝑝𝛼 for 𝑝 ∈ P, 𝑝 > 2, 𝛼 ∈ N. Let us
now consider the case when ¤𝜅𝑊 is a power of 2. We verify the conjecture when the decomposition
contains at most three terms.
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Proposition 3.7.3. Let𝑊 ⊆ R𝑛 be a rational linear subspace with 𝜅𝑊 = 2𝛼 for 𝛼 ∈ Z𝑛 . If 𝑧 ∈𝑊 ∩Z𝑛
has a maximal conformal circuit decomposition 𝑧 =

∑ℎ
𝑘=1 𝑔

𝑘 with ℎ ≤ 3, then each 𝑔𝑘 is a 1/ ¤𝜅-integral
vector in ℰ(𝑊).

Proof. Let us write the maximal conformal circuit decomposition in the form 𝑧 =
∑ℎ
𝑘=1 𝜆𝑘 𝑔

𝑘 such
that lcm(𝑔𝑘) = 1, and all entries 𝑔𝑘

𝑖
∈ {±1,±2,±4, . . . ,±2𝛼} for 𝑘 ∈ [ℎ], 𝑖 ∈ [𝑛]. There is nothing to

prove for ℎ = 1. If ℎ = 2, then by the maximality of the decomposition, 𝜆1 = min𝑗{𝑧 𝑗/𝑔1
𝑗
}. Hence,

𝜆1 is 1/2𝛼-integral. Consequently, both 𝜆1𝑔
1 and 𝜆2𝑔

2 = 𝑧 − 𝜆1𝑔
1 are 1/2𝛼-integral.

If ℎ = 3, then 𝜆1𝑔
1 is 1/2𝛼-integral as above. It also follows that 𝜆2𝑔

2 and 𝜆3𝑔
3 are 1/2𝛽-integral

for some 𝛽 ≥ 𝛼. Let us choose the smallest such 𝛽; we are done if 𝛽 = 𝛼.
Assume for a contradiction 𝛽 > 𝛼. Let 𝜇𝑘 = 2𝛽𝜆𝑘 for 𝑘 = 1, 2, 3. Thus, 𝜇𝑘 ∈ Z, 𝜇1 is even, and at

least one of 𝜇2 and 𝜇3 is odd. We show that both 𝜇2 and 𝜇3 must be odd. Let us first assume that
𝜇3 is odd. There exists an 𝑖 ∈ [𝑛] such that |𝑔3

𝑖
| = 1. Then, 2𝛽𝑧𝑖 = 𝜇1𝑔

1
𝑖
+ 𝜇2𝑔

2
𝑖
+ 𝜇3𝑔

3
𝑖

implies that
𝜇2 must also be odd. Similarly, if 𝜇2 is odd then 𝜇3 must also be odd.

Let us take any 𝑗 ∈ [𝑛] such that 𝑔1
𝑗
= 0. Then, 2𝛽𝑧𝑖 = 𝜇2𝑔

2
𝑗
+ 𝜇3𝑔

3
𝑗
. Noting that |𝑔2

𝑗
| and |𝑔3

𝑗
| are

powers of 2, both at most 2𝛼, it follows that |𝑔2
𝑗
| = |𝑔3

𝑗
|; by conformity, we have 𝑔2

𝑗
= 𝑔3

𝑗
.

Consequently, supp(𝑔2 − 𝑔3) ⊆ supp(𝑔1). We have 𝑔2 − 𝑔3 ∈ 𝑊 \ {0}, and the containment is
strict by the maximality of the decomposition: there exists an index 𝑖 ∈ supp(𝑧) such that 𝑧 𝑗 = 𝜆1𝑔

1
𝑗
.

This contradicts the fact that 𝑔1 ∈ ℰ(𝑊). □

3.A On Example 3.2.20

Example 3.2.20. Consider the matrix

A =

[
1 3 4 3
0 13 9 10

]
. (3.11)

For this matrix ¤𝜅A = 5850 = 2×32×52×13 holds, and there exists no Ã ∈ Z2×4 such that ker(Ã) = ker(A)
and the inverse of every nonsingular 2 × 2 submatrix of Ã is 1/5850-integral.

Proof. We know all other representations of the space like �̃� such that ker(�̃�) = ker(𝐴) are of the
form �̃� = 𝐵𝐴 where 𝐵 is a 2 × 2 invertible matrix. Since 𝐴11 = 1 then to get an integral �̃� we need
to have integer 𝐵11 and 𝐵21. Furthermore since the g.c.d. of the numbers in the second column is
equal to 1, then 𝐵12 and 𝐵22 should be integers as well.

It can be verified by computer that the only 2 × 1 matrices like 𝑣 such that all entries of 𝑣𝑇𝐴 are
divisors of 5850 are

±
[

9
−4

]
,±

[
10
−3

]
,±

[
13
−3

]
,±

[
0
1

]
Checking all different 2 × 2 matrices we can get these matrices:
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[
9 −4

10 −3

] [
1 3 4 3
0 13 9 10

]
=

[
9 -25 0 −13
10 -9 13 0

]
[
13 −3
10 −3

] [
1 3 4 3
0 13 9 10

]
=

[
13 0 25 9
10 −9 13 0

]
[

9 −4
13 −3

] [
1 3 4 3
0 13 9 10

]
=

[
9 −25 0 -13
13 0 25 9

]
[
0 1
9 −4

] [
1 3 4 3
0 13 9 10

]
=

[
0 13 9 10
9 -25 0 -13

]
[

0 1
10 −3

] [
1 3 4 3
0 13 9 10

]
=

[
0 13 9 10

10 -9 13 0

]
[

0 1
13 −3

] [
1 3 4 3
0 13 9 10

]
=

[
0 13 9 10

13 0 25 9

]
All of these matrices contain a 2 × 2 submatrix such that its inverse is not 1

5850 -integral. □
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4 A scaling-invariant algorithm for linear
programming whose running time
depends only on the constraint matrix

Following the breakthrough work of Tardos [Tar85] in the bit-complexity model,
Vavasis and Ye [VY96] gave the first exact algorithm for LP in the real model of
computation with running time depending only on the constraint matrix. For solving
LP as in the form System 1.1, i.e., max ⟨𝑐, 𝑥⟩, s.t. A𝑥 = 𝑏, 𝑥 ≥ 0,A ∈ R𝑚×𝑛 , Vavasis and
Ye developed a primal-dual IPM using a LLS step, and showed that𝑂(𝑛3.5 log(�̄�A+𝑛))
iterations suffice to solve LP exactly, where �̄�A is a condition measure controlling the
size of solutions to linear systems related to A.

Monteiro and Tsuchiya [MT03], noting that the central path is invariant under rescalings
of the columns of A and 𝑐, asked whether there exists an LP algorithm depending
instead on the measure �̄�∗A, defined as the minimum �̄�AD value achievable by a
column rescaling AD of A, and gave strong evidence that this should be the case. We
resolved this open question affirmatively in Chapter 3 by providing a near-optimal
rescaling of the constraint matrix.

While this resolved Monteiro and Tsuchiya’s question by appropriate preprocessing, it
falls short of providing either a truly scaling invariant algorithm or an improvement
upon the base LLS analysis. In this vein, as our main result in this chapter we
develop a scaling invariant LLS algorithm, which uses and dynamically maintains
improving estimates of the circuit ratio digraph, together with a refined potential
function based analysis for LLS algorithms in general. With this analysis, we derive an
improved 𝑂(𝑛2.5 log(𝑛) log(�̄�∗A + 𝑛)) iteration bound for optimally solving LP using
our algorithm. The same argument also yields a factor 𝑛/log 𝑛 improvement on the
iteration complexity bound of the original Vavasis-Ye algorithm.

This chapter is based on joint work with Daniel Dadush, Sophie Huiberts, and László
A. Végh [DHNV20].
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4.4.1 The iteration complexity bound for the Vavasis-Ye algorithm . . . . . . . . 82
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4.1 Introduction

In a seminal work, Vavasis and Ye [VY96] introduced a new type of interior-point method that
optimally solves System 1.1 within 𝑂(𝑛3.5 log(�̄�A + 𝑛)) iterations, where the condition number �̄�A

controls the size of solutions to certain linear systems related to the kernel of A (see Section 4.2 for
the formal definition).

Before detailing the Vavasis–Ye (henceforth VY) algorithm, we recall the basics of path following
interior-point methods. If both the primal and dual problems in System 1.1 are strictly feasible, the
central path for System 1.1 is the curve { 𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) : 𝜇 > 0) } defined by

𝑥(𝜇)𝑖𝑠(𝜇)𝑖 = 𝜇, ∀𝑖 ∈ [𝑛]
A𝑥(𝜇) = 𝑏, 𝑥(𝜇) > 0,

A⊤𝑦(𝜇) + 𝑠(𝜇) = 𝑐, 𝑠(𝜇) > 0,

(CP)

which converges to complementary optimal primal and dual solutions (𝑥∗ , 𝑦∗ , 𝑠∗) as 𝜇→ 0, recalling
that the duality gap at time 𝜇 is exactly 𝑥(𝜇)⊤𝑠(𝜇) = 𝑛𝜇. We thus refer to 𝜇 as the normalized duality
gap. Methods that “follow the path” generate iterates that stay in a certain neighborhood around it
while trying to achieve rapid multiplicative progress w.r.t. to 𝜇, where given (𝑥, 𝑦, 𝑠) ‘close’ to the
path, we define the normalized duality gap as 𝜇(𝑥, 𝑦, 𝑠) = ∑𝑛

𝑖=1 𝑥𝑖𝑠𝑖/𝑛. Given a target parameter 𝜇′

and starting point close to the path at parameter 𝜇, standard path following methods [Gon92] can
compute a point at parameter lower than 𝜇′ in at most 𝑂(

√
𝑛 log(𝜇/𝜇′)) iterations, and hence the

quantity log(𝜇/𝜇′) can be usefully interpreted as the length of the corresponding segment of the
central path.

Crossover events and layered least squares steps. At a very high level, Vavasis and Ye show that
the central path can be decomposed into at most

(𝑛
2
)

short but curved segments, possibly joined
by long (a priori unbounded) but very straight segments. At the end of each curved segment,
they show that a new ordering relation 𝑥𝑖(𝜇) > 𝑥 𝑗(𝜇)—called a crossover event—is implicitly
learned. This inequality did not hold at the start of the segment, but is guaranteed to hold at
every point from the end of the segment onwards. These

(𝑛
2
)

relations give a combinatorial way
to measure progress along the central path. In contrast to Tardos’s algorithm, where the main
progress is setting variables to zero explicitly, the variables participating in crossover events cannot
be identified; the analysis only shows their existence.
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At a technical level, the VY-algorithm is a variant of the Mizuno–Todd–Ye [MTY93] predictor-
corrector method (MTY P-C). In predictor-corrector methods, corrector steps bring an iterate closer
to the path, i.e., improve centrality, and predictor steps “shoot down” the path, i.e., reduce 𝜇without
losing too much centrality. Vavasis and Ye’s main algorithmic innovation was the introduction
of a new predictor step, called the ‘layered least squares’ (LLS) step, which crucially allowed them
to cross each aforementioned “straight” segment of the central path in a single step, recalling that
these straight segments may be arbitrarily long. To traverse the short and curved segments of the
path, the standard predictor step, known as affine scaling (AS), in fact suffices.

To compute the LLS direction, the variables are decomposed into ‘layers’ 𝐽1 ∪ 𝐽2 ∪ . . . ∪ 𝐽𝑝 = [𝑛].
The goal of such a decomposition is to eventually learn a refinement of the optimal partition of
the variables 𝐵∗ ∪ 𝑁 ∗ = [𝑛], where 𝐵∗ ≔ {𝑖 ∈ [𝑛] : 𝑥∗

𝑖
> 0} and 𝑁 ∗ ≔

{
𝑖 ∈ [𝑛] : 𝑠∗

𝑖
> 0

}
for the limit

optimal solution (𝑥∗ , 𝑦∗ , 𝑠∗).
The primal affine scaling direction can be equivalently described by solving a weighted least

squares problem in ker(A), with respect to a weighting defined according to the current iterate. The
primal LLS direction is obtained by solving a series of weighted least squares problems, starting
with focusing only on the final layer 𝐽𝑝 . This solution is gradually extended to the higher layers (i.e.,
layers with lower indices). The dual directions have analogous interpretations, with the solutions
on the layers obtained in the opposite direction, starting with 𝐽1. If we use the two-level layering
𝐽1 = 𝐵∗, 𝐽2 = 𝑁 ∗, and are sufficiently close to the limit (𝑥∗ , 𝑦∗ , 𝑠∗) of the central path, then the LLS
step reaches an exact optimal solution in a single step. We note that standard Affine Scaling (AS)
steps generically never find an exact optimal solution, and thus some form of “LLS rounding” in
the final iteration is always necessary to achieve finite termination with an exact optimal solution.

Of course, guessing 𝐵∗ and 𝑁 ∗ correctly is just as hard as solving System 1.1. Still, if we work with
a “good” layerings, these will reveal new information about the “optimal order” of the variables,
where 𝐵∗ is placed on higher layers than 𝑁 ∗. The crossover events correspond to swapping two
wrongly ordered variables into the correct ordering. Namely, a variable 𝑖 ∈ 𝐵∗ and 𝑗 ∈ 𝑁 ∗ are
currently ordered on the same layer, or 𝑗 is in a higher layer than 𝑖. After the crossover event, 𝑖 will
always be placed on a higher layer than 𝑗.

Computing good layerings and the �̄�A condition measure. Given the above discussion, the
obvious question is how to come up with “good” layerings? The philosophy behind LLS can be
stated as saying that if modifying a set of variables 𝑥𝐼 barely affects the variables in 𝑥[𝑛]\𝐼 (recalling
that movement is constrained to Δ𝑥 ∈ ker(A)), then one should optimize over 𝑥𝐼 without regard to
the effect on 𝑥[𝑛]\𝐼 ; hence 𝑥𝐼 should be placed on lower layers.

VY’s strategy for computing such layerings was to directly use the size of the coordinates of
the current iterate 𝑥 (where (𝑥, 𝑦, 𝑠) is a point near the central path). In particular, assuming
𝑥1 ≥ 𝑥2 ≥ . . . ≥ 𝑥𝑛 , the layering 𝐽1 ∪ 𝐽2 ∪ . . . ∪ 𝐽𝑝 = [𝑛] corresponds to consecutive intervals
constructed in decreasing order of 𝑥𝑖 values. The break between 𝐽𝑖 and 𝐽𝑖+1 occurs if the gap
𝑥𝑟/𝑥𝑟+1 > 𝑔, where 𝑟 is the rightmost element of 𝐽𝑖 and 𝑔 > 0 is a threshold parameter. Thus,
the expectation is that if 𝑥𝑖 > 𝑔𝑥 𝑗 , then a small multiplicative change to 𝑥 𝑗 , subject to moving in
ker(A), should induce a small multiplicative change to 𝑥𝑖 . By proximity to the central path, the
dual ordering is reversed as mentioned above.

The threshold 𝑔 for which this was justified in the VY-algorithm is a function of the �̄�A condition
measure. We now provide a convenient definition that immediately yields this justification (see
Proposition 3.3.6). Letting 𝑊 = ker(A) and 𝜋𝐼(𝑊) = {𝑥𝐼 : 𝑥 ∈ 𝑊}, we define �̄�A ≔ �̄�𝑊 as the
minimum number 𝑀 ≥ 1 such that for any ∅ ≠ 𝐼 ⊆ [𝑛] and 𝑧 ∈ 𝜋𝐼(𝑊), there exists 𝑦 ∈ 𝑊 with
𝑦𝐼 = 𝑧 and ∥𝑦∥ ≤ 𝑀∥𝑧∥. Thus, a change of norm 𝜖 in the variables in 𝐼 can be lifted to a change
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of norm at most �̄�A𝜖 in the variables in [𝑛] \ 𝐼. Crucially, �̄� is a “self-dual” quantity. That is,
�̄�𝑊 = �̄�𝑊⊥ , where𝑊⊥ = range(A⊤) is the movement subspace for the dual problem, justifying the
reversed layering for the dual (see Sections 4.2 for more details).

The question of scale invariance and �̄�∗A. While the VY layering procedure is powerful, its
properties are somewhat mismatched with those of the central path. In particular, variable ordering
information has no intrinsic meaning on the central path, as the path itself is scaling invariant.
Namely, the central path point (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇))w.r.t. the problem instance (A, 𝑏, 𝑐) is in bĳective
correspondence with the central path point (D−1𝑥(𝜇),D𝑦(𝜇),D𝑠(𝜇)))w.r.t. the problem instance
(AD,D𝑐, 𝑏) for any positive diagonal matrix D. The standard path following algorithms are also
scaling invariant in this sense.

This lead Monteiro and Tsuchiya [MT03] to ask whether a scaling invariant LLS algorithm exists.
They noted that any such algorithm would then depend on the potentially much smaller parameter

�̄�∗A ≔ inf
D∈𝔇𝑛

�̄�AD , (4.1)

where the infimum is taken over the set of 𝑛 × 𝑛 positive diagonal matrices. Thus, Monteiro and
Tsuchiya’s question can be rephrased to whether there exists an exact LP algorithm with running
time poly(𝑛, 𝑚, log �̄�∗A).

Substantial progress on this question was made in the followup works [LMT09; MT05]. The paper
[MT05] showed that the number of iterations of the MTY predictor-corrector algorithm [MTY93]
can get from 𝜇0 > 0 to 𝜂 > 0 on the central path in

𝑂
(
𝑛3.5 log �̄�∗A +min{𝑛2 log log(𝜇0/𝜂), log(𝜇0/𝜂)}

)
iterations. This is attained by showing that the standard AS steps are reasonably close to the LLS
steps. This proximity can be used to show that the AS steps can traverse the “curved” parts of
the central path in the same iteration complexity bound as the VY algorithm. Moreover, on the
“straight” parts of the path, the rate of progress amplifies geometrically, thus attaining a log log
convergence on these parts. Subsequently, [LMT09] developed an affine invariant trust region
step, which traverses the full path in 𝑂(𝑛3.5 log(�̄�∗A + 𝑛)) iterations. However, the running time of
each iteration is weakly polynomial in 𝑏 and 𝑐. The question of developing an LP algorithm with
complexity bound poly(𝑛, 𝑚, log �̄�∗A) thus remained open.

A related open problem to the above is whether it is possible to compute a near-optimal rescaling
D to the constraint matrix A? This would give an alternate pathway to the desired LP algorithm by
simply preprocessing the matrix A. The related question of approximating �̄�A was already studied
by Tunçel [Tun99], who showed NP-hardness for approximating �̄�A to within a 2poly(rk(A)) factor.
Taken at face value, this may seem to suggest that approximating the rescaling D should be hard.

A further open question is whether Vavasis and Ye’s cross-over analysis can be improved.
Ye showed in [Ye06] that the iteration complexity can be reduced to 𝑂(𝑛2.5 log(�̄�A + 𝑛)) for
feasibility problems and further to 𝑂(𝑛1.5 log(�̄�A + 𝑛)) for homogeneous systems, though the
𝑂(𝑛3.5 log(�̄�A + 𝑛)) bound for optimization has not been improved since [VY96].

4.1.1 The contributions in [DHNV20]

In [DHNV20], we resolved all the above questions in the affirmative. We detail our contributions
below.
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1. Finding an approximately optimal rescaling. As our first contribution, we give an 𝑂(𝑚2𝑛2 + 𝑛3) time
algorithm that works on the linear matroid of A to compute a diagonal rescaling matrix D which
achieves �̄�AD ≤ 𝑛(�̄�∗A)3, given any 𝑚 × 𝑛 matrix A. Furthermore, this same algorithm allows us
to approximate �̄�A to within a factor 𝑛(�̄�∗A)2. The algorithm bypasses Tunçel’s hardness result by
allowing the approximation factor to depend on A itself, namely on �̄�∗A. This gives a simple first
answer to Monteiro and Tsuchiya’s question: by applying the Vavasis-Ye algorithm directly on the
preprocessed A matrix, we may solve any LP with constraint matrix A using 𝑂(𝑛3.5 log(�̄�∗A + 𝑛))
iterations. Note that the approximation factor 𝑛(�̄�∗A)2 increases the runtime only by a constant
factor.

A proof of this result is given in Theorem 3.4.7.

2. Scaling invariant LLS algorithm. While the above yields an LP algorithm with poly(𝑛, 𝑚, log �̄�∗A)
running time, it does not satisfactorily address Monteiro and Tsuchiya’s question on a scaling
invariant algorithm. As our second contribution, we use the circuit ratio digraph directly to give
a natural scaling invariant LLS layering algorithm together with a scaling invariant crossover
analysis.

At a conceptual level, we show that the circuit ratios give a scale invariant way to measure
whether ‘𝑥𝑖 > 𝑥 𝑗 ’ and enable a natural layering algorithm. Assume for now that the value of the
circuit imbalance 𝜅𝑖 𝑗 is known for every pair (𝑖 , 𝑗). Given the circuit ratio graph induced by the 𝜅𝑖 𝑗 ’s
and given a primal point 𝑥 near the path, our layering algorithm can be described as follows. We
first rescale the variables so that 𝑥 becomes the all ones vector, which rescales 𝜅𝑖 𝑗 to 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 . We
then restrict the graph to its edges of length 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 ≥ 1/poly(𝑛)—the long edges of the (rescaled)
circuit ratio graph—and let the layering 𝐽1 ∪ 𝐽2 ∪ . . . ∪ 𝐽𝑝 be a topological ordering of its Strongly
Connected Component (SCC) with edges going from left to right. Intuitively, variables that “affect
each other” should be in the same layer, which motivates the SCC definition.

We note that our layering algorithm does not have access to the true circuit ratios 𝜅𝑖 𝑗 ; these are in
fact NP-hard to compute. Getting a good enough initial estimate for our purposes however is easy:
we let �̂�𝑖 𝑗 be the ratio corresponding to an arbitrary circuit containing 𝑖 and 𝑗. This already turns
out to be within a factor (�̄�∗A)2 from the true value 𝜅𝑖 𝑗—recall this is the maximum over all such
circuits. Our layering algorithm learns better circuit ratio estimates if the lifting costs of our SCC
layering, i.e., how much it costs to lift changes from lower layer variables to higher layers (as in the
definition of �̄�A), are larger than we expected them to be based on the previous estimates.

We develop a scaling-invariant analogue of cross-over events as follows. Before the crossover
event, poly(𝑛)(�̄�∗A)𝑛 > 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 , and after the crossover event, poly(𝑛)(�̄�∗A)𝑛 < 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 for all
further central path points. Our analysis relies on �̄�∗A in only a minimalistic way, and does not
require an estimate on the value of �̄�∗A. Namely, it is only used to show that if 𝑖 , 𝑗 ∈ 𝐽𝑞 , for a layer
𝑞 ∈ [𝑝], then the rescaled circuit ratio 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 is in the range (poly(𝑛)�̄�∗A)

±𝑂(|𝐽𝑞 |). The argument to
show this crucially utilizes the maximum geometric mean cycle characterization. Furthermore,
unlike prior analyses [MT03; VY96], our definition of a “good” layering (i.e., ‘balanced’ layerings,
see Section 4.3.5), is completely independent of �̄�∗A.

3. Improved potential analysis. As our third contribution, we improve the Vavasis–Ye crossover
analysis using a new and simple potential function based approach. When applied to our new LLS
algorithm, we derive an 𝑂(𝑛2.5 log 𝑛 log(�̄�∗A + 𝑛)) iteration bound for path following, improving
the polynomial term by an Ω(𝑛/log 𝑛) factor compared to the VY analysis.

Our potential function can be seen as a fine-grained version of the crossover events as described
above. In case of such a crossover event, it is guaranteed that in every subsequent iteration, 𝑖 is in a
layer before 𝑗. We analyze less radical changes instead: an “event” parametrized by 𝜏 means that 𝑖
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and 𝑗 are currently together on a layer of size ≤ 𝜏, and after the event, 𝑖 is on a layer before 𝑗, or if
they are together on the same layer, then this layer must have size ≥ 2𝜏. For every LLS step, we
can find a parameter 𝜏 such that an event of this type happens concurrently for at least 𝜏 − 1 pairs
within the next 𝑂(

√
𝑛𝜏 log(�̄�∗A + 𝑛)) iterations,

Our improved analysis is also applicable to the original VY-algorithm. Let us now comment
on the relation between the VY-algorithm and our new algorithm. The VY-algorithm starts a
new layer once 𝑥𝜋(𝑖) > 𝑔𝑥𝜋(𝑖+1) between two consecutive variables where the permutation 𝜋 is a
non-increasing order of the 𝑥𝑖 variables, and 𝑔 = poly(𝑛)�̄�A. Setting the initial ‘estimates’ �̂�𝑖 𝑗 = �̄�A

for a suitable polynomial, our algorithm runs the same way as the VY algorithm. Using these
estimates, the layering procedure becomes much simpler: there is no need to verify ‘balancedness’
as in our algorithm.

However, using estimates �̂�𝑖 𝑗 = �̄�A has drawbacks. Most importantly, it does not give a lower
bound on the true circuit ratio 𝜅𝑖 𝑗—to the contrary, 𝑔 will be an upper bound. In effect, this
causes VY’s layers to be “much larger” than ours, and for this reason, the connection to �̄�∗A is lost.
Nevertheless, our potential function analysis can still be adapted to the VY-algorithm to obtain
the same Ω(𝑛/log 𝑛) improvement on the iteration complexity bound; see Section 4.4.1 for more
details.

4.1.2 Related work

Since the seminal works of Karmarkar [Kar84] and Renegar [Ren88], there has been a tremendous
amount of work on speeding up and improving interior-point methods. In contrast to the present
work, the focus of these works has mostly been to improve complexity of approximately solving
LPs. Progress has taken many forms, such as the development of novel barrier methods, such as
Vaidya’s volumetric barrier [Vai89] and the recent entropic barrier of Bubeck and Eldan [BE15]
and the weighted log-barrier of Lee and Sidford [LS14; LS19], together with new path following
techniques, such as the predictor-corrector framework [Meh92; MTY93], as well as advances in
fast linear system solving [LS15; ST04a]. For this last line, there has been substantial progress in
improving IPM by amortizing the cost of the iterative updates, and working with approximate
computations, see e.g., [Ren88; Vai89] for classical results. Recently, Cohen, Lee, and Song [CLS19]
developed a new inverse maintenance scheme to get a randomized 𝑂(𝑛𝜔 log(1/𝜀))-time algorithm
for 𝜀-approximate LP, which was derandomized by van den Brand [Bra20]; here 𝜔 ≈ 2.37 is the
matrix multiplication exponent. A recent result by van den Brand et al. [BTSS20] obtained a
randomized �̃�(𝑛𝑚 + 𝑚3) algorithm. For special classes of LP such as network flow and matching
problems, even faster algorithms have been obtained using, among other techniques, fast Laplacian
solvers, see e.g. [Bra+20; Bra+21; DS08; Mad13]. In Chapter 7 we show how Tardos’s framework
can be extended to the real model of computation [DNV20], showing that poly(𝑛, 𝑚, log �̄�A)
running time can be achieved using approximate solvers in a black box manner. Combined with
[Bra20], one obtains a deterministic 𝑂(𝑚𝑛𝜔 log(�̄�A)) LP algorithm; using the initial rescaling
subroutine from Chapter 3, the dependence can be improved to �̄�∗A resulting in a running time of
𝑂(𝑚𝑛𝜔+1 log(�̄�∗A)). A weaker extension of Tardos’s framework to the real model of computation
was previously given by Ho and Tunçel [HT02].

With regard to LLS algorithms, the original VY-algorithm required explicit knowledge of �̄�A

to implement their layering algorithm. The paper [MMT98] showed that this could be avoided
by computing all LLS steps associated with 𝑛 candidate partitions and picking the best one. In
particular, they showed that all such LLS steps can be computed in 𝑂(𝑚2𝑛) time. In [MT03], an
alternate approach was presented to compute an LLS partition directly from the coefficients of the
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AS step. We note that these methods crucially rely on the variable ordering, and hence are not
scaling invariant. Kitahara and Tsuchiya [KT13], gave a 2-layer LLS step which achieves a running
time depending only on �̄�∗A and right-hand side 𝑏, but with no dependence on the objective,
assuming the primal feasible region is bounded.

A series of papers have studied the central path from a differential geometry perspective.
Monteiro and Tsuchiya [MT08] showed that a curvature integral of the central path, first introduced
by Sonnevend, Stoer, and Zhao [SSZ91], is in fact upper bounded by 𝑂(𝑛3.5 log(�̄�∗A + 𝑛)). This has
been extended to SDP and symmetric cone programming [KOT14], and also studied in the context
of information geometry [KOT13].

Circuits have appeared in several papers on linear and integer optimization (see [LKS19] and
references within). The idea of using circuits within the context of LP algorithms also appears
in [DHL15]. They develop a circuit augmentation framework for LP (as well ILP) and show that
simplex-like algorithms that take steps according to the “best circuit” direction achieves linear
convergence, though these steps are hard to compute. Very recently, [DKNV22] used circuit
imbalance measures to obtain a circuit augmentation algorithm for LP with poly(𝑛, log(�̄�A))
iterations. We refer to [ENV22] for an overview on circuit imbalances and their applications.

Our algorithm makes progress towards strongly polynomial solvability of LP, by improving
the dependence poly(𝑛, 𝑚, log �̄�A) to poly(𝑛, 𝑚, log �̄�∗A). However, in a remarkable recent paper,
Allamigeon et al. [ABGJ18] have shown, using tools from tropical geometry, that path-following
methods for the standard logarithmic barrier cannot be strongly polynomial. In particular, they give
a parametrized family of instances, where, for sufficiently large parameter values, any sequence
of iterations following the central path must be of exponential length—thus, �̄�∗A will be doubly
exponential.

4.1.3 Organization

The rest of the chapter is organized as follows. We conclude this section by introducing some
notation. Section 4.2 discusses our results on the circuit imbalance measure.

In Section 4.3, we develop our scaling invariant interior-point method. Interior-point preliminaries
are given in Section 4.3.1, Section 4.3.2 introduces the affine scaling and layered-least-squares
directions, and proves some basic properties, Section 4.3.3 provides a detailed overview of the high
level ideas and a roadmap to the analysis and Section 4.3.4 further develops the theory of LLS
directions and introduces partition lifting scores. Section 4.3.5 gives our scaling invariant layering
procedure, and our overall algorithm can be found in Section 4.3.6.

In Section 4.4, we give the potential function proof for the improved iteration bound, relying on
technical lemmas. The full proof of these lemmas is deferred to Section 4.6; however, Section 4.4
provides the high-level ideas to each proof. Section 4.4.1 shows that our argument also leads to a
factor Ω(𝑛/log 𝑛) improvement in the iteration complexity bound of the VY-algorithm.

In Section 4.5, we prove the technical properties of our LLS step, including its proximity to AS
and step length estimates. Finally, in Section 4.7, we discuss the initialization of the interior-point
method.

4.2 Finding an approximately optimal rescaling

Recall that a matroid is non-separable if the circuit hypergraph is connected; precise definitions
and background were described in Section 3.4.1. Further, recall the definitions of 𝜅𝑊 , �̄� and 𝐿 from
Definition 3.1.1, Equation (3.13).
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Symbol Description Defined in
𝑤 = (𝑥, 𝑦, 𝑠) tuple of feasible solutions Section 4.3.1
𝜇(𝑤) normalized duality gap Section 4.3.1
𝐿𝑊
𝐼

lifting map 𝜋𝐼(𝑊) →𝑊 Definition 3.3.4
ℓ𝑊 (𝒥) lifting score Definition 4.2.1
𝒩(𝛽) ℓ2-neighborhood of the central path Section 4.3.1
Δ𝑤a = (Δ𝑥a ,Δ𝑦a ,Δ𝑠a) affine scaling direction Section 4.3.2
Δ𝑤c = (Δ𝑥c ,Δ𝑦c ,Δ𝑠c) centrality direction Section 4.3.2
Δ𝑤ll = (Δ𝑥ll ,Δ𝑦ll ,Δ𝑠ll) layered least-squares scaling direction Section 4.3.2
𝜖a
𝐼
(𝑤) norm of AS residuals on 𝐼 ⊆ [𝑛] Equation (4.13)

𝑤+ = 𝑤 + 𝛼Δ𝑤 iterate after predictor step Section 4.3.2
𝛿 = 𝛿(𝑤) approximate rescaled dual 𝛿 = 𝑠1/2𝑥−1/2 Equation (4.7)
Rxa ,Rsa ,Rxll ,Rsll residuals Equation (4.11)
𝐺𝑤,𝜎 = ([𝑛], 𝐸𝑤,𝜎) long edge graph Page 68
𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝) ordered partition Page 68
𝑊𝒥 ,𝑘 subspace Section 4.3.4
𝛾 parameter Equation (4.23)
�̂�𝛿,𝜎 = ([𝑛], �̂�𝛿,𝜎) auxiliary graph Definition 4.3.11
𝜚𝜇(𝑖 , 𝑗),Ψ𝜇(𝑖 , 𝑗),Ψ(𝜇) potential function Page 78
𝜉ll
𝐼
(𝑤) norm of LLS residuals on 𝐼 ⊆ [𝑛] Equation (4.24)

𝔅,𝔑 Partition of variables based on Rxll ,Rsll Equation (4.41)

Table 4.1: Recurring symbols that will be defined throughout the chapter.

The following notation will be convenient for our algorithm.

Definition 4.2.1. For a subspace 𝑊 ⊆ R𝑛 and an index set 𝐼 ⊆ [𝑛], if 𝜋𝐼(𝑊) ≠ {0} then we define the
lifting score

ℓ𝑊 (𝐼) ≔
√
∥𝐿𝑊

𝐼
∥2 − 1 . (4.2)

Otherwise, we define ℓ𝑊 (𝐼) = 0. This means that for any 𝑧 ∈ 𝜋𝐼(𝑊) and 𝑥 = 𝐿𝑊
𝐼
(𝑧), ∥𝑥[𝑛]\𝐼 ∥ ≤ ℓ𝑊 (𝐼)∥𝑧∥.

The next lemma provides a subroutine that efficiently yields upper bounds on ℓ𝑊 (𝐼) or lower
bounds on some circuit imbalance values. Recall the definition of the lifting score ℓ𝑊 (𝐼) from
(4.2.1).

Lemma 4.2.2. There exists a subroutine Verify-Lift(𝑊, 𝐼, 𝜃) that, given a linear subspace 𝑊 ⊆ R𝑛 ,
an index set 𝐼 ⊆ [𝑛], and a threshold 𝜃 ∈ R++, either returns the answer ‘pass’, verifying ℓ𝑊 (𝐼) ≤ 𝜃,
or returns the answer ‘fail’, and a pair 𝑖 ∈ 𝐼 , 𝑗 ∈ [𝑛] \ 𝐼 such that 𝜃/𝑛 ≤ 𝜅𝑊

𝑖𝑗
. The running time can be

bounded as 𝑂(𝑛(𝑛 − 𝑚)2).

Proof. Take any minimal 𝐼′ ⊂ 𝐼 such that dim(𝜋𝐼′(𝑊)) = dim(𝜋𝐼(𝑊)). Then we know that
𝜋𝐼′(𝑊) = R𝐼

′ and for 𝑝 ∈ 𝜋𝐼(𝑊)we can compute 𝐿𝑊
𝐼
(𝑝) = 𝐿𝑊

𝐼′ (𝑝𝐼′). Let B ∈ R([𝑛]\𝐼)×𝐼′ be the matrix
sending any 𝑞 ∈ 𝜋𝐼′(𝑊)m to the corresponding vector (𝐿𝑊

𝐼′ (𝑞))[𝑛]\𝐼 . The column B𝑖 can be computed
as (𝐿𝑊

𝐼′ (𝑒
𝑖
𝐼′))[𝑛]\𝐼 for 𝑒 𝑖

𝐼′ ∈ R𝐼
′ . We have ∥𝐿𝑊

𝐼
(𝑝)∥2 = ∥𝑝∥2 + ∥(𝐿𝑊

𝐼′ (𝑝𝐼′))[𝑛]\𝐼 ∥2 ≤ ∥𝑝∥2 + ∥B∥2∥𝑝𝐼′ ∥2

for any 𝑝 ∈ 𝜋𝐼(𝑊), and so ℓ𝑊 (𝐼) =
√
∥𝐿𝑊

𝐼
∥2 − 1 ≤ ∥𝐵∥. We upper bound the operator norm by

the Frobenius norm as ∥B∥ ≤ ∥B∥𝐹 =

√∑
𝑗𝑖 B2

𝑗𝑖
≤ 𝑛max𝑗𝑖 |B𝑗𝑖 |. By Lemma 3.3.9 it follows that

|B𝑗𝑖 | = |(𝐿𝑊𝐼′ (𝑒 𝑖))𝑗 | ≤ 𝜅𝑊
𝑖𝑗

. The algorithm returns the answer ‘pass’ if 𝑛max𝑗𝑖 |B𝑗𝑖 | ≤ 𝜃 and ‘fail’
otherwise.

To implement the algorithm, we first need to select a minimal 𝐼′ ⊂ 𝐼 such that dim(𝜋𝐼′(𝑊)) =
dim(𝜋𝐼(𝑊)). This can be found by computing a matrix M ∈ R𝑛×(𝑛−𝑚) such that im(M) =𝑊 , and
selecting a maximal number of linearly independent columns of M𝐼 ,•. Then, we compute the matrix
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𝐵 ∈ R([𝑛]\𝐼)×𝐼′ that implements the transformation [𝐿𝑊
𝐼′ ][𝑛]\𝐼 : 𝜋𝐼′(𝑊) → 𝜋[𝑛]\𝐼(𝑊). The algorithm

returns the pair (𝑖 , 𝑗) corresponding to the entry maximizing |𝐵 𝑗𝑖 |. The running time analysis will
be given in the proof of Lemma 4.3.15, together with an amortized analysis of a sequence of calls to
the subroutine. □

Remark 4.2.3. We note that the algorithm Verify-Lift does not need to compute the circuit as in
Lemma 3.3.9. The following observation will be important in the analysis: the algorithm returns
the answer ‘fail’ even if ℓ𝑊 (𝐼) ≤ 𝜃 < 𝑛 |𝐵 𝑗𝑖 |.

4.3 A scaling-invariant layered least squares interior-point
algorithm

4.3.1 Preliminaries on interior-point methods

In this section, we introduce the standard definitions, concepts and results from the interior-point
literature that will be required for our algorithm. We consider an LP problem in the form System 1.1,
or equivalently in the subspace form System 1.2 for𝑊 = ker(A). We let

𝒫++ ≔ { 𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 𝑥 > 0 } , 𝒟++ ≔
{
(𝑦, 𝑠) ∈ R𝑚+𝑛 : A⊤𝑦 + 𝑠 = 𝑐, 𝑠 > 0

}
. (4.3)

Recall the central path defined in (CP), with 𝑤(𝜇) = (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) denoting the central path
point corresponding to 𝜇 > 0. We let 𝑤∗ = (𝑥∗ , 𝑦∗ , 𝑠∗) denote the primal and dual optimal solutions
to System 1.1 that correspond to the limit of the central path for 𝜇→ 0.

For a point 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒫++ × 𝒟++, the normalized duality gap is 𝜇(𝑤) = 𝑥⊤𝑠/𝑛.
The ℓ2-neighborhood of the central path with opening 𝛽 > 0 is the set

𝒩(𝛽) ≔
{
𝑤 ∈ 𝒫++ × 𝒟++ :

 𝑥𝑠

𝜇(𝑤) − 1
 ≤ 𝛽

}
Throughout the chapter, we will assume 𝛽 is chosen from (0, 1/4]; in Algorithm 4.2 we use the
value 𝛽 = 1/8. The following proposition gives a bound on the distance between 𝑤 and 𝑤(𝜇) if
𝑤 ∈ 𝒩(𝛽). See e.g. [Gon92, Lemma 5.4], [MT03, Proposition 2.1].

Proposition 4.3.1. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4] and 𝜇 = 𝜇(𝑤), and consider the central path
point 𝑤(𝜇) = (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)). For each 𝑖 ∈ [𝑛],

𝑥𝑖

1 + 2𝛽 ≤
1 − 2𝛽
1 − 𝛽

· 𝑥𝑖 ≤ 𝑥𝑖(𝜇) ≤
𝑥𝑖

1 − 𝛽
, and

𝑠𝑖

1 + 2𝛽 ≤
1 − 2𝛽
1 − 𝛽

· 𝑠𝑖 ≤ 𝑠𝑖(𝜇) ≤
𝑠𝑖

1 − 𝛽
.

We will often use the following proposition which is immediate from definiton of 𝛽.

Proposition 4.3.2. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4], and 𝜇 = 𝜇(𝑤). Then for each 𝑖 ∈ [𝑛]

(1 − 𝛽)√𝜇 ≤
√
𝑠𝑖𝑥𝑖 ≤ (1 + 𝛽)√𝜇 .

Proof. By definition of 𝒩(𝛽) we have for all 𝑖 ∈ [𝑛] that | 𝑥𝑖 𝑠𝑖𝜇 − 1| ≤ ∥ 𝑥𝑠𝜇 − 1∥ ≤ 𝛽 and so
(1 − 𝛽)𝜇 ≤ 𝑥𝑖𝑠𝑖 ≤ (1 + 𝛽)𝜇. Taking roots gives the results. □
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A key property of the central path is “near monotonicity”, formulated in the following lemma, see
[VY96, Lemma 16].

Lemma 4.3.3. Let 𝑤 = (𝑥, 𝑦, 𝑠) be a central path point for 𝜇 and 𝑤′ = (𝑥′, 𝑦′, 𝑠′) be a central path point
for 𝜇′ ≤ 𝜇. Then ∥𝑥′/𝑥 + 𝑠′/𝑠∥∞ ≤ 𝑛. Further, for the optimal solution 𝑤∗ = (𝑥∗ , 𝑦∗ , 𝑠∗) corresponding to
the central path limit 𝜇→ 0, we have ∥𝑥∗/𝑥∥1 + ∥𝑠∗/𝑠∥1 = 𝑛.

Proof. We show that ∥𝑥′/𝑥∥1 + ∥𝑠′/𝑠∥1 ≤ 2𝑛 for any feasible primal 𝑥′ and dual (𝑦′, 𝑠′) such that
(𝑥′)⊤𝑠′ ≤ 𝑥⊤𝑠 = 𝑛𝜇; this implies the first statement with the weaker bound 2𝑛. For the stronger
bound ∥𝑥′/𝑥+ 𝑠′/𝑠∥∞ ≤ 𝑛, see the proof of [VY96, Lemma 16]. Since 𝑥−𝑥′ ∈𝑊 and 𝑠− 𝑠′ ∈𝑊⊥, we
have (𝑥 − 𝑥′)⊤(𝑠 − 𝑠′) = 0. This can be rewritten as 𝑥⊤𝑠′+ (𝑥′)⊤𝑠 = 𝑥⊤𝑠 + (𝑥′)⊤𝑠′. By our assumption
on 𝑥′ and 𝑠′, the right-hand side is bounded by 2𝑛𝜇. Dividing by 𝜇, and noting that 𝑥𝑖𝑠𝑖 = 𝜇 for all
𝑖 ∈ [𝑛], we obtain 𝑥′𝑥 

1
+

 𝑠′𝑠 
1
=

𝑛∑
𝑖=1

𝑥′
𝑖

𝑥𝑖
+
𝑠′
𝑖

𝑠𝑖
≤ 2𝑛 .

The second statement follows by using this to central path points (𝑥′, 𝑦′, 𝑠′) with parameter 𝜇′, and
taking the limit 𝜇′→ 0. □

4.3.2 The affine scaling and layered-least-squares steps

Given 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒫++ × 𝒟++, the search directions commonly used in interior-point methods
are obtained as the solution (Δ𝑥,Δ𝑦,Δ𝑠) to the following linear system for some 𝜎 ∈ [0, 1].

AΔ𝑥 = 0 , (4.4)

A⊤Δ𝑦 + Δ𝑠 = 0 , (4.5)

𝑠Δ𝑥 + 𝑥Δ𝑠 = 𝜎𝜇𝑒 − 𝑥𝑠 . (4.6)

Predictor-corrector methods, such as the Mizuno-Todd-Ye Predictor-Corrector (MTY P-C) algorithm
[MTY93], alternate between two types of steps. In predictor steps, we use 𝜎 = 0. This direction is
also called the affine scaling direction, and will be denoted as Δ𝑤a = (Δ𝑥a ,Δ𝑦a ,Δ𝑠a) throughout. In
corrector steps, we use 𝜎 = 1. This gives the centrality direction, denoted as Δ𝑤c = (Δ𝑥c ,Δ𝑦c ,Δ𝑠c).

In the predictor steps, we make progress along the central path. Given the search direction
on the current iterate 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽), the step-length is chosen such that the line segment
between the current and next steps remain in𝒩(2𝛽), i.e.,

𝛼a ≤ sup{ 𝛼 ∈ [0, 1] : ∀𝛼′ ∈ [0, 𝛼] : 𝑤 + 𝛼′Δ𝑤a ∈ 𝒩(2𝛽) }.

Thus, we obtain a point 𝑤+ = 𝑤 + 𝛼aΔ𝑤a ∈ 𝒩(2𝛽). The corrector step finds a next iterate
𝑤𝑐 = 𝑤+ + Δ𝑤c, where Δ𝑤c is the centrality direction computed at 𝑤+. The next proposition
summarizes well-known properties, see e.g. [Ye97, Section 4.5.1].

Proposition 4.3.4. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4].

(i) For the affine scaling step, we have 𝜇(𝑤+) = (1 − 𝛼)𝜇(𝑤).

(ii) The affine scaling step-length can be chosen as

𝛼a ≥ max
{

𝛽
√
𝑛
, 1 − ∥Δ𝑥

aΔ𝑠a∥
𝛽𝜇(𝑤)

}
.
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(iii) For 𝑤+ ∈ 𝒩(2𝛽), and 𝑤c = 𝑤+ + Δ𝑤c, we have 𝜇(𝑤c) = 𝜇(𝑤+) and 𝑤c ∈ 𝒩(𝛽).

(iv) After a sequence of𝑂(
√
𝑛𝑡) predictor and corrector steps, we obtain an iterate𝑤′ = (𝑥′, 𝑦′, 𝑠′) ∈ 𝒩(𝛽)

such that 𝜇(𝑤′) ≤ 𝜇(𝑤)/2𝑡 .

Minimum norm viewpoint and residuals. For any point 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒫++ × 𝒟++ we define

𝛿 ≔ 𝛿(𝑤) = 𝑠1/2𝑥−1/2 ∈ R𝑛 . (4.7)

With this notation, we can write (4.6) for 𝜎 = 0 in the form

𝛿Δ𝑥 + 𝛿−1Δ𝑠 = −𝑠1/2𝑥1/2 . (4.8)

Note that for a point 𝑤(𝜇) = (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) on the central path, we have 𝛿𝑖(𝑤(𝜇)) = 𝑠𝑖(𝜇)/
√
𝜇 =

√
𝜇/𝑥𝑖(𝜇) for all 𝑖 ∈ [𝑛]. From Proposition 4.3.1, we see that if 𝑤 ∈ 𝒩(𝛽), and 𝜇 = 𝜇(𝑤), then for

each 𝑖 ∈ [𝑛], √
1 − 2𝛽 · 𝛿𝑖(𝑤(𝜇)) ≤ 𝛿𝑖(𝑤) ≤

1√
1 − 2𝛽

· 𝛿𝑖(𝑤(𝜇)) . (4.9)

The matrix diag(𝛿(𝑤))will often be used for rescaling in the algorithm. That is, for the current iterate
𝑤 = (𝑥, 𝑦, 𝑠) in the interior-point method, we will perform projections in the space diag(𝛿(𝑤))𝑊 .
To simplify notation, for 𝛿 = 𝛿(𝑤), we use 𝐿𝛿

𝐼
and 𝜅𝛿

𝑖 𝑗
as short-hands for 𝐿diag(𝛿)𝑊

𝐼
and 𝜅

diag(𝛿)𝑊
𝑖𝑗

. The
subspace𝑊 = ker(A)will be fixed throughout.

It is easy to see from the optimality conditions that the components of the affine scaling direction
Δ𝑤a = (Δ𝑥a ,Δ𝑦a ,Δ𝑠a) are the optimal solutions of the following minimum-norm problems.

Δ𝑥a = arg min
Δ𝑥∈R𝑛

{
∥𝛿(𝑥 + Δ𝑥)∥2 : AΔ𝑥 = 0

}
(Δ𝑦a ,Δ𝑠a) = arg min

(Δ𝑦,Δ𝑠)∈R𝑚×R𝑛

{
∥𝛿−1(𝑠 + Δ𝑠)∥2 : A⊤Δ𝑦 + Δ𝑠 = 0

} (4.10)

Following [MT05], for a search direction Δ𝑤 = (Δ𝑥,Δ𝑦,Δ𝑠), we define the residuals as

Rx ≔
𝛿(𝑥 + Δ𝑥)√

𝜇
, Rs ≔ 𝛿−1(𝑠 + Δ𝑠)√

𝜇
. (4.11)

We let Rxa and Rsa denote the residuals for the affine scaling direction Δ𝑤a. Hence, the primal
affine scaling direction Δ𝑥a is the one that minimizes the ℓ2-norm of the primal residual Rxa, and
the dual affine scaling direction (Δ𝑦a ,Δ𝑠a)minimizes the ℓ2-norm of the dual residual Rsa. The
next lemma summarizes simple properties of the residuals, see [MT05].

Lemma 4.3.5. For 𝛽 ∈ (0, 1/4] such that 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) and the affine scaling direction Δ𝑤 =

(Δ𝑥a ,Δ𝑦a ,Δ𝑠a), we have

(i)

RxaRsa =
Δ𝑥aΔ𝑠a

𝜇
, Rxa + Rsa =

𝑥1/2𝑠1/2
√
𝜇

, (4.12)

(ii)
∥Rxa∥2 + ∥Rsa∥2 = 𝑛 ,

(iii) We have ∥Rxa∥ , ∥Rsa∥ ≤
√
𝑛, and for each 𝑖 ∈ [𝑛], max{Rxa

𝑖
,Rsa

𝑖
} ≥ 1

2 (1 − 𝛽).
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(iv)
Rxa = − 1√

𝜇
𝛿−1Δ𝑠a , Rsa = − 1√

𝜇
𝛿Δ𝑥a .

Proof. Parts (i) and (iv) are immediate from the definitions and from (4.4)-(4.6) and (4.8). In part
(ii), we use part (i) and (Rxa)⊤Rsa = 0. In part, (iii), the first statement follows by part (ii), and the
second statement follows from (i) and Proposition 4.3.2. □

For a subset 𝐼 ⊂ [𝑛], we define

𝜖a
𝐼 (𝑤) ≔ max

𝑖∈𝐼
min{|Rxa

𝑖 |, |Rsa
𝑖 |} , and 𝜖a(𝑤) ≔ 𝜖a

[𝑛](𝑤) . (4.13)

The next claim shows that for the affine scaling direction, a small 𝜖(𝑤) yields a long step; see
[MT05, Lemma 2.5].

Lemma 4.3.6. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4]. Then the affine scaling step can be chosen such
that

𝜇(𝑤 + 𝛼aΔ𝑤a)
𝜇(𝑤) ≤ min

{
1 − 𝛽
√
𝑛
,

2
√
𝑛𝜖a(𝑤)
𝛽

}
.

Proof. Let 𝜖 ≔ 𝜖a(𝑤). From Lemma 4.3.5(i), we get ∥Δ𝑥aΔ𝑠a∥/𝜇 = ∥RxaRsa∥. We can bound
∥RxaRsa∥ ≤ 𝜖(∥Rxa∥ + ∥Rsa∥) ≤ 2𝜖

√
𝑛, where the latter inequality follows by Lemma 4.3.5(iii).

From Proposition 4.3.4(ii), we get 𝛼a ≥ max{𝛽/
√
𝑛, 1 − 2

√
𝑛𝜖/𝛽}. The claim follows by part (i) of

the same proposition. □

The layered-least-squares direction

Let 𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝) be an ordered partition of [𝑛].1 For 𝑘 ∈ [𝑝], we use the notations 𝐽<𝑘 ≔

𝐽1 ∪ . . . ∪ 𝐽𝑘−1, 𝐽>𝑘 ≔ 𝐽𝑘+1 ∪ . . . ∪ 𝐽𝑝 , and similarly 𝐽≤𝑘 and 𝐽≥𝑘 . We will also refer to the sets 𝐽𝑘 as
layers, and 𝒥 as a layering. Layers with lower indices will be referred to as ‘higher’ layers.

Given 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒫++ × 𝒟++, and the layering 𝒥 , the LLS is defined as follows. For the
primal direction, we proceed backwards, with 𝑘 = 𝑝, 𝑝 − 1, . . . , 1. Assume the components on the
lower layers Δ𝑥ll

𝐽>𝑘
have already been determined. We define the components in 𝐽𝑘 as the coordinate

projection Δ𝑥ll
𝐽𝑘
= 𝜋𝐽𝑘 (𝑋𝑘), where the affine subspace 𝑋𝑘 is defined as the set of minimizers

𝑋𝑘 ≔ arg min
Δ𝑥∈R𝑛

{ 𝛿𝐽𝑘 (𝑥𝐽𝑘 + Δ𝑥𝐽𝑘 )2 : AΔ𝑥 = 0,Δ𝑥𝐽>𝑘 = Δ𝑥ll
𝐽>𝑘

}
. (4.14)

The dual direction Δ𝑠ll is determined in the forward order of the layers 𝑘 = 1, 2, . . . , 𝑝. Assume we
already fixed the components Δ𝑠ll

𝐽<𝑘
on the higher layers. Then, Δ𝑠ll

𝐽𝑘
= 𝜋𝐽𝑘 (𝑆𝑘) for

𝑆𝑘 = arg min
Δ𝑠∈R𝑛

{𝛿−1
𝐽𝑘
(𝑠𝐽𝑘 + Δ𝑠𝐽𝑘 )

2
: ∃𝑦 ∈ R𝑚 ,A⊤Δ𝑦 + Δ𝑠 = 0,Δ𝑠𝐽<𝑘 = Δ𝑠ll

𝐽<𝑘

}
. (4.15)

The component Δ𝑦ll is obtained as the optimal Δ𝑦 for the final layer 𝑘 = 𝑝. We use the notation Rxll

and 𝜀ll(𝑤) analogously to the affine scaling direction. This search direction was first introduced in
[VY96].

The affine scaling direction is a special case for the single element partition. In this case, the
definitions (4.14) and (4.15) coincide with those in (4.10).

1In contrast to how ordered partitions were defined in [MT05], we use the term ordered only to the 𝑝-tuple (𝐽1 , . . . , 𝐽𝑝),
which is to be viewed independently of 𝛿.
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4.3.3 Overview of ideas and techniques

A key technique in the analysis of layered least-squares algorithms [LMT09; MT03; VY96] is to
argue about variables that have ‘converged’. According to Proposition 4.3.1 and Lemma 4.3.3,
for any iterate 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) and the limit optimal solution 𝑤∗ = (𝑥∗ , 𝑦∗ , 𝑠∗), the bounds
𝑥∗
𝑖
≤ 𝑂(𝑛)𝑥𝑖 and 𝑠∗

𝑖
≤ 𝑂(𝑛)𝑠𝑖 hold. We informally say that 𝑥𝑖 (or 𝑠𝑖) has converged if 𝑥𝑖 ≤ 𝑂(𝑛)𝑥∗𝑖

(𝑠𝑖 ≤ 𝑂(𝑛)𝑠∗𝑖 ) hold for the current iterate. Thus, the value of 𝑥𝑖 (or 𝑠𝑖) remains within a multiplicative
factor 𝑂(𝑛2) for the rest of the algorithm. Note that if 𝜇 > 𝜇′ and 𝑥𝑖 has converged at 𝜇, then
𝑠𝑖 (𝜇′)/𝑠𝑖 (𝜇)

𝜇′/𝜇 ∈
[

1
𝑂(𝑛2) , 𝑂(𝑛

2)
]
; thus, 𝑠𝑖 keeps “shooting down” with the central path parameter.

Converged variables in the affine scaling algorithm. Let us start by showing that at any point of
the algorithm, at least one primal or dual variable has converged.

Suppose for simplicity that our current iterate is exactly on the central path, i.e., that 𝑥𝑠 = 𝜇𝑒.
This assumption will be maintained throughout this overview. In this case, the residuals can be
simply written as Rxa = (𝑥 + Δ𝑥a)/𝑥, Rsa = (𝑠 + Δ𝑠a)/𝑠. Recall from (4.10) that the affine scaling
direction corresponds to minimizing the residuals Rxa and Rsa. From this choice, we see that𝑥∗𝑥  ≥ 𝑥 + Δ𝑥a

𝑥

 ,  𝑠∗𝑠  ≥  𝑠 + Δ𝑠a

𝑠

 . (4.16)

We have ∥Rxa∥2 + ∥Rsa∥2 = 𝑛 by Lemma 4.3.5(ii). Let us assume ∥Rxa∥2 ≥ 𝑛/2; thus, there exists a
𝑖 ∈ [𝑛] such that 𝑥∗

𝑖
≥ 𝑥𝑖/

√
2. In other words, just by looking at the residuals, we get the guarantee

that a primal or a dual variable has already converged. Based on the value of the residuals, we can
guarantee this to be a primal or a dual variable, but cannot identify which particular 𝑥𝑖 or 𝑠𝑖 this
might be.

For ∥Rxa∥2 ≥ 𝑛/2, a primal variable has already converged before performing the predictor and
corrector steps. We now show that even if ∥Rxa∥ is small, a primal variable will have converged
after a single iteration. From (4.16), we see that there is an index 𝑖 with 𝑥∗

𝑖
/𝑥𝑖 ≥ ∥Rxa∥/

√
𝑛.

Furthermore, Proposition 4.3.4(ii) and Lemma 4.3.5 imply that 1 − 𝛼 ≤ ∥Rxa∥ · ∥Rsa∥/𝛽 ≤√
𝑛∥Rxa∥/𝛽, since ∥Rsa∥ ≤

√
𝑛. The predictor step moves to 𝑥+ ≔ 𝑥 + 𝛼Δ𝑥a = (1− 𝛼)𝑥 + 𝛼(𝑥 +Δ𝑥a).

Hence, 𝑥+ ≤
(√

𝑛∥Rxa∥
𝛽 + ∥Rxa∥

)
𝑥. Putting the two inequalities together, we learn that 𝑥+

𝑖
≤ 𝑂(𝑛)𝑥∗

𝑖

for some 𝑖 ∈ [𝑛]. Since 𝑤+ = (𝑥+ , 𝑦+ , 𝑠+) ∈ 𝒩(2𝛽), Proposition 4.3.1 implies that 𝑥𝑖 will have
converged after this iteration. An analogous argument proves that some 𝑠 𝑗 will also have converged
after the iteration. We again emphasize that the argument only shows the existence of converged
variables but we cannot identify them in general.

Measuring combinatorial progress. Tying the above together, we find that after a single affine
scaling step, at least one primal variable 𝑥𝑖 and at least one dual variable 𝑠 𝑗 has converged. This
means that for any 𝜇′ < 𝜇, 𝑥𝑖 (𝜇′)/𝑥 𝑗 (𝜇′)

𝑥𝑖 (𝜇)/𝑥 𝑗 (𝜇) ∈
[

𝜇
𝑂(𝑛4)𝜇′ ,

𝑂(𝑛4)𝜇
𝜇′

]
; thus, the ratio of these variables keeps

asymptotically increasing. The 𝑥𝑖/𝑥 𝑗 ratios serve as the main progress measure in the Vavasis–Ye
algorithm. If 𝑥𝑖/𝑥 𝑗 is between 1/(poly(𝑛)�̄�) and poly(𝑛)�̄� before the affine scaling step for the pair
of converged variables 𝑥𝑖 and 𝑠 𝑗 , then after poly(𝑛) log �̄� iterations, the 𝑥𝑖/𝑥 𝑗 ratio must leave this
interval and never return. Thus, we obtain a ‘crossover-event’ that cannot again occur for the same
pair of variables. In the affine scaling algorithm, there is no guarantee that 𝑥𝑖/𝑥 𝑗 falls in such a
bounded interval for the converging variables 𝑥𝑖 and 𝑠 𝑗 ; in particular, we may obtain the same pairs
of converged variables after each step.
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The main purpose of layered-least-squares methods is to proactively force that in every certain
number of iterations, some ‘bounded’ 𝑥𝑖/𝑥 𝑗 ratios become ‘large’ and remain so for the rest of the
algorithm.

In our approach, the first main insight is to focus on the scaling invariant quantities 𝜅𝑊
𝑖𝑗
𝑥𝑖/𝑥 𝑗

instead. For simplicity’s sake, we first present the algorithm with the assumption that all values
𝜅𝑊
𝑖𝑗

are known. We will then explain how this assumption can be removed by using gradually
improving estimates on the values.

The combinatorial progress will be observed in the long edge graph. For a primal-dual feasible
point 𝑤 = (𝑥, 𝑦, 𝑠) and 𝜎 = 1/𝑂(𝑛6), this is defined as 𝐺𝑤,𝜎 = ([𝑛], 𝐸𝑤,𝜎) with edges (𝑖 , 𝑗) such that
𝜅𝑊
𝑖𝑗
𝑥𝑖/𝑥 𝑗 ≥ 𝜎. Observe that for any 𝑖 , 𝑗 ∈ [𝑛], at least one of (𝑖 , 𝑗) and (𝑗 , 𝑖) are long edges: this

follows since for any circuit 𝐶 with 𝑖 , 𝑗 ∈ 𝐶, we get lower bounds |𝑔𝐶
𝑗
/𝑔𝐶

𝑖
| ≤ 𝜅𝑊

𝑖𝑗
and |𝑔𝐶

𝑖
/𝑔𝐶

𝑗
| ≤ 𝜅𝑊

𝑗𝑖
.

Intuitively, our algorithm will enforce the following two types of events. The analysis in
Section 4.4 is based on a potential function analysis capturing roughly the same progress.

• For an iterate 𝑤 and a value 𝜇 > 0, we have 𝑖 , 𝑗 ∈ [𝑛] in a strongly connected component
in 𝐺𝑤,𝜎 of size ≤ 𝜏, and for any iterate 𝑤′ with 𝜇(𝑤′) > 𝜇, if 𝑖 , 𝑗 are in a strongly connected
component of 𝐺𝑤′ ,𝜎 then this component has size ≥ 2𝜏.

• For an iterate 𝑤 and a value 𝜇 > 0, we have (𝑖 , 𝑗) ∉ 𝐸𝑤,𝜎, and for any iterate 𝑤′ with 𝜇(𝑤′) > 𝜇

we have (𝑖 , 𝑗) ∈ 𝐸𝑤′ ,𝜎.

At most 𝑂(𝑛2 log 𝑛) such events can happen overall, so if we can prove that on average an event
will happen every 𝑂(

√
𝑛 log(�̄�∗𝐴 + 𝑛)) iterations or the algorithm terminates, then we have the

desired convergence bound of 𝑂(𝑛2.5 log(𝑛) log(�̄�∗𝐴 + 𝑛)) iterations.

Converged variables cause combinatorial progress. We now show that combinatorial progress as
above must happen in the affine scaling step in the case when the graph 𝐺𝑤,𝜎 is strongly connected.
As noted above, for the pair of converged variables 𝑥𝑖 and 𝑠 𝑗 after the affine scaling step, 𝑥𝑖/𝑥 𝑗 , and
thus 𝜅𝑊

𝑖𝑗
𝑥𝑖/𝑥 𝑗 , will asymptotically increase by a factor 2 in every 𝑂(

√
𝑛) iterations.

By the strong connectivity assumption, there is a directed path in the long edge graph from
𝑖 to 𝑗 of length at most 𝑛 − 1. Each edge has length at least 𝜎, and by the cycle characterization
(Theorem 3.4.1) we know that (𝜅𝑊

𝑗𝑖
𝑥 𝑗/𝑥𝑖) · 𝜎𝑛−1 ≤ (𝜅∗

𝑊
)𝑛 . As such, 𝜅𝑊

𝑗𝑖
𝑥 𝑗/𝑥𝑖 ≤ (𝜅∗𝑊 )𝑛/𝜎𝑛−1. Since

𝜅𝑊
𝑖𝑗
𝜅𝑊
𝑗𝑖
≥ 1, we obtain the lower bound 𝜅𝑊

𝑖𝑗
𝑥𝑖/𝑥 𝑗 ≥ 𝜎𝑛−1/(𝜅∗

𝑊
)𝑛 .

This means that after 𝑂(
√
𝑛 log((𝜅∗

𝑊
/𝜎)𝑛)) = 𝑂(𝑛1.5 log(𝜅∗

𝑊
+ 𝑛)) affine scaling steps, the weight

of the edge (𝑖 , 𝑗)will be more than (𝜅∗
𝑊
/𝜎)4𝑛 . There can never again be a length 𝑛 or shorter path

from 𝑗 to 𝑖 in the long edge graph, for otherwise the resulting cycle would violate Theorem 3.4.1.
Moreover, by the triangle inequality (Theorem 3.2.22), any other 𝑘 ≠ 𝑖 , 𝑗 will have either (𝑖 , 𝑘) or
(𝑘, 𝑗) of length at least (𝜅∗

𝑊
/𝜎)2𝑛 , similarly causing a pair of variables to never again be in the same

connected component. As such, we took 𝑂(𝑛1.5 log(𝜅∗
𝑊
+ 𝑛)) affine scaling steps and in that time at

least 𝑛 − 1 combinatorial progress events have occured.

The layered least squares step. Similarly to the Vavasis–Ye algorithm [VY96] and subsequent
literature, our algorithm is a predictor-corrector method using LLS steps as in Section 4.3.2 for
certain predictor iterations. Our algorithm (Algorithm 4.2) uses LLS steps only sometimes, and
most steps are the simpler affine scaling steps; but for simplicity of this overview, we can assume
every predictor iteration uses an LLS step.

We define the ordered partition 𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝) corresponding to the strongly connected
components in topological ordering. Recalling that either (𝑖 , 𝑗) or (𝑗 , 𝑖) is a long edge for every pair
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Figure 4.1: Top-down we have a chart of primal/dual variables and the estimated subgraph of the circuit ratio
digraph (Definition 4.3.11) for three different iterations: (i) All variables except 𝑥𝑖 are far away
from their optimal values. (ii) On 𝐽1 there is a primal variable (𝑖) and dual variable (𝑗) that have
converged, i.e. 𝑥𝑖 is close to 𝑥∗

𝑖
and 𝑠𝑖 is close to 𝑠∗

𝑖
. (iii) 𝑗 moves to layer 𝐽2 due to a change in the

underlying subgraph of the circuit ratio digraph.
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4 SCALING-INVARIANT IPM 4.3 A scaling-invariant layered least squares interior-point algorithm

𝑖 , 𝑗 ∈ [𝑛], this order is unique and such that there is a complete directed graph of long edges from
every 𝐽𝑘 to 𝐽𝑘′ for 1 ≤ 𝑘 < 𝑘′ ≤ 𝑝.

The first important property of the LLS step is that it is very close to the affine scaling step. In
Section 4.3.4, we introduce the partition lifting cost ℓ𝑊 (𝒥) = max2≤𝑘≤𝑝 ℓ𝑊 (𝐽≥𝑘) as the cost of lifting
from lower to higher layers; we let ℓ 1/𝑥(𝒥) be a shorthand for ℓdiag(1/𝑥)𝑊 (𝒥). Note that this same
rescaling is used for the affine scaling step in (4.10), since 𝛿 =

√
𝜇/𝑥 if 𝑤 is on the central path. In

Lemma 4.3.10(ii), we show that for a small partition lifting cost, the LLS residuals will remain near
the affine scaling residuals. Namely,

∥Rxll − Rxa∥ , ∥Rsll − Rsa∥ ≤ 6𝑛3/2ℓ 1/𝑥(𝒥) .

Recall that the LLS residuals can be written as Rxll = (𝑥 + Δ𝑥ll)/𝑥, Rsll = (𝑠+Δ𝑠ll)/𝑠 for a point on the
central path. For 𝒥 defined as above, Lemma 4.2.2 yields ℓ 1/𝑥(𝒥) ≤ 𝑛max𝑖∈𝐽>𝑘 , 𝑗∈𝐽≤𝑘 ,𝑘∈[𝑝] 𝜅𝑊𝑖𝑗 𝑥𝑖/𝑥 𝑗 .
This will be sufficiently small as this maximum is taken over ‘short’ edges (not in 𝐸𝑤,𝜎).

A second, crucial property of the LLS step is that it “splits” our LP into 𝑝 separate LPs that
have “negligible” interaction. Namely, the direction (Δ𝑥ll

𝐽𝑘
,Δ𝑠ll

𝐽𝑘
) will be very close to the affine

scaling step obtained in the problem restricted to the subspace𝑊𝒥 ,𝑘 =
{
𝑥𝐽𝑘 : 𝑥 ∈𝑊, 𝑥𝐽>𝑘 = 0

}
(see

Lemma 4.3.10(i)).
Since each component 𝐽𝑘 is strongly connected in the long edge graph 𝐺𝑤,𝜎, if there is at least one

primal 𝑥𝑖 and dual 𝑠 𝑗 in 𝐽𝑘 that have converged after the LLS step, we can use the above argument
to show combinatorial progress regarding the 𝜅𝑊

𝑖𝑗
𝑥𝑖/𝑥 𝑗 value (Lemma 4.4.3).

Exploiting the proximity between the LLS and affine scaling steps, Lemma 4.3.10(iv) gives a
lower bound on the step size 𝛼 ≥ 1 − 3

√
𝑛

𝛽 max𝑖∈[𝑛]min{|Rxll
𝑖
|, |Rsll

𝑖
|}. Let 𝐽𝑘 be the component

where min{∥Rxll
𝐽𝑘
∥ , ∥Rsll

𝐽𝑘
∥} is the largest. Hence, the step size 𝛼 can be lower bounded in terms of

min{∥Rxll
𝐽𝑘
∥ , ∥Rsll

𝐽𝑘
∥}.

The analysis now distinguishes two cases. Let 𝑤+ = 𝑤 + 𝛼Δ𝑠ll be the point obtained by the
predictor LLS step. If the corresponding partition lifting cost ℓ 1/𝑥+(𝒥) is still small, then a similar
argument that has shown the convergence of primal and dual variables in the affine scaling step
will imply that after the LLS step, at least one 𝑥𝑖 and one 𝑠 𝑗 will have converged for 𝑖 , 𝑗 ∈ 𝐽𝑘 . Thus,
in this case we obtain the combinatorial progress (Lemma 4.4.4).

The remaining case is when ℓ 1/𝑥+(𝒥) becomes large. In Lemma 4.4.5, we show that in this case a
new edge will enter the long edge graph, corresponding to the second combinatorial event listed
previously. Intuitively, in this case one layer “crashes” into another.

Refined estimates on circuit imbalances. In the above overview, we assumed the circuit imbalance
values 𝜅𝑊

𝑖𝑗
are given, and thus the graph 𝐺𝑤,𝜎 is available. Whereas these quantities are difficult to

compute, we can naturally work with lower estimates. For each 𝑖 , 𝑗 ∈ [𝑛] that are contained in a
circuit together, we start with the lower bound �̂�𝑊

𝑖𝑗
= |𝑔𝐶

𝑗
/𝑔𝐶

𝑖
| obtained for an arbitrary circuit 𝐶

with 𝑖 , 𝑗 ∈ 𝐶. We use the graph �̂�𝑤,𝜎 = ([𝑛], �̂�𝑤,𝜎) corresponding to these estimates. We have that
�̂�𝑤,𝜎 ⊆ 𝐸𝑤,𝜎, but some long edges may be missing. We determine the partition 𝒥 of the strongly
connected components of �̂�𝑤,𝜎 and estimate the partition lifting cost ℓ 1/𝑥(𝒥). If this is below the
desired bound, the argument works correctly. Otherwise, we can identify a pair 𝑖 , 𝑗 responsible
for this failure. Namely, we find a circuit 𝐶 with 𝑖 , 𝑗 ∈ 𝐶 such that �̂�𝑊

𝑖𝑗
< |𝑔𝐶

𝑗
/𝑔𝐶

𝑖
|. In this case, we

update our estimate, and recompute the partition; this is described in Algorithm 4.1. At each LLS
step, the number of updates is bounded by 𝑛, since every update leads to a decrease in the number
of partition classes. This finishes the overview of the algorithm.
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4.3.4 A linear system viewpoint of layered least squares

We now continue with the detailed exposition of our algorithm. We present an equivalent definition
of the LLS step introduced in Section 4.3.2, generalizing the linear system (4.5)–(4.6). We use the
subspace notation. With this notation, (4.5)–(4.6) for the affine scaling direction can be written as

𝑠Δ𝑥a + 𝑥Δ𝑠a = −𝑥𝑠 , Δ𝑥a ∈𝑊 , and Δ𝑠a ∈𝑊⊥ , (4.17)

which is further equivalent to 𝛿Δ𝑥a + 𝛿−1Δ𝑠a = −𝑥1/2𝑠1/2.
Given the layering 𝒥 and 𝑤 = (𝑥, 𝑦, 𝑠), for each 𝑘 ∈ [𝑝]we define the subspaces

𝑊𝒥 ,𝑘 ≔
{
𝑥𝐽𝑘 : 𝑥 ∈𝑊, 𝑥𝐽>𝑘 = 0

}
and 𝑊⊥𝒥 ,𝑘 ≔

{
𝑥𝐽𝑘 : 𝑥 ∈𝑊⊥ , 𝑥𝐽<𝑘 = 0

}
.

It is easy to see that these two subspaces are orthogonal complements. Our next goal is to show
that, analogously to (4.17), the primal LLS step Δ𝑥ll is obtained as the unique solution to the linear
system

𝛿Δ𝑥ll + 𝛿−1Δ𝑠 = −𝑥1/2𝑠1/2 , Δ𝑥ll ∈𝑊 , and Δ𝑠 ∈𝑊⊥𝒥 ,1 × · · · ×𝑊
⊥
𝒥 ,𝑝 , (4.18)

and the dual LLS step Δ𝑠ll is the unique solution to

𝛿Δ𝑥 + 𝛿−1Δ𝑠ll = −𝑥1/2𝑠1/2 , Δ𝑥 ∈𝑊𝒥 ,1 × · · · ×𝑊𝒥 ,𝑝 , and Δ𝑠ll ∈𝑊⊥ . (4.19)

It is important to note that Δ𝑠 in (4.18) may be different from Δ𝑠ll, and Δ𝑥 in (4.19) may be different
from Δ𝑥ll. In fact, Δ𝑠ll = Δ𝑠 and Δ𝑥ll = Δ𝑥 can only be the case for the affine scaling step.

The following lemma proves that the above linear systems are indeed uniquely solved by the
LLS step.

Lemma 4.3.7. For 𝑡 ∈ R𝑛 ,𝑊 ⊆ R𝑛 , 𝛿 ∈ R𝑛++, and 𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝), let 𝑤 = LLS𝑊,𝛿
𝒥 (𝑡) be defined by

𝛿𝑤 + 𝛿−1𝑣 = 𝛿𝑡 , 𝑤 ∈𝑊, 𝑣 ∈𝑊⊥𝒥 ,1 × · · · ×𝑊
⊥
𝒥 ,𝑝 .

Then LLS𝑊,𝛿
𝒥 (𝑡) is well-defined and𝛿𝐽𝑘 (𝑡𝐽𝑘 − 𝑤𝐽𝑘 ) = min

{ 𝛿𝐽𝑘 (𝑡𝐽𝑘 − 𝑧𝐽𝑘 ) : 𝑧 ∈𝑊, 𝑧𝐽>𝑘 = 𝑤𝐽>𝑘
}

for every 𝑘 ∈ [𝑝].

In the notation of the above lemma we have, for ordered partitions 𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝), �̄� =

(𝐽𝑝 , 𝐽𝑝−1 , . . . , 𝐽1), and (𝑥, 𝑦, 𝑠) ∈ 𝒫++ × 𝒟++ with 𝛿 = 𝑠1/2𝑥−1/2, that Δ𝑥ll = LLS𝑊,𝛿
𝒥 (−𝑥) and

Δ𝑠ll = LLS𝑊
⊥ ,𝛿−1

�̄� (−𝑠).

Proof of Lemma 4.3.7. We first prove the equality𝑊 ∩ (𝑊⊥𝒥 ,1 × · · · ×𝑊
⊥
𝒥 ,𝑝) = {0}, and by a similar

argument we have𝑊⊥ ∩ (𝑊𝒥 ,1 × · · · ×𝑊𝒥 ,𝑝) = {0}. By duality, this last equality tells us that

(𝑊⊥ ∩ (𝑊𝒥 ,1 × · · · ×𝑊𝒥 ,𝑝))⊥ =𝑊 + (𝑊⊥𝒥 ,1 × · · · ×𝑊
⊥
𝒥 ,𝑝) = R

𝑛 .

Thus, the linear decomposition defining LLS𝑊,𝛿
𝒥 (𝑡) has a solution and its solution is unique.

Suppose 𝑦 ∈ 𝑊 ∩ (𝑊⊥𝒥 ,1 × · · · ×𝑊
⊥
𝒥 ,𝑝). We prove 𝑦𝐽𝑘 = 0 by induction on 𝑘, starting at 𝑘 = 𝑝.

The induction hypothesis is that 𝑦𝐽>𝑘 = 0, which is an empty requirement when 𝑘 = 𝑝. The
hypothesis 𝑦𝐽>𝑘 = 0 together with the assumption 𝑦 ∈𝑊 is equivalent to 𝑦 ∈𝑊 ∩R𝑛

𝐽≤𝑘
, and implies

𝑦𝐽𝑘 ∈ 𝜋𝐽𝑘 (𝑊 ∩R𝑛𝐽≤𝑘 ) ≔𝑊𝒥 ,𝑘 . Since we also have 𝑦𝐽𝑘 ∈𝑊⊥𝒥 ,𝑘 by assumption, which is the orthogonal
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complement of𝑊𝒥 ,𝑘 , we must have 𝑦𝐽𝑘 = 0. Hence, by induction 𝑦 = 0. This finishes the proof that
LLS𝑊,𝛿

𝒥 (𝑡) is well-defined.
Next we prove that 𝑤 is a minimizer of min

{ 𝛿𝐽𝑘 (𝑡𝐽𝑘 − 𝑧𝐽𝑘 ) : 𝑧 ∈𝑊, 𝑧𝐽>𝑘 = 𝑤𝐽>𝑘
}
. The optimality

condition is for 𝛿𝐽𝑘 (𝑡𝐽𝑘 − 𝑧𝐽𝑘 ) to be orthogonal to 𝛿𝐽𝑘𝑢 for any 𝑢 ∈ 𝑊𝒥 ,𝑘 . By the LLS equation, we
have 𝛿𝐽𝑘 (𝑡𝐽𝑘 − 𝑤𝐽𝑘 ) = 𝛿−1

𝐽𝑘
𝑣𝐽𝑘 , where 𝑣𝐽𝑘 ∈ 𝑊⊥𝒥 ,𝑘 . Noting then that ⟨𝛿𝐽𝑘𝑢, 𝛿−1

𝐽𝑘
𝑣⟩ = ⟨𝑢𝐽𝑘 , 𝑣𝐽𝑘 ⟩ = 0 for

𝑢 ∈𝑊𝒥 ,𝑘 , the optimality condition follows immediately. □

With these tools, we can prove that the lifting costs are self-dual. This explains the reverse order
in the dual vs primal LLS step and justifies our attention on the lifting cost in a self-dual algorithm.
The next proposition generalizes the result of [GL97].

Proposition 4.3.8 (Proof on p. 83). For a linear subspace𝑊 ⊆ R𝑛 and index set 𝐼 ⊆ [𝑛] with 𝐽 = [𝑛] \ 𝐼,

∥𝐿𝑊𝐼 ∥ ≤ max{1, ∥𝐿𝑊⊥𝐽 ∥}.

In particular, ℓ𝑊 (𝐼) = ℓ𝑊⊥(𝐽).

We defer the proof to Section 4.5. Note that this proposition also implies Proposition 3.3.3(ii).

Partition lifting scores

A key insight is that if the layering 𝒥 is “well-separated”, then we indeed have 𝑥Δ𝑠ll + 𝑠Δ𝑥ll ≈ −𝑥𝑠,
that is, the LLS direction is close to the affine scaling direction. This will be shown in Lemma 4.3.10.
The notion of “well-separatedness” can be formalized as follows. Recall the definition of the lifting
score (4.2.1). The lifting score of the layering 𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝) of [𝑛] with respect to𝑊 is defined
as

ℓ𝑊 (𝒥) ≔ max
2≤𝑘≤𝑝

ℓ𝑊 (𝐽≥𝑘) .

For 𝛿 ∈ R𝑛++, we use ℓ𝑊,𝛿(𝐼) ≔ ℓdiag(𝛿)𝑊 (𝐼) and ℓ𝑊,𝛿(𝒥) ≔ ℓdiag(𝛿)𝑊 (𝒥). When the context is clear,
we omit𝑊 and write ℓ 𝛿(𝐼) ≔ ℓ𝑊,𝛿(𝐼) and ℓ 𝛿(𝒥) ≔ ℓ𝑊,𝛿(𝒥).

The following important duality claim asserts that the lifting score of a layering equals the
lifting score of the reverse layering in the orthogonal complement subspace. It is an immediate
consequence of Proposition 4.3.8.

Lemma 4.3.9. Let𝑊 ⊆ R𝑛 be a linear subspace, 𝛿 ∈ R𝑛++. For an ordered partition 𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝),
let �̄� = (𝐽𝑝 , 𝐽𝑝−1 , . . . , 𝐽1) denote the reverse ordered partition. Then, we have

ℓ𝑊,𝛿(𝒥) = ℓ𝑊⊥ ,𝛿−1(�̄�).

Proof. Let𝑈 = diag(𝛿)𝑊 . Note that𝑈⊥ = diag(𝛿−1)𝑊⊥. Then by Proposition 4.3.8, for 2 ≤ 𝑘 ≤ 𝑝,
we have that

ℓ𝑊,𝛿(𝐽≥𝑘) = ℓ𝑈 (𝐽≥𝑘) = ℓ𝑈
⊥(𝐽≤𝑘−1) = ℓ𝑈

⊥(𝐽≥𝑝−𝑘+2) = ℓ𝑊
⊥ ,𝛿−1(𝐽≥𝑝−𝑘+2).

In particular, ℓ𝑊,𝛿(𝒥) = ℓ𝑊⊥ ,𝛿−1(�̄�), as needed. □

The next lemma summarizes key properties of the LLS steps, assuming the partition has a small
lifting score. We show that if ℓ 𝛿(𝒥) is sufficiently small, then on the one hand, the LLS step will be
very close to the affine scaling step, and on the other hand, on each layer 𝑘 ∈ [𝑝], it will be very
close to the affine scaling step restricted to this layer for the subspace𝑊𝒥 ,𝑘 . The proof is deferred
to Section 4.5.
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Lemma 4.3.10 (Proof on p. 87). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4], let 𝜇 = 𝜇(𝑤) and 𝛿 = 𝛿(𝑤).
Let 𝒥 = (𝐽1 , . . . , 𝐽𝑝) be a layering with ℓ 𝛿(𝒥) ≤ 𝛽/(32𝑛2), and let Δ𝑤ll = (Δ𝑥ll ,Δ𝑦ll ,Δ𝑠ll) denote the LLS
direction for the layering 𝒥 . Let furthermore 𝜖ll(𝑤) = max𝑖∈[𝑛]min{|Rxll

𝑖
|, |Rsll

𝑖
|}, and define the maximal

step length as

𝛼∗ ≔ sup
{
𝛼′ ∈ [0, 1] : ∀�̄� ∈ [0, 𝛼′] : 𝑤 + �̄�Δ𝑤ll ∈ 𝒩(2𝛽)

}
.

Then the following properties hold.

(i) We have

∥𝛿𝐽𝑘Δ𝑥ll
𝐽𝑘
+ 𝛿−1

𝐽𝑘
Δ𝑠ll

𝐽𝑘
+ 𝑥1/2

𝐽𝑘
𝑠

1/2
𝐽𝑘
∥ ≤ 6𝑛ℓ 𝛿(𝒥)√𝜇 , ∀𝑘 ∈ [𝑝], and (4.20)

∥𝛿Δ𝑥ll + 𝛿−1Δ𝑠ll + 𝑥1/2𝑠1/2∥ ≤ 6𝑛3/2ℓ 𝛿(𝒥)√𝜇 . (4.21)

(ii) For the affine scaling direction Δ𝑤a = (Δ𝑥a ,Δ𝑦a ,Δ𝑠a),

∥Rxll − Rxa∥ , ∥Rsll − Rsa∥ ≤ 6𝑛3/2ℓ 𝛿(𝒥) .

(iii) For the residuals of the LLS steps we have ∥Rxll∥ , ∥Rsll∥ ≤
√

2𝑛. For each 𝑖 ∈ [𝑛], max{|Rxll
𝑖
|, |Rsll

𝑖
|} ≥

1
2 − 3

4𝛽.

(iv) We have

𝛼∗ ≥ 1 − 3
√
𝑛𝜖ll(𝑤)
𝛽

, (4.22)

and for any 𝛼 ∈ [0, 1]
𝜇(𝑤 + 𝛼Δ𝑤ll) = (1 − 𝛼)𝜇 ,

(v) We have 𝜖ll(𝑤) = 0 if and only if 𝛼∗ = 1. These are further equivalent to 𝑤 + Δ𝑤ll = (𝑥 + Δ𝑥ll , 𝑦 +
Δ𝑦ll , 𝑠 + Δ𝑠ll) being an optimal solution to (LP).

4.3.5 The layering procedure

Our algorithm performs LLS steps on a layering with a low lifting score. A further requirement
is that within each layer, the circuit imbalances 𝜅𝛿

𝑖 𝑗
defined in Section 3.4 are suitably bounded.

The rescaling here is with respect to 𝛿 = 𝛿(𝑤) for the current iterate 𝑤 = (𝑥, 𝑦, 𝑠). To define the
precise requirement on the layering, we first introduce an auxiliary graph. Throughout we use the
parameter

𝛾 ≔
𝛽

210𝑛5 . (4.23)

The auxiliary graph. For a vector 𝛿 ∈ R𝑛++ and 𝜎 > 0, we define the directed graph 𝐺𝛿,𝜎 =

([𝑛], 𝐸𝛿,𝜎) such that (𝑖 , 𝑗) ∈ 𝐸𝛿,𝜎 if 𝜅𝛿
𝑖 𝑗
≥ 𝜎. This is a subgraph of the circuit ratio digraph studied in

Section 4.2, including only the edges where the circuit ratio is at least the threshold 𝜎. Note that we
do not have direct access to this graph, as we cannot efficiently compute the values 𝜅𝛿

𝑖 𝑗
.

At the beginning of the entire algorithm, we run the subroutine Find-Circuits(𝐴) as in
Theorem 3.4.6, where𝑊 = ker(A). We assume the matroidℳ(A) is non-separable. For a separable
matroid, we can solve the subproblems of our LP on the components separately. Thus, for each
𝑖 ≠ 𝑗, 𝑖 , 𝑗 ∈ [𝑛], we obtain an estimate �̂�𝑖 𝑗 ≤ 𝜅𝑖 𝑗 . These estimates will be gradually improved
throughout the algorithm.

Note that 𝜅𝛿
𝑖 𝑗
= 𝜅𝑖 𝑗𝛿 𝑗/𝛿𝑖 and �̂�𝛿

𝑖 𝑗
= �̂�𝑖 𝑗𝛿 𝑗/𝛿𝑖 . If �̂�𝛿

𝑖 𝑗
≥ 𝜎, then we are guaranteed (𝑖 , 𝑗) ∈ 𝐸𝛿,𝜎.
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Definition 4.3.11. Define �̂�𝛿,𝜎 = ([𝑛], �̂�𝛿,𝜎) to be the directed graph with edges (𝑖 , 𝑗) such that �̂�𝛿
𝑖 𝑗
≥ 𝜎;

�̂�𝛿,𝜎 is a subgraph of 𝐺𝛿,𝜎.

Lemma 4.3.12. Let 𝛿 ∈ R𝑛++. For every 𝑖 ≠ 𝑗, 𝑖 , 𝑗 ∈ [𝑛], �̂�𝛿
𝑖 𝑗
· �̂�𝛿

𝑗𝑖
≥ 1. Consequently, for any 0 < 𝜎 ≤ 1, at

least one of (𝑖 , 𝑗) ∈ �̂�𝛿,𝜎 or (𝑗 , 𝑖) ∈ �̂�𝛿,𝜎.

Proof. We show that this property holds at the initialization. Since the estimates can only increase,
it remains true throughout the algorithm. Recall the definition of �̂�𝑖 𝑗 from Theorem 3.4.6. This is
defined as the maximum of |𝑔𝑗/𝑔𝑖 | such that 𝑔 ∈𝑊 , supp(𝑔) = 𝐶 for some 𝐶 ∈ �̂� containing 𝑖 and
𝑗. For the same vector 𝑔, we get �̂� 𝑗𝑖 ≥ |𝑔𝑖/𝑔𝑗 |. Consequently, �̂�𝑖 𝑗 · �̂� 𝑗𝑖 ≥ 1, and also �̂�𝛿

𝑖 𝑗
· �̂�𝛿

𝑗𝑖
≥ 1. The

second claim follows by the assumption 𝜎 ≤ 1. □

Balanced layerings. We are ready to define the requirements on the layering in the algorithm. In
the algorithm, 𝛿 = 𝛿(𝑤)will correspond to the scaling of the current iterate 𝑤 = (𝑥, 𝑦, 𝑠).

Definition 4.3.13. Let 𝛿 ∈ R𝑛++. The layering 𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝) of [𝑛] is 𝛿-balanced if

(i) ℓ 𝛿(𝒥) ≤ 𝛾, and

(ii) 𝐽𝑘 is strongly connected in 𝐺𝛿,𝛾/𝑛 for all 𝑘 ∈ [𝑝].

The following lemma shows that within each layer, the 𝜅𝛿
𝑖 𝑗

values are within a bounded range.
This will play an important role in our potential analysis.

Lemma 4.3.14. Let 0 < 𝜎 < 1 and 𝑡 > 0, and 𝑖 , 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗.

(i) If the graph 𝐺𝛿,𝜎 contains a directed path of at most 𝑡 − 1 edges from 𝑗 to 𝑖, then

𝜅𝛿
𝑖 𝑗 <

(
𝜅∗

𝜎

) 𝑡
.

(ii) If 𝐺𝛿,𝜎 contains a directed path of at most 𝑡 − 1 edges from 𝑖 to 𝑗, then

𝜅𝛿
𝑖 𝑗 >

( 𝜎
𝜅∗

) 𝑡
.

Proof. For part (i), let 𝑗 = 𝑖1 , 𝑖2 , . . . , 𝑖ℎ = 𝑖 be a path in 𝐺𝛿,𝜎 in 𝐽 from 𝑗 to 𝑖 with ℎ ≤ 𝑡. That is,
𝜅𝛿
𝑖ℓ 𝑖ℓ+1
≥ 𝜎 for each ℓ ∈ [ℎ]. Theorem 3.4.1 yields

(�̄�∗)𝑡 ≥ 𝜅𝛿
𝑖 𝑗 · 𝜎

ℎ−1 > 𝜅𝛿
𝑖 𝑗 · 𝜎

𝑡 ,

since ℎ ≤ 𝑡 and 𝜎 < 1. Part (ii) follows using part (i) for 𝑗 and 𝑖, and that 𝜅𝛿
𝑖 𝑗
· 𝜅𝛿

𝑗𝑖
≥ 1 according to

Lemma 4.3.12. □

Description of the layering subroutine. Consider an iterate 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) of the algorithm
with 𝛿 = 𝛿(𝑤), The subroutine Layering(𝛿, �̂�), described in Algorithm 4.1, constructs a 𝛿-balanced
layering. We recall that the approximated auxilliary graph �̂�𝛿,𝛾/𝑛 with respect to �̂� is as in
Definition 4.3.11

We now give an overview of the subroutine Layering(𝛿, �̂�). We start by computing the strongly
connected components (SCCs) of the directed graph �̂�𝛿,𝛾/𝑛 . The edges of this graph are obtained
using the current estimates �̂�𝛿

𝑖 𝑗
. According to Lemma 4.3.12, we have (𝑖 , 𝑗) ∈ �̂�𝛿,𝛾/𝑛 or (𝑗 , 𝑖) ∈ �̂�𝛿,𝛾/𝑛

for every 𝑖 , 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗. Hence, there is a linear ordering of the components 𝐶1 , 𝐶2 , . . . , 𝐶ℓ such
that (𝑢, 𝑣) ∈ �̂�𝛿,𝛾/𝑛 whenever 𝑢 ∈ 𝐶𝑖 , 𝑣 ∈ 𝐶 𝑗 , and 𝑖 < 𝑗. We call this the ordering imposed by �̂�𝛿,𝛾/𝑛 .
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Algorithm 4.1: Layering(𝛿, �̂�)
Input :𝛿 ∈ R𝑛++ and �̂� ∈ R𝐸++.
Output :𝛿-balanced layering 𝒥 = (𝐽1 , . . . , 𝐽𝑝) and updated values �̂� ∈ R𝐸++.

1 Compute the strongly connected components 𝐶1 , 𝐶2 , . . . , 𝐶ℓ of �̂�𝛿,𝛾/𝑛 , listed in the ordering imposed
by �̂�𝛿,𝛾/𝑛

2 �̄�← �̂�𝛿,𝛾/𝑛
3 for 𝑘 = 2, . . . , ℓ do
4 Call Verify-Lift(diag(𝛿)𝑊, 𝐶≥𝑘 , 𝛾) that answers ‘pass’ or ‘fail’
5 if the answer is ‘fail’ then
6 Let 𝑖 ∈ 𝐶≥𝑘 , 𝑗 ∈ 𝐶<𝑘 , and 𝑡 be the output of Verify-Lift such that 𝛾/𝑛 ≤ 𝑡 ≤ 𝜅𝛿

𝑖 𝑗

7 �̂�𝑖 𝑗 ← 𝑡𝛿𝑖/𝛿 𝑗
8 �̄�← �̄� ∪ {(𝑖 , 𝑗)}

9 Compute strongly connected components 𝐽1 , 𝐽2 , . . . , 𝐽𝑝 of ([𝑛], �̄�), listed in the ordering imposed by
�̂�𝛿,𝛾/𝑛

10 return 𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝), �̂�.

Next, for each 𝑘 = 2, . . . , ℓ , we use the subroutine Verify-Lift(diag(𝛿)𝑊, 𝐶≥𝑘 , 𝛾) described in
Lemma 4.2.2. If the subroutine returns ‘pass’, then we conclude ℓ 𝛿(𝐶≥𝑘) ≤ 𝛾, and proceed to the
next layer. If the answer is ‘fail’, then the subroutine returns as certificates 𝑖 ∈ 𝐶≥𝑘 , 𝑗 ∈ 𝐶<𝑘 , and 𝑡
such that 𝛾/𝑛 ≤ 𝑡 ≤ 𝜅𝛿

𝑖 𝑗
. In this case, we update �̂�𝛿

𝑖 𝑗
to the higher value 𝑡. We add (𝑖 , 𝑗) to an edge

set �̄�; this edge set was initialized to contain �̂�𝛿,𝛾/𝑛 . After adding (𝑖 , 𝑗), all components 𝐶ℓ between
those containing 𝑖 and 𝑗 will be merged into a single strongly connected component. To see this,
recall that if 𝑖′ ∈ 𝐶ℓ and 𝑗′ ∈ 𝐶ℓ ′ for ℓ < ℓ ′, then (𝑖′, 𝑗′) ∈ �̂�𝛿,𝛾/𝑛 according to Lemma 4.3.12.

Finally, we compute the strongly connected components of ([𝑛], �̄�). We let 𝐽1 , 𝐽2 , . . . , 𝐽𝑝 denote
their unique acyclic order, and return these layers.

Lemma 4.3.15. The subroutine Layering(𝛿, �̂�) returns a 𝛿-balanced layering in 𝑂(𝑛𝑚2 + 𝑛2) time.

The difficult part of the proof is showing the running time bound. We note that the weaker
bound 𝑂(𝑛2𝑚2) can be obtained by a simpler argument.

Proof. We first verify that the output layering is indeed 𝛿-balanced. For property (i) of Defini-
tion 4.3.13, note that each 𝐽𝑞 component is the union of some of the 𝐶𝑘 ’s. In particular, for every
𝑞 ∈ [𝑝], the set 𝐽≥𝑞 = 𝐶≥𝑘 for some 𝑘 ∈ [ℓ ]. Assume now ℓ 𝛿(𝐶≥𝑘) > 𝛾. At step 𝑘 of the main cycle,
the subroutine Verify-Lift returned the answer ‘fail’, and a new edge (𝑖 , 𝑗) ∈ 𝐸 was added with
𝑖 ∈ 𝐶≥𝑘 , 𝑗 ∈ 𝐶<𝑘 . Note that we already had (𝑗 , 𝑖) ∈ �̂�𝛿,𝛾/𝑛 , since 𝑗 ∈ 𝐶𝑟 for some 𝑟 < 𝑘, and 𝑖 ∈ 𝐶𝑟′
for 𝑟′ ≥ 𝑘. This contradicts the choice of 𝐽≥𝑞 as a maximal strongly connected component in ([𝑛], 𝐸).

Property (ii) follows since all new edges added to 𝐸 have 𝜅𝑖 𝑗 ≥ 𝛾/𝑛. Therefore, ([𝑛], 𝐸) is a
subgraph of 𝐺𝛿,𝛾/𝑛 .

Let us now turn to the computational cost. The initial strongly-connected components can be
obtained in time 𝑂(𝑛2), and the same bound holds for the computation of the final components.
(The latter can be also done in linear time, exploiting the special structure that the components 𝐶𝑖
have a complete linear ordering.)

The second computational bottleneck is the subroutine Verify-Lift. We assume a matrix
M ∈ R𝑛×(𝑛−𝑚) is computed at the very beginning such that im(M) =𝑊 . We first explain how to
implement one call to Verify-Lift in 𝑂(𝑛(𝑛 −𝑚)2) time. We then sketch how to amortize the work
across the different calls to Verify-Lift, using the nested structure of the layering, to implement
the whole procedure in 𝑂(𝑛(𝑛 − 𝑚)2) time. To turn this into 𝑂(𝑛𝑚2), we recall that the layering
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procedure is the same for 𝑊 and 𝑊⊥ due to duality (Proposition 4.3.8). Since dim(𝑊⊥) = 𝑚,
applying this subroutine on𝑊⊥ instead of𝑊 achieves the same result but in time 𝑂(𝑛𝑚2).

We now explain the implementation of Verify-Lift, where we are given as input 𝐶 ⊆ [𝑛] and
the basis matrix M ∈ R𝑛×(𝑛−𝑚) as above with im(M) = 𝑊 . The running time is dominated by
the computation of the set 𝐼 ⊆ 𝐶 and the matrix B ∈ R([𝑛]\𝐶)×|𝐼 | satisfying 𝐿𝑊

𝐶
(𝑥)[𝑛]\𝐶 = B𝑥𝐼 , for

𝑥 ∈ 𝜋𝐶(𝑊). We explain how to compute 𝐼 and B from M using column operations (note that these
preserve the range). The valid choices for 𝐼 ⊆ 𝐶 are in correspondence with maximal sets of linear
independent rows of M𝐶,•, noting then that |𝐼 | = 𝑟 where 𝑟 ≔ rk(𝑀𝐶,•). Let 𝐷1 = [𝑛 − 𝑚 − 𝑟] and
𝐷2 = [𝑛 − 𝑚] \ [𝑛 − 𝑚 − 𝑟]. By applying columns operations to M, we can compute 𝐼 ⊆ 𝐶 such
that M𝐼 ,𝐷2 = I𝑟 (𝑟 × 𝑟 identity) and M𝐶,𝐷1 = 0. This requires 𝑂(𝑛(𝑛 − 𝑚)|𝐶 |) time using Gaussian
elimination. At this point, note that 𝜋𝐶(𝑊) = im(M𝐶,𝐷2), 𝜋𝐼(𝑊) = R𝐼 and im(M•,𝐷1) =𝑊 ∩R𝑛[𝑛]\𝐶 .
To compute B, we must transform the columns of M•,𝐷2 into minimum norm lifts of 𝑒 𝑖 ∈ 𝜋𝐼(𝑊) into
𝑊 , for all 𝑖 ∈ 𝐼. For this purpose, it suffices to make the columns of M[𝑛]\𝐶,𝐷2 orthogonal to the range
of M[𝑛]\𝐶,𝐷1 . Applying Gram-Schmidt orthogonalization, this requires𝑂((𝑛−|𝐶 |)(𝑛−𝑚)(𝑛−𝑚−𝑟))
time. From here, the desired matrix B = M[𝑛]\𝐶,𝐷2 . Thus, the total running time of Verify-Lift is
𝑂(𝑛(𝑛 − 𝑚)|𝐶 | + (𝑛 − |𝐶 |)(𝑛 − 𝑚)(𝑛 − 𝑚 − 𝑟)) = 𝑂(𝑛(𝑛 − 𝑚)2).

We now sketch how to amortize the work of all the calls of Verify-Lift during the layering
algorithm, to achieve a total 𝑂(𝑛(𝑛 − 𝑚)2) running time. Let 𝐶1 , . . . , 𝐶ℓ denote the candidate SCC
layering. Our task is to compute the matrices B𝑘 , 2 ≤ 𝑘 ≤ ℓ , needed in the calls to Verify-Lift
on 𝑊, 𝐶≥𝑘 , 2 ≤ 𝑘 ≤ ℓ , in total 𝑂(𝑛(𝑛 − 𝑚)2) time. We achieve this in three steps working with
the basis matrix M as above. Firstly, by applying column operations to M, we compute sets
𝐼𝑘 ⊆ 𝐶𝑘 and 𝐷𝑘 = [|𝐼≤𝑘 |] \ [|𝐼<𝑘 |], 𝑘 ∈ [ℓ ], such that M𝐼𝑘 ,𝐷𝑘

= I𝑟𝑘 , where 𝑟𝑘 = |𝐼𝑘 |, and M𝐶≥𝑘 ,𝐷<𝑘 = 0,
2 ≤ 𝑘 ≤ ℓ . Note that this enforces

∑ℓ
𝑘=1 𝑟𝑘 = (𝑛 − 𝑚). This computation requires 𝑂(𝑛(𝑛 − 𝑚)2)

time using Gaussian elimination. This computation achieves im(M𝐶𝑘 ,𝐷𝑘
) = 𝜋𝐶𝑘 (𝑊 ∩ R𝑛𝐶≤𝑘 ),

im(M𝐶≥𝑘 ,𝐷≥𝑘 ) = 𝜋𝐶≥𝑘 (𝑊) and im(M•,𝐷≤𝑘 ) =𝑊 ∩R𝑛𝐶≤𝑘 , for all 𝑘 ∈ [ℓ ].
From here, we block orthogonalize M, such that the columns of M•,𝐷𝑘

are orthogonal to the
range of M•,𝐷<𝑘 , 2 ≤ 𝑘 ≤ ℓ . Applying an appropriately adapted Gram-Schmidt orthogonalization,
this requires 𝑂(𝑛(𝑛 − 𝑚)2) time. Note that this operation maintains M𝐼𝑘 ,𝐷𝑘

= I𝑟𝑘 , 𝑘 ∈ [ℓ ], since
M𝐶≥𝑘 ,𝐷<𝑘 = 0. At this point, for 𝑘 ∈ [ℓ ] the columns of M•,𝐷𝑘

are in correspondence with minimum
norm lifts of 𝑒 𝑖 ∈ 𝜋𝐷≥𝑘 (𝑊) into𝑊 , for all 𝑖 ∈ 𝐼𝑘 . Note that to compute the matrix 𝐵𝑘 we need the
lifts of 𝑒 𝑖 ∈ 𝜋𝐷≥𝑘 (𝑊), for all 𝑖 ∈ 𝐼≥𝑘 instead of just 𝑖 ∈ 𝐼𝑘 .

We now compute the matrices Bℓ ,. . . , B2 in this order via the following iterative procedure. Let
𝑘 denote the iteration counter, which decrements from ℓ to 2. For 𝑘 = ℓ (first iteration), we let
Bℓ = M𝐶<ℓ ,𝐷ℓ and decrement 𝑘. For 𝑘 < ℓ , we eliminate the entries of M𝐼𝑘 ,𝐷>𝑘 by using the columns
of M•,𝐷𝑘

. We then let B𝑘 = M𝐶<𝑘 ,𝐷≥𝑘 and decrement 𝑘. To justify correctness, one only has to notice
that at the end of iteration 𝑘, we maintain the orthogonality of M•,𝐷≥𝑘 to the range of M•,𝐷<𝑘 and
that M𝐼≥𝑘 ,𝐷≥𝑘 = I|𝐼≥𝑘 | is the appropriate identity. The cost of this procedure is the same as a full run
of Gaussian elimination and thus is bounded by 𝑂(𝑛(𝑛 − 𝑚)2). The calls to Verify-Lift during the
layering procedure can thus be executed in 𝑂(𝑛(𝑛 − 𝑚)2)) amortized time as claimed. □

4.3.6 The overall algorithm

Algorithm 4.2 presents the overall algorithm LP-Solve(A, 𝑏, 𝑐, 𝑤0). We assume that an initial
feasible solution 𝑤0 = (𝑥0 , 𝑦0 , 𝑠0) ∈ 𝒩(𝛽) is given. We address this in Section 4.7, by adapting the
extended system used in [VY96]. We note that this subroutine requires an upper bound on �̄�∗.
Since computing �̄�∗ is hard, we can implement it by a doubling search on log �̄�∗, as explained in
Section 4.7. Other than for initialization, the algorithm does not require an estimate on �̄�∗.
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Algorithm 4.2: LP-Solve(𝐴, 𝑏, 𝑐, 𝑤0)
Input :A ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 , and an initial feasible solution 𝑤0 = (𝑥0 , 𝑦0 , 𝑠0) ∈ 𝒩(1/8) to

System 1.1.
Output :Optimal solution 𝑤∗ = (𝑥∗ , 𝑦∗ , 𝑠∗) to (LP).

1 Call Find-Circuits(A) to obtain the lower bounds �̂�𝑖 𝑗 for each 𝑖 , 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗

2 𝑘 ← 0, 𝛼← 0
3 repeat
4 /* Predictor step */
5 Compute affine scaling direction Δ𝑤a = (Δ𝑥a ,Δ𝑦a ,Δ𝑠a) for 𝑤
6 if 𝜖a(𝑤) < 10𝑛3/2𝛾 then // Recall 𝜖a(𝑤) defined in (4.13)
7 𝛿← (𝑠𝑘)1/2(𝑥𝑘)−1/2

8 (𝒥 , �̂�) ←Layering(𝛿, �̂�)
9 Compute Layered Least Squares direction Δ𝑤ll = (Δ𝑥ll ,Δ𝑦ll ,Δ𝑠ll) for the layering 𝒥 and 𝑤

10 Δ𝑤 ← Δ𝑤ll

11 𝛼← 1 − 24
√
𝑛𝜖ll(𝑤) // As in Lemma 4.3.10(ii)

12 else
13 Δ𝑤 ← Δ𝑤a

14 𝛼← min
{
1/(8
√
𝑛), 1 − 8∥Δ𝑥aΔ𝑠a∥/𝜇(𝑤)

}
// As in Proposition 4.3.4(ii)

15 𝑤′← 𝑤𝑘 + 𝛼Δ𝑤
16 /* Corrector step */
17 Compute centrality direction Δ𝑤c = (Δ𝑥c ,Δ𝑦c ,Δ𝑠c) for 𝑤′

18 𝑤𝑘+1 ← 𝑤′ + Δ𝑤c

19 𝑘 ← 𝑘 + 1
20 until 𝜇(𝑤𝑘) = 0
21 return 𝑤𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑠𝑘).

The algorithm starts with the subroutine Find-Circuits(A) as in Theorem 3.4.6. The iterations
are similar to the MTY Predictor-Corrector algorithm [MTY93]. The main difference is that certain
affine scaling steps are replaced by LLS steps. In every predictor step, we compute the affine
scaling direction, and consider the quantity 𝜖a(𝑤) = max𝑖∈[𝑛]min{|Rxa

𝑖
|, |Rsa

𝑖
|}. If this is above the

threshold 10𝑛3/2𝛾, then we perform the affine scaling step. However, in case 𝜖a(𝑤) < 10𝑛3/2𝛾,
we use the LLS direction instead. In each such iteration, we call the subroutine Layering(𝛿, �̂�)
(Algorithm 4.1) to compute the layers, and we compute the LLS step for this layering.

Another important difference is that the algorithm does not require a final rounding step. It
terminates with the exact optimal solution 𝑤∗ once a predictor step is able to perform a full step
with 𝛼 = 1.

Theorem 4.3.16. For given A ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 , and an initial feasible solution𝑤0 = (𝑥0 , 𝑦0 , 𝑠0) ∈
𝒩(1/8), Algorithm 4.2 finds an optimal solution to System 1.1 in 𝑂(𝑛2.5 log 𝑛 log(�̄�∗A + 𝑛)) iterations.

Remark 4.3.17. Whereas using LLS steps enables us to give a strong bound on the total number of
iterations, finding LLS directions has a significant computational overhead as compared to finding
affine scaling directions. The layering 𝒥 can be computed in time 𝑂(𝑛𝑚2) (Lemma 4.3.15), and the
LLS steps also require 𝑂(𝑛𝑚2) time, see [MMT98; VY96]. This is in contrast to the computational
cost 𝑂(𝑛𝜔) of an affine scaling direction. Here 𝜔 < 2.373 is the matrix multiplication constant
[Vas12].

We now sketch a possible approach to amortize the computational cost of the LLS steps over
the sequence of affine scaling steps. It was shown in [MT05] that for the MTY P-C algorithm, the
“bad” scenario between two crossover events amounts to a series of affine scaling steps where the
progress in 𝜇 increases exponentially from every iteration to the next. This corresponds to the
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term 𝑂(min{𝑛2 log log(𝜇0/𝜂), log(𝜇0/𝜂)}) in their running time analysis. Roughly speaking, such
a sequence of affine scaling steps indicates that an LLS step is necessary.

Hence, we could observe these accelerating sequences of affine scaling steps, and perform an
LLS step after we see a sequence of length 𝑂(log 𝑛). The progress made by these affine scaling
steps offsets the cost of computing the LLS direction.

4.4 The potential function and the overall analysis

Let 𝜇 > 0 and 𝛿(𝜇) = 𝑠(𝜇)1/2𝑥(𝜇)−1/2 =
√
𝜇/𝑥(𝜇) = 𝑠(𝜇)/√𝜇 correspond to the point on the central

path and recall the definition of 𝛾 in (4.23). For 𝑖 , 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗, we define

𝜚𝜇(𝑖 , 𝑗) ≔
log𝜅

𝛿(𝜇)
𝑖 𝑗

log(4𝑛𝜅∗𝑊/𝛾)
,

and the main potentials in the algorithm as

Ψ𝜇(𝑖 , 𝑗) ≔ max
{
1,min

{
2𝑛, inf

0<𝜇′<𝜇
𝜚𝜇
′(𝑖 , 𝑗)

}}
and Ψ(𝜇) ≔

∑
𝑖 , 𝑗∈[𝑛],𝑖≠𝑗

logΨ𝜇(𝑖 , 𝑗) .

The motivation for 𝜚𝜇(𝑖 , 𝑗) and Ψ𝜇(𝑖 , 𝑗) comes from Lemma 4.3.14, using 𝜎 = 𝛾/(4𝑛). Thus,
log𝜅

𝛿(𝜇)
𝑖 𝑗
/log(4𝑛𝜅∗𝑊/𝛾) can be seen as a lower bound on the length of the shortest 𝑗–𝑖 path. Recall

that the layers are defined as strongly connected components of �̂�𝛿,𝛾/𝑛 , which is a subgraph of
𝐺𝛿(𝜇),𝛾/(4𝑛) (using the bound (4.9)). Consequently, whenever 𝜚𝜇(𝑖 , 𝑗) ≥ 𝑛, the nodes 𝑖 and 𝑗 cannot be
in the same strongly connected component for the normalized duality gap 𝜇. Thus, our potentials
Ψ𝜇(𝑖 , 𝑗) can be seen as fine-grained analogues of the crossover events analyzed in [MT03; MT05;
VY96]: the definition of Ψ𝜇(𝑖 , 𝑗) contains a minimization over 0 < 𝜇′ < 𝜇; therefore, Ψ𝜇(𝑖 , 𝑗) > 𝑛

implies that 𝑖 and 𝑗 may never appear on the same layer for any 𝜇′ ≤ 𝜇. On the other hand, these
potentials are more fine-grained: even for 𝑡 < 𝑛, if Ψ𝜇(𝑖 , 𝑗) ≥ 𝑡 then whenever a layer contains both
𝑖 and 𝑗 for 𝜇′ ≤ 𝜇, this layer must have size ≥ 𝑡.

By definition, for all pairs (𝑖 , 𝑗) ∈ [𝑛] × [𝑛] we have Ψ𝜇′(𝑖 , 𝑗) ≥ Ψ𝜇(𝑖 , 𝑗) for 0 < 𝜇′ ≤ 𝜇; and we
enforce Ψ𝜇(𝑖 , 𝑗) ∈ [1, 2𝑛]. The upper bound can be imposed since values Ψ𝜇′(𝑖 , 𝑗) ≥ 𝑛 do not yield
any new information on the layering. Hence, the overall potentialΨ(𝜇) is between 0 and𝑂(𝑛2 log 𝑛).
The overall analysis in the proof of Theorem 4.3.16 divides the iterations into phases. In each phase,
we can identify a set 𝐽 ⊆ [𝑛], |𝐽 | > 1 arising as a layer or as the union of two layers in the LLS step
at the beginning of the phase. We show that Ψ𝜇(𝑖 , 𝑗) doubles for at least |𝐽 | − 1 pairs (𝑖 , 𝑗) ∈ 𝐽 × 𝐽
during the subsequent 𝑂(

√
𝑛 |𝐽 | log(�̄�∗ + 𝑛)) iterations; consequently, Ψ(𝜇) increases by at least

|𝐽 | − 1 during these iterations. This leads to the overall iteration bound 𝑂(𝑛2.5 log(𝑛) log(�̄�∗ + 𝑛)).
In comparison, the crossover analysis would correspond to showing that within 𝑂(𝑛1.5 log(�̄�∗ + 𝑛))
iterations, one of the Ψ𝜇(𝑖 , 𝑗) values previously < 𝑛 becomes larger than 𝑛. The following statement
formalizes the above mentioned properties of Ψ𝜇(𝑖 , 𝑗).

Lemma 4.4.1. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4]. Let 𝑖 , 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗, and let 𝜇 = 𝜇(𝑤).

1. If �̂�𝛿,𝛾/𝑛 contains a path from 𝑗 to 𝑖 of at most 𝑡 − 1 edges, then 𝜚𝜇(𝑖 , 𝑗) < 𝑡.

2. If �̂�𝛿,𝛾/𝑛 contains a path from 𝑖 to 𝑗 of at most 𝑡 − 1 edges, then 𝜚𝜇(𝑖 , 𝑗) > −𝑡.

3. If Ψ𝜇(𝑖 , 𝑗) ≥ 𝑡, then in any 𝛿(𝑤′)-balanced layering, where 𝑤′ = (𝑥′, 𝑦′, 𝑠′) ∈ 𝒩(𝛽) with 𝜇(𝑤′) ≤ 𝜇,

• 𝑖 and 𝑗 cannot be together on a layer of size at most 𝑡, and
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• 𝑗 cannot be on a layer preceding the layer containing 𝑖.

Proof. From (4.9), we see that for any 𝑖 , 𝑗,

�̂�𝛿
𝑖 𝑗 ≤ 𝜅𝛿

𝑖 𝑗 ≤ (1 − 2𝛽)−1𝜅
𝛿(𝜇)
𝑖 𝑗
≤ 4𝜅𝛿(𝜇)

𝑖 𝑗
.

Consequently, �̂�𝛿,𝛾/𝑛 is a subgraph of 𝐺𝛿(𝜇),𝛾/(4𝑛). The statement now follows from Lemma 4.3.14
with 𝜎 = 𝛾/(4𝑛). □

In what follows, we formulate four important lemmas crucial for the proof of Theorem 4.3.16.
For the lemmas, we only highlight some key ideas here, and defer the full proofs to Section 4.6.

For a triple 𝑤 ∈ 𝒩(𝛽), Δ𝑤ll refers to the LLS direction found in the algorithm, and Rxll and Rsll

denote the residuals as in (4.11). For a subset 𝐼 ⊂ [𝑛] recall the definition

𝜖ll
𝐼 (𝑤) ≔ max

𝑖∈𝐼
min{|Rxll

𝑖 |, |Rsll
𝑖 |} .

We introduce another important quantity 𝜉 for the analysis:

𝜉ll
𝐼 (𝑤) ≔ min{∥Rxll

𝐼 ∥ , ∥Rsll
𝐼 ∥} (4.24)

for a subset 𝐼 ⊂ [𝑛]. For a layering 𝒥 = (𝐽1 , 𝐽2 , . . . , 𝐽𝑝), we let

𝜉ll
𝒥 (𝑤) = max

𝑘∈[𝑝]
𝜉ll
𝐽𝑘
(𝑤) .

The key idea of the analysis is to extract information about the optimal solution 𝑤∗ = (𝑥∗ , 𝑦∗ , 𝑠∗)
from the LLS direction. The first main lemma shows that if ∥Rxll

𝐽𝑞
∥ is large on some layer 𝐽𝑞 , then for

at least one index 𝑖 ∈ 𝐽𝑞 , 𝑥∗𝑖/𝑥𝑖 ≥ 1/poly(𝑛), i.e., the variable 𝑥𝑖 has “converged”
¯

. The analogous
statement holds on the dual side for ∥Rsll

𝐽𝑞
∥ and an index 𝑗 ∈ 𝐽𝑞 .

Lemma 4.4.2 (Proof on p. 89). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/8] and let 𝑤∗ = (𝑥∗ , 𝑦∗ , 𝑠∗) be the
optimal solution corresponding to 𝜇∗ = 0 on the central path. Let further𝒥 = (𝐽1 , . . . , 𝐽𝑝) be a 𝛿(𝑤)-balanced
layering (Definition 4.3.13), and let Δ𝑤ll = (Δ𝑥ll ,Δ𝑦ll ,Δ𝑠ll) be the corresponding LLS direction. Then the
following statement holds for every 𝑞 ∈ [𝑝]:

(i) There exists 𝑖 ∈ 𝐽𝑞 such that

𝑥∗𝑖 ≥
2𝑥𝑖
3
√
𝑛
· (∥Rxll

𝐽𝑞
∥ − 2𝛾𝑛) . (4.25)

(ii) There exists 𝑗 ∈ 𝐽𝑞 such that

𝑠∗𝑗 ≥
2𝑠 𝑗

3
√
𝑛
· (∥Rsll

𝐽𝑞
∥ − 2𝛾𝑛) . (4.26)

We outline the main idea of the proof of part (i); part (ii) follows analogously using the duality of
the lifting scores (Lemma 4.3.9). On layer 𝑞, the LLS step minimizes ∥𝛿𝐽𝑞 (𝑥𝐽𝑞 + Δ𝑥𝐽𝑞 )∥, subject to
Δ𝑥𝐽>𝑞 = Δ𝑥ll

𝐽>𝑞
and subject to existence of Δ𝑥𝐽<𝑞 such that Δ𝑥 ∈𝑊 . By making use of ℓ 𝛿(𝑤)(𝐽>𝑞) ≤ 𝛾

due to 𝛿(𝑤)-balancedness, we can show the existence of a point 𝑧 ∈𝑊+𝑥∗ such that ∥𝛿𝐽𝑞 (𝑧𝐽𝑞 −𝑥∗𝐽𝑞 )∥ is
small, and 𝑧𝐽>𝑞 = 𝑥𝐽>𝑞 +Δ𝑥ll

𝐽>𝑞
. By the choice ofΔ𝑥ll

𝐽𝑞
, we have ∥𝛿𝐽𝑞 𝑧𝐽𝑞 ∥ ≥ ∥𝛿𝐽𝑞 (𝑥𝐽𝑞 +Δ𝑥ll

𝐽𝑞
)∥ = √𝜇∥Rxll

𝐽𝑞
∥.

Therefore, ∥𝛿𝐽𝑞 𝑥∗𝐽𝑞/
√
𝜇∥ cannot be much smaller than ∥Rxll

𝐽𝑞
∥. Noting that 𝛿𝐽𝑞 𝑥∗𝐽𝑞/

√
𝜇 ≈ 𝑥∗

𝐽𝑞
/𝑥𝐽𝑞 , we

obtain a lower bound on 𝑥∗
𝑖
/𝑥𝑖 for some 𝑖 ∈ 𝐽𝑞 .
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We emphasize that the lemma only shows the existence of such indices 𝑖 and 𝑗, but does not
provide an efficient algorithm to identify them. It is also useful to note that for any 𝑖 ∈ [𝑛],
max{|Rxll

𝑖
|, |Rsll

𝑖
|} ≥ 1

2 − 3
4𝛽 according to Lemma 4.3.10(iii). Thus, for each 𝑞 ∈ [𝑝], we obtain a

strong and positive lower bound in either case (i) on 𝑥𝑖/𝑥∗𝑖 or case (ii) on 𝑠𝑖/𝑠∗𝑖 for some 𝑖 ∈ 𝐽𝑞 .

The next lemma allows us to argue that the potential function Ψ·(·, ·) increases for multiple pairs
of variables, if we have strong lower bounds on both 𝑥∗

𝑖
and 𝑠∗

𝑗
for some 𝑖 , 𝑗 ∈ [𝑛], along with a

lower and upper bound on 𝜚𝜇(𝑖 , 𝑗).

Lemma 4.4.3 (Proof on p. 90). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(2𝛽) for 𝛽 ∈ (0, 1/8], let 𝜇 = 𝜇(𝑤) and 𝛿 = 𝛿(𝑤).
Let 𝑖 , 𝑗 ∈ [𝑛] and 2 ≤ 𝜏 ≤ 𝑛 such that for the optimal solution 𝑤∗ = (𝑥∗ , 𝑦∗ , 𝑠∗), we have 𝑥∗

𝑖
≥ 𝛽𝑥𝑖/(210𝑛5.5)

and 𝑠∗
𝑗
≥ 𝛽𝑠 𝑗/(210𝑛5.5), and assume 𝜚𝜇(𝑖 , 𝑗) ≥ −𝜏. After 𝑂(𝛽−1√𝑛𝜏 log(�̄�∗ + 𝑛)) further iterations the

duality gap 𝜇′ fulfills Ψ𝜇′(𝑖 , 𝑗) ≥ 2𝜏, and for every ℓ ∈ [𝑛] \ {𝑖 , 𝑗}, either Ψ𝜇′(𝑖 , ℓ ) ≥ 2𝜏, or Ψ𝜇′(ℓ , 𝑗) ≥ 2𝜏.

We note that 𝑖 and 𝑗 as in the lemma are necessarily different, since 𝑖 = 𝑗 would imply
0 = 𝑥∗

𝑖
𝑠∗
𝑖
≥ 𝛽2𝜇/(220𝑛11) > 0.

Let us illustrate the idea of the proof ofΨ𝜇′(𝑖 , 𝑗) ≥ 2𝜏. For 𝑖 and 𝑗 as in the lemma, and for a central
path element𝑤′ = 𝑤(𝜇′) for 𝜇′ < 𝜇, we have 𝑥′

𝑖
≥ 𝑥∗

𝑖
/𝑛 ≥ 𝛽𝑥𝑖/(210𝑛6.5) and 𝑠′

𝑗
≥ 𝑠∗

𝑗
/𝑛 ≥ 𝛽𝑠 𝑗/(210𝑛6.5)

by the near-monotonicity of the central path (Lemma 4.3.3). Note that

𝜅𝛿′

𝑖 𝑗 = 𝜅𝑖 𝑗 ·
𝛿′𝑗

𝛿′𝑖
= 𝜅𝑖 𝑗 ·

𝑥′
𝑖
𝑠′
𝑗

𝜇′
≥ 𝜅𝑖 𝑗 ·

𝛽2𝑥𝑖𝑠 𝑗

220𝑛13𝜇′
≥

𝛽2(1 − 𝛽)2
220𝑛13 · 𝜅𝛿

𝑖 𝑗 ·
𝜇

𝜇′
,

where the last inequality uses Proposition 4.3.2. Consequently, as 𝜇′ sufficiently decreases, 𝜅𝛿′

𝑖 𝑗

will become much larger than 𝜅𝛿
𝑖 𝑗

. The claim on ℓ ∈ [𝑛] \ {𝑖 , 𝑗} can be shown by using the triangle
inequality 𝜅𝑖𝑘 · 𝜅𝑘 𝑗 ≥ 𝜅𝑖 𝑗 shown in Theorem 3.2.22.

Assume now 𝜉ll
𝐽𝑞
(𝑤) ≥ 4𝛾𝑛 for some 𝑞 ∈ [𝑝] in the LLS step. Then, Lemma 4.4.2 guarantees

the existence of 𝑖 , 𝑗 ∈ 𝐽𝑞 such that 𝑥∗
𝑖
/𝑥𝑖 , 𝑠∗𝑗/𝑠 𝑗 ≥

4
3
√
𝑛
𝛾𝑛 > 𝛽/(210𝑛5.5). Further, Lemma 4.4.1 gives

𝜚𝜇(𝑖 , 𝑗) ≥ −|𝐽𝑞 |. Hence, Lemma 4.4.3 is applicable for 𝑖 and 𝑗 with 𝜏 = |𝐽𝑞 |.

The overall potential argument in the proof of Theorem 4.3.16 uses Lemma 4.4.3 in three cases:
𝜉ll
𝒥 (𝑤) ≥ 4𝛾𝑛 (Lemma 4.4.2 is applicable as above); 𝜉ll

𝒥 (𝑤) < 4𝛾𝑛 and ℓ 𝛿+(𝒥) ≤ 4𝛾𝑛 (Lemma 4.4.4);
and 𝜉ll

𝒥 (𝑤) < 4𝛾𝑛 and ℓ 𝛿+(𝒥) > 4𝛾𝑛 (Lemma 4.4.5). Here, 𝛿+ refers to the value of 𝛿 after the LLS
step. Note that 𝛿+ > 0 is well-defined, unless the algorithm terminated with an optimal solution.

To prove these lemmas, we need to study how the layers “move” during the LLS step. We let
𝔅 = {𝑡 ∈ [𝑛] : |Rsll

𝑡 | < 4𝛾𝑛} and 𝔑 = {𝑡 ∈ [𝑛] : |Rxll
𝑡 | < 4𝛾𝑛}. The assumption 𝜉ll

𝒥 (𝑤) < 4𝛾𝑛 means
that for each layer 𝐽𝑘 , either 𝐽𝑘 ⊆ 𝔅 or 𝐽𝑘 ⊆ 𝔑; we accordingly refer to 𝔅-layers and 𝔑-layers.

Lemma 4.4.4 (Proof on p. 92). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/8], and let 𝒥 = (𝐽1 , . . . , 𝐽𝑝) be a
𝛿(𝑤)-balanced partition. Assume that 𝜉ll

𝒥 (𝑤) < 4𝛾𝑛, and let 𝑤+ = (𝑥+ , 𝑦+ , 𝑠+) ∈ 𝒩(2𝛽) be the next iterate
obtained by the LLS step with 𝜇+ = 𝜇(𝑤+) and assume 𝜇+ > 0. Let 𝑞 ∈ [𝑝] such that 𝜉ll

𝒥 (𝑤) = 𝜉ll
𝐽𝑞
(𝑤). If

ℓ 𝛿
+(𝒥) ≤ 4𝛾𝑛, then there exist 𝑖 , 𝑗 ∈ 𝐽𝑞 such that 𝑥∗

𝑖
≥ 𝛽𝑥+

𝑖
/(16𝑛3/2) and 𝑠∗

𝑗
≥ 𝛽𝑠+

𝑗
/(16𝑛3/2). Further, for

any ℓ , ℓ ′ ∈ 𝐽𝑞 , we have 𝜚𝜇+(ℓ , ℓ ′) ≥ −|𝐽𝑞 |.

For the proof sketch, without loss of generality, let 𝜉ll
𝒥 = 𝜉ll

𝐽𝑞
= ∥Rxll

𝐽𝑞
∥, that is, 𝐽𝑞 is an 𝔑-layer.

The case 𝜉ll
𝐽𝑞
= ∥Rsll

𝐽𝑞
∥ can be treated analogously. Since the residuals ∥Rxll

𝐽𝑞
∥ and ∥Rsll

𝐽𝑞
∥ cannot be

both small, Lemma 4.4.2 readily provides a 𝑗 ∈ 𝐽𝑞 such that 𝑠∗
𝑗
/𝑠 𝑗 ≥ 1/(6

√
𝑛). Using Lemma 5.2.3

and Proposition 4.3.1, 𝑠∗
𝑗
/𝑠+

𝑗
= 𝑠∗

𝑗
/𝑠 𝑗 · 𝑠 𝑗/𝑠+𝑗 > (1 − 𝛽)/(6(1 + 4𝛽)𝑛3/2) > 𝛽/(16𝑛3/2).
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The key ideas of showing the existence of an 𝑖 ∈ 𝐽𝑞 such that 𝑥∗
𝑖
≥ 𝑥+

𝑖
/(16𝑛3/2) are the following.

With ≈, ⪅ and ⪆, we write equalities and inequalities that hold up to small polynomial factors.
First, we show that (i) ∥𝛿𝐽𝑞 𝑥+𝐽𝑞 ∥ ⪅ 𝜇+/√𝜇, and then, that (ii) ∥𝛿𝐽𝑞 𝑥∗𝐽𝑞 ∥ ⪆ 𝜇+/√𝜇 .

If we can show (i) and (ii) as above, we obtain that ∥𝛿𝐽𝑞 𝑥∗𝐽𝑞 ∥ ⪆ ∥𝛿𝐽𝑞 𝑥
+
𝐽𝑞
∥, and thus, 𝑥∗

𝑖
⪆ 𝑥+

𝑖
for

some 𝑖 ∈ 𝐽𝑞 .
Let us now sketch the first step. By the assumption 𝐽𝑞 ⊂ 𝔑, one can show 𝑥+

𝐽𝑞
/𝑥𝐽𝑞 ≈ 𝜇+/𝜇, and

therefore
∥𝛿𝐽𝑞 𝑥+𝐽𝑞 ∥ ≈

𝜇+

𝜇
∥𝛿𝐽𝑞 𝑥𝐽𝑞 ∥ ≈

𝜇+

𝜇

√
𝜇 =

𝜇+
√
𝜇
.

The second part of the proof, namely, lower bounding ∥𝛿𝐽𝑞 𝑥∗𝐽𝑞 ∥, is more difficult. Here, we only
sketch it for the special case when 𝐽𝑞 = [𝑛]. That is, we have a single layer only; in particular, the
LLS step is the same as the affine scaling step Δ𝑥ll = Δ𝑥a. The general case of multiple layers
follows by making use of Lemma 4.3.10, i.e. exploting that for a sufficiently small ℓ 𝛿(𝒥), the LLS
step is close to the affine scaling step.

Hence, assume that Δ𝑥ll = Δ𝑥a. Using the equivalent definition of the affine scaling step (4.10) as
a minimum-norm point, we have ∥𝛿𝑥∗∥ ≥ ∥𝛿(𝑥 + Δ𝑥ll)∥ = √𝜇∥Rxll∥ = √𝜇𝜉ll

𝒥 . From Lemma 4.3.6,
𝜇+/𝜇 ≤ 2

√
𝑛𝜖a(𝑤)/𝛽 ≤ 2

√
𝑛𝜉ll
𝒥/𝛽. Thus, we see that ∥𝛿𝑥∗∥ ≥ 𝛽𝜇+/(2√𝑛𝜇).

The final statement on lower bounding 𝜚𝜇
+(ℓ , ℓ ′) ≥ −|𝐽𝑞 | for any ℓ , ℓ ′ ∈ 𝐽𝑞 follows by showing

that 𝛿+ℓ /𝛿
+
ℓ ′ remains close to 𝛿ℓ/𝛿ℓ ′ , and hence the values of 𝜅𝜇+(ℓ , ℓ ′) and 𝜅𝜇(ℓ , ℓ ′) are sufficiently

close for indices on the same layer (Lemma 4.6.1).

Lemma 4.4.5 (Proof on p. 95). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/8], and let 𝒥 = (𝐽1 , . . . , 𝐽𝑝) be
a 𝛿(𝑤)-balanced partition. Assume that 𝜉ll

𝒥 (𝑤) < 4𝛾𝑛, and let 𝑤+ = (𝑥+ , 𝑦+ , 𝑠+) ∈ 𝒩(2𝛽) be the next
iterate obtained by the LLS step with 𝜇+ = 𝜇(𝑤+) and assume 𝜇+ > 0. If ℓ 𝛿+(𝒥) > 4𝛾𝑛, then there exist
two layers 𝐽𝑞 and 𝐽𝑟 and 𝑖 ∈ 𝐽𝑞 and 𝑗 ∈ 𝐽𝑟 such that 𝑥∗

𝑖
≥ 𝑥+

𝑖
/(8𝑛3/2), and 𝑠∗

𝑗
≥ 𝑠+

𝑗
/(8𝑛3/2). Further,

𝜚𝜇
+(𝑖 , 𝑗) ≥ −|𝐽𝑞 ∪ 𝐽𝑟 |, and for all ℓ , ℓ ′ ∈ 𝐽𝑞 ∪ 𝐽𝑟 , ℓ ≠ ℓ ′ we have Ψ𝜇(ℓ , ℓ ′) ≤ |𝐽𝑞 ∪ 𝐽𝑟 |.

Consider now any ℓ ∈ 𝐽𝑘 ⊆ 𝔅. Then, since Rxll
ℓ

is multiplicatively close to 1, 𝑥+
ℓ
≈ 𝑥ℓ ; on the other

hand 𝑠+
ℓ

will “shoot down” close to the small value Rsll
ℓ
· 𝑠ℓ . Conversely, for ℓ ∈ 𝐽𝑘 ⊆ 𝔑, 𝑠+

ℓ
≈ 𝑠ℓ , and

𝑥+
ℓ

will “shoot down” to a small value.
The key step of the analysis is showing that the increase in ℓ 𝛿+(𝒥) can be attributed to an 𝔑-layer

𝐽𝑟 “crashing into” a 𝔅-layer 𝐽𝑞 . That is, we show the existence of an edge (𝑖′, 𝑗′) ∈ 𝐸𝛿+ ,𝛾/(4𝑛) for
𝑖′ ∈ 𝐽𝑞 and 𝑗′ ∈ 𝐽𝑟 , where 𝑟 < 𝑞 and 𝐽𝑞 ⊆ 𝔅, 𝐽𝑟 ⊆ 𝔑. This can be achieved by analyzing the matrix 𝐵
used in the subroutine Verify-Lift.

For the layers 𝐽𝑞 and 𝐽𝑟 , we can use Lemma 4.4.2 to show that there exists an 𝑖 ∈ 𝐽𝑞 where 𝑥∗
𝑖
/𝑥𝑖 is

lower bounded, and there exists a 𝑗 ∈ 𝐽𝑟 where 𝑠∗
𝑗
/𝑠 𝑗 is lower bounded. The lower bound on 𝜚𝜇

+(𝑖 , 𝑗)
and the upper bounds on the Ψ𝜇(ℓ , ℓ ′) values can be shown by tracking the changes between the
𝜅𝛿(ℓ , ℓ ′) and 𝜅𝛿+(ℓ , ℓ ′) values, and applying Lemma 4.4.1 both at 𝑤 and at 𝑤+.

Proof of Theorem 4.3.16. We analyze the overall potential function Ψ(𝜇). By the iteration at 𝜇 we
mean the iteration where the normalized duality gap of the current iterate is 𝜇.

By Proposition 4.3.4(ii) and Lemma 4.3.10(ii), the predictor step gives 𝑤′ ∈ 𝒩(1/4) in every
iteration, and thus by Proposition 4.3.4(iii), all iterates 𝑤c after corrector step fulfill 𝑤c ∈ 𝒩(1/8). If
𝜇+ = 0 at the end of an iteration, the algorithm terminates with an optimal solution. Recall from
Lemma 4.3.10(v) that this happens if and only if 𝜖ll(𝑤) = 0 at a certain iteration.

From now on, assume that 𝜇+ > 0. We distinguish three cases at each iteration. These cases
are well-defined even at iterations where affine scaling steps are used. At such iterations, 𝜉ll

𝒥 (𝑤)
still refers to the LLS residuals, even if these have not been computed by the algorithm. (Case
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I) 𝜉ll
𝒥 (𝑤) ≥ 4𝛾𝑛; (Case II) 𝜉ll

𝒥 (𝑤) < 4𝛾𝑛 and ℓ 𝛿
+(𝒥) ≤ 4𝛾𝑛; and (Case III) 𝜉ll

𝒥 (𝑤) < 4𝛾𝑛 and
ℓ 𝛿
+(𝒥) > 4𝛾𝑛.
Recall that the algorithm uses an LLS direction instead of the affine scaling direction whenever

𝜖a(𝑤) < 10𝑛3/2𝛾. Consider now the case when an affine scaling direction is used, that is,
𝜖a(𝑤) ≥ 10𝑛3/2𝛾. According to Lemma 4.3.10(ii), ∥Rxll − Rxa∥ , ∥Rsll − Rsa∥ ≤ 6𝑛3/2𝛾. This implies
that 𝜉ll

𝒥 (𝑤) ≥ 4𝑛3/2𝛾 ≥ 4𝑛𝛾. Therefore, in cases II and III, an LLS step will be performed.
Starting with any given iteration, in each case we will identify a set 𝐽 ⊆ [𝑛] of indices with
|𝐽 | > 1, and start a phase of 𝑂(

√
𝑛 |𝐽 | log(�̄�∗ + 𝑛)) iterations (that can be either affine scaling or

LLS steps). In each phase, we will guarantee that Ψ increases by at least |𝐽 | − 1. By definition,
0 ≤ Ψ(𝜇) ≤ 𝑛(𝑛 − 1)(log2 𝑛 + 1), and if 𝜇′ < 𝜇 then Ψ(𝜇′) ≥ Ψ(𝜇). As we can partition the union of
all iterations into disjoint phases, this yields the bound 𝑂(𝑛2.5 log 𝑛 log(�̄�∗+ 𝑛)) on the total number
of iterations.

We now consider each of the cases. We always let 𝜇 denote the normalized duality gap at the
current iteration, and we let 𝑞 ∈ [𝑝] be the layer such that 𝜉ll

𝒥 (𝑤) = 𝜉ll
𝐽𝑞
(𝑤).

Case I: 𝜉ll
𝒥 (𝑤) ≥ 4𝛾𝑛. Lemma 4.4.2 guarantees the existence of 𝑥𝑖 , 𝑠 𝑗 ∈ 𝐽𝑞 such that 𝑥∗

𝑖
/𝑥𝑖 , 𝑠∗𝑗/𝑠 𝑗 ≥

4𝛾𝑛/(3
√
𝑛) > 1/(210𝑛5.5). Further, according to Lemma 4.4.1, 𝜚𝜇(𝑖 , 𝑗) ≥ −|𝐽𝑞 |. Thus, Lemma 4.4.3

is applicable for 𝐽 = 𝐽𝑞 . The phase starting at 𝜇 comprises 𝑂(
√
𝑛 |𝐽𝑞 | log(�̄�∗ + 𝑛)) iterations, after

which we get a normalized duality gap 𝜇′ such that Ψ𝜇′(𝑖 , 𝑗) ≥ 2|𝐽𝑞 |, and for each ℓ ∈ [𝑛] \ {𝑖 , 𝑗},
either Ψ𝜇′(𝑖 , ℓ ) ≥ 2|𝐽𝑞 |, or Ψ𝜇′(ℓ , 𝑗) ≥ 2|𝐽𝑞 |.

We can take advantage of these bounds for indices ℓ ∈ 𝐽𝑞 . Again by Lemma 4.4.1, for any
ℓ , ℓ ′ ∈ 𝐽𝑞 , we have Ψ𝜇(ℓ , ℓ ′) ≤ 𝜚𝜇(ℓ , ℓ ′) ≤ |𝐽𝑞 |. Thus, there are at least |𝐽𝑞 | − 1 pairs of indices (ℓ , ℓ ′)
for which Ψ𝜇(ℓ , ℓ ′) increases by at least a factor 2 between iterations at 𝜇 and 𝜇′. The increase in the
contribution of these terms to Ψ(𝜇) is at least |𝐽𝑞 | − 1 during these iterations.

We note that this analysis works regardless whether an LLS step or an affine scaling step was
performed in the iteration at 𝜇.

Case II: 𝜉ll
𝒥 (𝑤) < 4𝛾𝑛 and ℓ 𝛿+(𝒥) ≤ 4𝛾𝑛. As explained above, in this case we perform an LLS

step in the iteration at 𝜇, and we let 𝑤+ denote the iterate obtained by the LLS step. For 𝐽 = 𝐽𝑞 ,
Lemma 4.4.4 guarantees the existence of 𝑖 , 𝑗 ∈ 𝐽𝑞 such that 𝑥∗

𝑖
/𝑥+

𝑖
, 𝑠∗
𝑗
/𝑠+

𝑗
> 𝛽/(16𝑛3/2), and further,

𝜚𝜇
+(𝑖 , 𝑗) > −|𝐽𝑞 |. We can therefore apply Lemma 4.4.3. The phase starting at 𝜇 includes the LLS

step leading to 𝜇+ (and the subsequent centering step), and the additional 𝑂(
√
𝑛 |𝐽𝑞 | log(�̄�∗ + 𝑛))

iterations (𝛽 is a fixed constant in Algorithm 4.2) as in Lemma 4.4.3. As in Case I, we get the desired
potential increase compared to the potentials at 𝜇 in layer 𝐽𝑞 .

Case III: 𝜉ll
𝒥 (𝑤) < 4𝛾𝑛 and ℓ 𝛿+(𝒥) > 4𝛾𝑛. Again, the iteration at 𝜇 will use an LLS step. We

apply Lemma 4.4.5, and set 𝐽 = 𝐽𝑞 ∪ 𝐽𝑟 as in the lemma. The argument is the same as in Case II,
using that Lemma 4.4.5 explicitly states that Ψ𝜇(ℓ , ℓ ′) ≤ |𝐽 | for any ℓ , ℓ ′ ∈ 𝐽, ℓ ≠ ℓ ′. □

4.4.1 The iteration complexity bound for the Vavasis-Ye algorithm

We now show that the potential analysis described above also gives an improved bound𝑂(𝑛2.5 log 𝑛
log(�̄�A + 𝑛)) for the original VY algorithm [VY96].

We recall the VY layering step. Order the variables via 𝜋 such that 𝛿𝜋(1) ≤ 𝛿𝜋(2) ≤ . . . ≤ 𝛿𝜋(𝑛).
The layers will be consecutive sets in the ordering; a new layer starts with 𝜋(𝑖 + 1) each time
𝛿𝜋(𝑖+1) > 𝑔𝛿𝜋(𝑖), for a parameter 𝑔 = poly(𝑛)�̄�A.
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4 SCALING-INVARIANT IPM 4.5 Properties of the layered least square step

As outlined in the Introduction, the VY algorithm can be seen as a special implementation of
our algorithm by setting �̂�𝑖 𝑗 = 𝑔𝛾/𝑛. With these edge weights, we have that �̂�𝛿

𝑖 𝑗
≥ 𝛾/𝑛 precisely if

𝑔𝛿 𝑗 ≥ 𝛿𝑖 .2

With these edge weights, it is easy to see that our Layering(𝛿, �̂�) subroutine finds the exact same
components as VY. Moreover, the layers will be the initial strongly connected components 𝐶𝑖 of
𝐺𝛿,𝛾/𝑛 : due to the choice of 𝑔, this partition is automatically 𝛿-balanced. There is no need to call
Verify-Lift.

The essential difference compared to our algorithm is that the values �̂�𝑖 𝑗 = 𝑔𝛾/𝑛 are not
lower bounds on 𝜅𝑖 𝑗 as we require, but upper bounds instead. This is convenient to simplify
the construction of the layering. On the negative side, the strongly connected components of
�̂�𝛿,𝛾/𝑛 may not anymore be strongly connected in 𝐺𝛿,𝛾/𝑛 . Hence, we cannot use Lemma 4.4.1, and
consequently, Lemma 4.4.3 does not hold.

Still, the �̂�𝑖 𝑗 bounds are overestimating 𝜅𝑖 𝑗 by at most a factor poly(𝑛)�̄�A. Therefore, the strongly
connected components of �̂�𝛿,𝑛/𝛾 are strongly connected in 𝐺𝛿,𝜎 for some 𝜎 = 1/(poly(𝑛)�̄�A).

Hence, the entire argument described in this section is applicable to the VY algorithm, with a
different potential function defined with �̄�A instead of �̄�∗A. This is the reason why the iteration
bound in Lemma 4.4.3, and therefore in Theorem 4.3.16, also changes to �̄�A dependency.

It is worth noting that due to the overestimation of the 𝜅𝑖 𝑗 values, the VY algorithm uses a coarser
layering than our algorithm. Our algorithm splits up the VY layers into smaller parts so that ℓ 𝛿(𝒥)
remains small, but within each part, the gaps between the variables are bounded as a function of
�̄�∗A instead of �̄�A.

4.5 Properties of the layered least square step

This section is dedicated to the proofs of Proposition 4.3.8 on the duality of lifting scores and
Lemma 4.3.10 on properties of LLS steps.

Proposition 4.3.8 (Restatement). For a linear subspace𝑊 ⊆ R𝑛 and index set 𝐼 ⊆ [𝑛] with 𝐽 = [𝑛] \ 𝐼,

∥𝐿𝑊𝐼 ∥ ≤ max{1, ∥𝐿𝑊⊥𝐽 ∥}.

In particular, ℓ𝑊 (𝐼) = ℓ𝑊⊥(𝐽).

Proof. We first treat the case where 𝜋𝐼(𝑊) = {0} or 𝜋𝐽(𝑊⊥) = {0}. If 𝜋𝐼(𝑊) = {0} then ∥𝐿𝑊
𝐼
∥ =

ℓ𝑊 (𝐼) = 0. Furthermore, in this case R𝐼 = 𝜋𝐼(𝑊)⊥ = 𝜋𝐼(𝑊⊥ ∩ R𝑛𝐼 ), and thus {(0, 𝑤𝐽) : 𝑤 ∈
𝑊⊥} ⊆ 𝑊⊥. In particular, ∥𝐿𝑊

𝐽
∥ ≤ 1 and ℓ𝑊

⊥(𝐽) = 0. Symmetrically, if 𝜋𝐽(𝑊⊥) = {0} then
∥𝐿𝑊⊥

𝐽
∥ = ℓ𝑊⊥(𝐽) = 0, ∥𝐿𝑊

𝐼
∥ ≤ 1 and ℓ𝑊 (𝐼) = 0.

We now restrict our attention to the case where both𝜋𝐼(𝑊),𝜋𝐽(𝑊⊥) ≠ {0}. Under this assumption,
we show that ∥𝐿𝑊

𝐼
∥ = ∥𝐿𝑊⊥

𝐽
∥ and thus that ℓ𝑊 (𝐼) = ℓ𝑊⊥(𝐽). Note that by non-emptiness, we have

that ∥𝐿𝑊
𝐼
∥ , ∥𝐿𝑊⊥

𝐽
∥ ≥ 1.

We formulate a more general claim. Let {0} ≠ 𝑈,𝑉 ⊂ R𝑛 be linear subspaces such that
𝑈 + 𝑉 = R𝑛 and 𝑈 ∩ 𝑉 = {0}. Note that for the orthogonal complements in R𝑛 , we also have
{0} ≠ 𝑈⊥ , 𝑉⊥,𝑈⊥ +𝑉⊥ = R𝑛 and𝑈⊥ ∩𝑉⊥ = {0}.

Claim 4.5.0.1. Let {0} ≠ 𝑈,𝑉 ⊂ R𝑛 be linear subspaces such that𝑈 +𝑉 = R𝑛 and𝑈 ∩𝑉 = {0}. Thus,
for 𝑧 ∈ R𝑛 , there are unique decompositions 𝑧 = 𝑢 + 𝑣 with 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 and 𝑧 = 𝑢′ + 𝑣′ with 𝑢′ ∈ 𝑈⊥
and 𝑣′ ∈ 𝑉⊥. Let 𝑇 : R𝑛 → 𝑉 be the map sending 𝑇𝑧 = 𝑣. Let 𝑇′ : R𝑛 → 𝑉⊥ be the map sending
𝑇′𝑧 = 𝑣′. Then, ∥𝑇∥ = ∥𝑇′∥.

2For simplicity, in the Introduction we used 𝑔𝑥𝑖 ≥ 𝑥 𝑗 instead, which is almost the same in the proximity in the central path.
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Proof. To prove the statement, we claim that it suffices to show that if ∥𝑇∥ > 1 then ∥𝑇′∥ ≥ ∥𝑇∥.
To prove sufficiency, note that by symmetry, we also get that if ∥𝑇′∥ > 1 then ∥𝑇∥ ≥ ∥𝑇′∥. Note
that 𝑉,𝑉⊥ ≠ {0} by assumption, and 𝑇𝑧 = 𝑧 for 𝑧 ∈ 𝑉 , 𝑇′𝑧 = 𝑧 for 𝑧 ∈ 𝑉⊥. Thus, we always
have ∥𝑇∥ , ∥𝑇′∥ ≥ 1, and therefore the equality ∥𝑇∥ = ∥𝑇′∥ must hold in all cases. We now assume
∥𝑇∥ > 1 and show ∥𝑇′∥ ≥ ∥𝑇∥.

Representing𝑇 as an 𝑛×𝑛matrix, we write𝑇 =
∑𝑘
𝑖=1 𝜎𝑖𝑣𝑖𝑢

⊤
𝑖

using a singular value decomposition
with 𝜎1 ≥ · · · ≥ 𝜎𝑘 > 0. As such, 𝑣1 , . . . , 𝑣𝑘 is an orthonormal basis of 𝑉 , since the range(𝑇) = 𝑉 ,
and 𝑢1 , . . . , 𝑢𝑘 is an orthonormal basis of 𝑈⊥, since ker(𝑇) = 𝑈 , noting that we have restricted
to the singular vectors associated with positive singular values. By assumption, we have that
∥𝑇∥ = ∥𝑇𝑢1∥ = 𝜎1 > 1.

The proof is complete by showing that

∥𝑇′(𝑣1 − 𝑢1/𝜎1)∥ ≥ 𝜎1∥𝑣1 − 𝑢1/𝜎1∥ , (4.27)

and that ∥𝑣1 − 𝑢1/𝜎1∥ > 0, since then the vector 𝑣1 − 𝑢1/𝜎1 will certify that ∥𝑇′∥ ≥ 𝜎1.
The map 𝑇 is a linear projection with 𝑇2 = 𝑇. Hence ⟨𝑢𝑖 , 𝑣𝑖⟩ = 𝜎−1

𝑖
and

〈
𝑢𝑖 , 𝑣 𝑗

〉
= 0 for all 𝑖 ≠ 𝑗.

We show that 𝑣1 − 𝜎−1
1 𝑢1 can be decomposed as 𝑣1 − 𝜎1𝑢1 + (𝜎1 − 𝜎−1

1 )𝑢1 such that 𝑣1 − 𝜎1𝑢1 ∈ 𝑉⊥
and (𝜎1 − 𝜎−1

1 )𝑢1 ∈ 𝑈⊥. Therefore, 𝑇′(𝑣1 − 𝜎−1
1 𝑢1) = 𝑣1 − 𝜎1𝑢1.

¯The containment (𝜎1 − 𝜎−1
1 )𝑢1 ∈ 𝑈⊥ is immediate. To show 𝑣1 − 𝜎1𝑢1 ∈ 𝑉⊥, we need that

⟨𝑣1 − 𝜎1𝑢1 , 𝑣𝑖⟩ = 0 for all 𝑖 ∈ [𝑘]. For 𝑖 ≥ 2, this is true since
〈
𝑢𝑖 , 𝑣 𝑗

〉
= 0 and

〈
𝑣𝑖 , 𝑣 𝑗

〉
= 0. For 𝑖 = 1, we

have ⟨𝑣1 − 𝜎1𝑢1 , 𝑣1⟩ = 0 since ∥𝑣1∥ = 1 and ⟨𝑢1 , 𝑣1⟩ = 𝜎−1
1 . Consequently, 𝑇′(𝑣1−𝜎−1

1 𝑢1) = 𝑣1−𝜎1𝑢1.

We compute
𝑣1 − 𝜎−1

1 𝑢1
 =

√
1 − 𝜎−2

1 > 0, since 𝜎1 > 1, and ∥𝑣1 − 𝜎1𝑢1∥ =
√
𝜎2

1 − 1. This verifies
(4.27), and thus ∥𝑇′∥ ≥ 𝜎1 = ∥𝑇∥. □

To prove the lemma, we define 𝒥 = (𝐽 , 𝐼), 𝑈 = 𝑊⊥𝒥 ,1 ×𝑊
⊥
𝒥 ,2 and 𝑉 = 𝑊 and let 𝑇 : R𝑛 → 𝑉

and 𝑇′ : R𝑛 → 𝑉⊥ be as in Claim 4.5.0.1. By assumption, {0} ≠ 𝜋𝐼(𝑊) ⇒ {0} ≠ 𝑉 and
{0} ≠ 𝜋𝐽(𝑊⊥) = 𝑊⊥𝒥 ,1 ⇒ {0} ≠ 𝑈 . Applying Lemma 4.3.7, 𝑈,𝑉 satisfy the conditions of
Claim 4.5.0.1 and 𝑇 = LLS𝑊,1

𝒥 . In particular, ∥𝑇′∥ = ∥𝑇∥. Using the fact that 𝑈⊥ = 𝑊𝒥 ,1 ×𝑊𝒥 ,2
and 𝑉⊥ = 𝑊⊥, we similarly get that 𝑇′ = LLS𝑊

⊥ ,1
�̄� , where �̄� = (𝐼 , 𝐽). By (4.14) we have, for any

𝑡 ∈ 𝜋R𝑛
𝐼
(𝑊), that 𝑇𝑡 = LLS𝑊,1

𝒥 (𝑡) = 𝐿𝑊
𝐼
(𝑡𝐼). Thus, ∥𝑇∥ ≥ ∥𝐿𝑊

𝐼
∥ ≥ 1.

To finish the proof of the lemma from the claim, we show that ∥𝑇∥ ≤ ∥𝐿𝑊
𝐼
∥. By a symmetric

argument we get ∥𝑇′∥ = ∥𝐿𝑊⊥
𝐽
∥.

If 𝑥 ∈ R𝑛
𝐽
, then 𝑇𝑥 ∈𝑊 ∩R𝑛

𝐽
because any 𝑠 ∈𝑊⊥𝒥 ,2 , 𝑡 ∈ 𝜋𝐼(𝑊)with 𝑠 + 𝑡 = 0 must have 𝑠 = 𝑡 = 0

since𝑊⊥𝒥 ,2 is orthogonal to 𝜋𝐼(𝑊). But𝑊 ∩R𝑛
𝐽

and𝑊⊥𝒥 ,1 are orthogonal, so ∥𝑇𝑥∥ ≤ ∥𝑥∥ because
𝑥 = 𝑇𝑥 + (𝑥 − 𝑇𝑥) is an orthogonal decomposition.

If 𝑦 ∈ R𝑛
𝐼
, then 𝑦𝐽 = 0 and hence (𝑇𝑦)𝐽 = (𝑇𝑦 − 𝑦)𝐽 . Since (𝑇𝑦 − 𝑦)𝐽 ∈ 𝑊⊥𝒥 ,1 = 𝜋𝐽(𝑊 ∩R𝑛𝐽 )⊥, we

see that 𝑇𝑦 ∈ (𝑊 ∩R𝑛
𝐽
)⊥. As such, for any 𝑥 ∈ R𝑛

𝐽
, 𝑦 ∈ R𝑛

𝐼
, we see that 𝑥 ⊥ 𝑦 and 𝑇𝑥 ⊥ 𝑇𝑦. For

𝑥, 𝑦 ≠ 0, we thus have that

∥𝑇(𝑥 + 𝑦)∥2
∥𝑥 + 𝑦∥2 =

∥𝑇(𝑥)∥2 + ∥𝑇(𝑦)∥2
∥𝑥∥2 + ∥𝑦2∥ ≤ max

{
∥𝑇(𝑥)∥2
∥𝑥∥2 ,

∥𝑇(𝑦)∥2
∥𝑦∥2

}
≤ max

{
1,
∥𝑇(𝑦)∥2
∥𝑦∥2

}
.

Since ∥𝐿𝑊
𝐼
∥ ≥ 1, we must have that ∥𝑇𝑡∥/∥𝑡∥ is maximized by some 𝑡 ∈ R𝑛

𝐼
. From ker(𝑇) = 𝑈 it is

clear that ∥𝑇𝑡∥/∥𝑡∥ is maximized by some 𝑡 ∈ 𝑈⊥. Now,𝑈⊥ ∩R𝑛
𝐼
= 𝜋R𝑛

𝐼
(𝑊), so any 𝑡 maximizing

∥𝑇𝑡∥/∥𝑡∥ satisfies 𝑇𝑡 = 𝐿𝑊
𝐼
(𝑡𝐼). Therefore, ∥𝐿𝑊

𝐼
∥ ≥ ∥𝑇∥. □

Our next goal is to show Lemma 4.3.10: for a layering with small enough ℓ 𝛿(𝒥), the LLS step
approximately satisfies (4.6), that is, 𝛿Δ𝑥ll + 𝛿−1Δ𝑠ll ≈ −𝑥1/2𝑠1/2. This also enables us to derive
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4 SCALING-INVARIANT IPM 4.5 Properties of the layered least square step

bounds on the norm of the residuals and on the step-length. We start by proving a few auxiliary
technical claims. The next simple lemma allows us to take advantage of low lifting scores in the
layering.

Lemma 4.5.1. Let 𝑢, 𝑣 ∈ R𝑛 be two vectors such that 𝑢 − 𝑣 ∈𝑊 . Let 𝐼 ⊆ [𝑛], and 𝛿 ∈ R𝑛++. Then there
exists a vector 𝑢′ ∈𝑊 + 𝑢 satisfying 𝑢′

𝐼
= 𝑣𝐼 and

∥𝛿[𝑛]\𝐼(𝑢′[𝑛]\𝐼 − 𝑢[𝑛]\𝐼)∥ ≤ ℓ
𝛿(𝐼)∥𝛿𝐼(𝑢𝐼 − 𝑣𝐼)∥ .

Proof. We let
𝑢′ ≔ 𝑢 + 𝛿−1𝐿𝛿𝐼 (𝛿𝐼(𝑣𝐼 − 𝑢𝐼)) .

The claim follows by the definition of the lifting score ℓ 𝛿(𝐼). □

The next lemma will be the key tool to prove Lemma 4.3.10. It is helpful to recall the characteri-
zation of the LLS step in Section 4.3.4.

Lemma 4.5.2. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4], let 𝜇 = 𝜇(𝑤) and 𝛿 = 𝛿(𝑤). Let 𝒥 = (𝐽1 , . . . , 𝐽𝑝)
be a 𝛿(𝑤)-balanced

¯
layering, and let Δ𝑤ll = (Δ𝑥ll ,Δ𝑦ll ,Δ𝑠ll) denote the corresponding LLS direction. Let

Δ𝑥 ∈>𝑝

𝑘=1𝑊𝒥 ,𝑘 and Δ𝑠 ∈>𝑝

𝑘=1𝑊
⊥
𝒥 ,𝑘 as in (4.18) and (4.19), that is

𝛿Δ𝑥ll + 𝛿−1Δ𝑠 + 𝑥1/2𝑠1/2 = 0 , (4.28)

𝛿Δ𝑥 + 𝛿−1Δ𝑠ll + 𝑥1/2𝑠1/2 = 0. (4.29)

Then, there exist vectors Δ�̄� ∈>𝑝

𝑘=1𝑊𝒥 ,𝑘 and Δ𝑠 ∈>𝑝

𝑘=1𝑊
⊥
𝒥 ,𝑘 such that

∥𝛿𝐽𝑘 (Δ�̄�𝐽𝑘 − Δ𝑥ll
𝐽𝑘
)∥ ≤ 2𝑛ℓ 𝛿(𝒥)√𝜇 ∀𝑘 ∈ [𝑝] and (4.30)

∥𝛿−1
𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠ll

𝐽𝑘
)∥ ≤ 2𝑛ℓ 𝛿(𝒥)√𝜇 ∀𝑘 ∈ [𝑝] . (4.31)

Proof. Throughout, we use the shorthand notation 𝜆 = ℓ 𝛿(𝒥). We construct Δ�̄�; one can obtain Δ𝑠,
using that the reverse layering has lifting score 𝜆 in𝑊⊥diag(𝛿−1) according to Lemma 4.3.9.

We proceed by induction, constructing Δ�̄�𝐽𝑘 ∈𝑊𝒥 ,𝑘 for 𝑘 = 𝑝, 𝑝 − 1, . . . , 1. This will be given as
Δ�̄�𝐽𝑘 = Δ𝑥

(𝑘)
𝐽𝑘

for a vector Δ𝑥(𝑘) ∈𝑊 such that Δ𝑥(𝑘)
𝐽>𝑘

= 0. We prove the inductive hypothesis

𝛿𝐽≤𝑘 (Δ𝑥(𝑘)𝐽≤𝑘 − Δ𝑥ll
𝐽≤𝑘

) ≤ 2𝜆√𝜇
𝑝∑

𝑞=𝑘+1

√
|𝐽𝑞 | . (4.32)

Note that (4.30) follows by restricting the norm on the LHS to 𝐽𝑘 and since the sum on the RHS is
≤ 𝑛.

For 𝑘 = 𝑝, the RHS is 0. We simply set Δ𝑥(𝑝) = Δ𝑥ll, that is, Δ�̄�𝐽𝑝 = Δ𝑥ll
𝐽𝑝

, trivially satisfying the

hypothesis. Consider now 𝑘 < 𝑝, and assume that we have a Δ�̄�𝐽𝑘+1 = Δ𝑥
(𝑘+1)
𝐽𝑘+1

satisfying (4.32) for
𝑘 + 1. From (4.28) and the induction hypothesis, we get that

∥𝛿𝐽𝑘+1Δ�̄�𝐽𝑘+1 + 𝛿−1
𝐽𝑘+1

Δ𝑠𝐽𝑘+1 ∥ ≤ ∥𝑥
1/2
𝐽𝑘+1
𝑠

1/2
𝐽𝑘+1
∥ + ∥𝛿𝐽𝑘+1(Δ�̄�𝐽𝑘+1 − Δ𝑥ll

𝐽𝑘+1
)∥

≤ ∥𝑥1/2
𝐽𝑘+1
𝑠

1/2
𝐽𝑘+1
∥ + 2𝜆√𝜇

𝑝∑
𝑞=𝑘+2

√
|𝐽𝑞 | ≤

√
1 + 𝛽

√
𝜇|𝐽𝑘+1 | + 2𝑛𝜆√𝜇 < 2

√
𝜇|𝐽𝑘+1 | ,
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using also that 𝑤 ∈ 𝒩(𝛽), Proposition 4.3.2, and the assumptions 𝛽 ≤ 1/4, 𝜆 ≤ 𝛽/(32𝑛2). Note
that Δ�̄�𝐽𝑘+1 ∈𝑊𝒥 ,𝑘 and Δ𝑠𝐽𝑘+1 ∈𝑊⊥𝒥 ,𝑘 are orthogonal vectors. The above inequality therefore implies

∥𝛿𝐽𝑘+1Δ�̄�𝐽𝑘+1 ∥ ≤ 2
√
𝜇|𝐽𝑘+1 | .

Let us now use Lemma 4.5.1 to obtain Δ𝑥(𝑘) for 𝑢 = Δ𝑥(𝑘+1), 𝑣 = 0, and 𝐼 = 𝐽>𝑘 . That is, we get
Δ𝑥
(𝑘)
𝐽>𝑘

= 0, Δ𝑥(𝑘) ∈𝑊 , and

∥𝛿𝐽≤𝑘 (Δ𝑥
(𝑘)
𝐽≤𝑘
− Δ𝑥(𝑘+1)

𝐽≤𝑘
)∥ ≤ 𝜆∥𝛿𝐽>𝑘Δ𝑥

(𝑘+1)
𝐽>𝑘
∥

= 𝜆∥𝛿𝐽𝑘+1Δ�̄�𝐽𝑘+1 ∥ ≤ 2𝜆
√
𝜇|𝐽𝑘+1 | .

By the triangle inequality and the induction hypothesis (4.32) for 𝑘 + 1,

∥𝛿𝐽≤𝑘 (Δ𝑥
(𝑘)
𝐽≤𝑘
− Δ𝑥ll

𝐽≤𝑘
)∥ ≤ ∥𝛿𝐽≤𝑘 (Δ𝑥

(𝑘)
𝐽≤𝑘
− Δ𝑥(𝑘+1)

𝐽≤𝑘
)∥ + ∥𝛿𝐽≤𝑘 (Δ𝑥

(𝑘+1)
𝐽≤𝑘
− Δ𝑥ll

𝐽≤𝑘
)∥

≤ 2𝜆
√
𝜇|𝐽𝑘+1 | + 2𝜆

𝑝∑
𝑞=𝑘+2

√
𝜇|𝐽𝑞 |,

yielding the induction hypothesis for 𝑘. □

Lemma 4.3.10 (Restatement). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4], let 𝜇 = 𝜇(𝑤) and 𝛿 = 𝛿(𝑤). Let
𝒥 = (𝐽1 , . . . , 𝐽𝑝) be a layering with ℓ 𝛿(𝒥) ≤ 𝛽/(32𝑛2), and let Δ𝑤ll = (Δ𝑥ll ,Δ𝑦ll ,Δ𝑠ll) denote the LLS
direction for the layering 𝒥 . Let furthermore 𝜖ll(𝑤) = max𝑖∈[𝑛]min{|Rxll

𝑖
|, |Rsll

𝑖
|}, and define the maximal

step length as

𝛼∗ ≔ sup
{
𝛼′ ∈ [0, 1] : ∀�̄� ∈ [0, 𝛼′] : 𝑤 + �̄�Δ𝑤ll ∈ 𝒩(2𝛽)

}
.

Then the following properties hold.

(i) We have

∥𝛿𝐽𝑘Δ𝑥ll
𝐽𝑘
+ 𝛿−1

𝐽𝑘
Δ𝑠ll

𝐽𝑘
+ 𝑥1/2

𝐽𝑘
𝑠

1/2
𝐽𝑘
∥ ≤ 6𝑛ℓ 𝛿(𝒥)√𝜇 , ∀𝑘 ∈ [𝑝], and (4.20)

∥𝛿Δ𝑥ll + 𝛿−1Δ𝑠ll + 𝑥1/2𝑠1/2∥ ≤ 6𝑛3/2ℓ 𝛿(𝒥)√𝜇 . (4.21)

(ii) For the affine scaling direction Δ𝑤a = (Δ𝑥a ,Δ𝑦a ,Δ𝑠a),

∥Rxll − Rxa∥ , ∥Rsll − Rsa∥ ≤ 6𝑛3/2ℓ 𝛿(𝒥) .

(iii) For the residuals of the LLS steps we have ∥Rxll∥ , ∥Rsll∥ ≤
√

2𝑛. For each 𝑖 ∈ [𝑛], max{|Rxll
𝑖
|, |Rsll

𝑖
|} ≥

1
2 − 3

4𝛽.

(iv) We have

𝛼∗ ≥ 1 − 3
√
𝑛𝜖ll(𝑤)
𝛽

, (4.22)

and for any 𝛼 ∈ [0, 1]
𝜇(𝑤 + 𝛼Δ𝑤ll) = (1 − 𝛼)𝜇 ,

(v) We have 𝜖ll(𝑤) = 0 if and only if 𝛼∗ = 1. These are further equivalent to 𝑤 + Δ𝑤ll = (𝑥 + Δ𝑥ll , 𝑦 +
Δ𝑦ll , 𝑠 + Δ𝑠ll) being an optimal solution to (LP).
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Proof. Again, we use 𝜆 = ℓ 𝛿(𝒥).
Part (i). It is easy to see that (4.20) implies (4.21). To show (4.20), we use Lemma 4.5.2 to obtain Δ�̄�

and Δ𝑠 as in (4.30) and (4.31). We will also use Δ𝑥 ∈>𝑝

𝑘=1𝑊𝒥 ,𝑘 and Δ𝑠 ∈>𝑝

𝑘=1𝑊
⊥
𝒥 ,𝑘 as in (4.28)

and (4.29).
Select any layer 𝑘 ∈ [𝑝]. From (4.28), we get that

∥𝛿𝐽𝑘Δ�̄�𝐽𝑘 + 𝛿−1
𝐽𝑘
Δ𝑠𝐽𝑘 + 𝑥

1/2
𝐽𝑘
𝑠

1/2
𝐽𝑘
∥ = ∥𝛿𝐽𝑘 (Δ�̄�𝐽𝑘 − Δ𝑥ll

𝐽𝑘
)∥ ≤ 2𝑛𝜆√𝜇 . (4.33)

Similarly, from (4.29), we see that

∥𝛿−1
𝐽𝑘
Δ𝑠𝐽𝑘 + 𝛿𝐽𝑘Δ𝑥𝐽𝑘 + 𝑥

1/2
𝐽𝑘
𝑠

1/2
𝐽𝑘
∥ = ∥𝛿−1

𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠ll

𝐽𝑘
)∥ ≤ 2𝑛𝜆√𝜇 .

From the above inequalities, we see that

∥𝛿𝐽𝑘 (Δ�̄�𝐽𝑘 − Δ𝑥𝐽𝑘 ) + 𝛿−1
𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠𝐽𝑘 )∥ ≤ 4𝑛𝜆√𝜇 .

Since 𝛿𝐽𝑘 (Δ�̄�𝐽𝑘 − Δ𝑥𝐽𝑘 ) and 𝛿−1
𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠𝐽𝑘 ) are orthogonal vectors, we have

∥𝛿𝐽𝑘 (Δ�̄�𝐽𝑘 − Δ𝑥𝐽𝑘 )∥ , ∥𝛿−1
𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠𝐽𝑘 )∥ ≤ 4𝑛𝜆√𝜇 .

Together with (4.30), this yields ∥𝛿𝐽𝑘 (Δ𝑥ll
𝐽𝑘
− Δ𝑥𝐽𝑘 )∥ ≤ 6𝑛𝜆√𝜇. Combined with (4.19), we get

∥𝛿𝐽𝑘Δ𝑥ll
𝐽𝑘
+ 𝛿−1

𝐽𝑘
Δ𝑠ll

𝐽𝑘
+ 𝑥1/2

𝐽𝑘
𝑠

1/2
𝐽𝑘
∥ = ∥𝛿𝐽𝑘 (Δ𝑥ll

𝐽𝑘
− Δ𝑥𝐽𝑘 )∥ ≤ 6𝑛𝜆√𝜇 ,

thus, (4.20) follows.

Part (ii). Recall from Lemma 4.3.5(i) that√𝜇Rxa+√𝜇Rsa = 𝑥1/2𝑠1/2. From part (i), we can similarly
see that

∥√𝜇Rxll + √𝜇Rsll − 𝑥1/2𝑠1/2∥ ≤ 6𝑛3/2𝜆
√
𝜇 .

From these, we get
∥(Rxll − Rxa) + (Rsll − Rsa)∥ ≤ 6𝑛3/2𝜆 .

The claim follows since Rxll −Rxa ∈ diag(𝛿)𝑊 and Rsll −Rsa ∈ diag(𝛿−1)𝑊⊥ are orthogonal vectors.

Part (iii). Both bounds follow from the previous part and Lemma 4.3.5(iii), using the assumption
ℓ 𝛿(𝒥) ≤ 𝛽/(32𝑛2).

Part (iv). Let 𝑤+ = 𝑤 + 𝛼Δ𝑤ll. We need to find the largest value 𝛼 > 0 such that 𝑤+ ∈ 𝒩(2𝛽). To
begin, we first show that the normalized duality gap 𝜇(𝑤+) fulfills 𝜇(𝑤+) = (1 − 𝛼)𝜇 for any 𝛼 ∈ R.
For this purpose, we use the decomposition:

(𝑥 + 𝛼Δ𝑥ll)(𝑠 + 𝛼Δ𝑠ll) = (1 − 𝛼)𝑥𝑠 + 𝛼(𝑥 + Δ𝑥ll)(𝑠 + Δ𝑠ll) − 𝛼(1 − 𝛼)Δ𝑥llΔ𝑠ll. (4.34)

Recall from Part (i) that there exists Δ𝑥 ∈>𝑝

𝑘=1𝑊𝒥 ,𝑘 and Δ𝑠 ∈>𝑝

𝑘=1𝑊
⊥
𝒥 ,𝑘 as in (4.28) and (4.29)

such that 𝛿Δ𝑥ll + 𝛿−1Δ𝑠 = −𝛿𝑥 and 𝛿Δ𝑥 + 𝛿−1Δ𝑠ll = −𝛿−1𝑠. In particular, 𝑥 + Δ𝑥ll = −𝛿−2Δ𝑠 and

87



4 SCALING-INVARIANT IPM 4.5 Properties of the layered least square step

𝑠 + Δ𝑠ll = −𝛿2Δ𝑥. Noting that Δ𝑥ll ⊥ Δ𝑠ll and Δ𝑥 ⊥ Δ𝑠, taking the average of the coordinates on
both sides of (4.34), we get that

𝜇(𝑤 + 𝛼Δ𝑤ll) = (1 − 𝛼)𝜇(𝑤) + 𝛼⟨𝑥 + Δ𝑥ll , 𝑠 + Δ𝑠ll⟩/𝑛 − 𝛼(1 − 𝛼)⟨Δ𝑥ll ,Δ𝑠ll⟩/𝑛
= (1 − 𝛼)𝜇(𝑤) + 𝛼⟨𝛿−2Δ𝑠, 𝛿2Δ𝑥⟩/𝑛
= (1 − 𝛼)𝜇(𝑤), (4.35)

as needed.
Let 𝜖 ≔ 𝜀ll(𝑤). To obtain the desired lower bound on the step-length, given (4.35) it suffices to

show that for all 0 ≤ 𝛼 < 1 − 3
√
𝑛𝜖
𝛽 that (𝑥 + 𝛼Δ𝑥ll)(𝑠 + 𝛼Δ𝑠ll)

(1 − 𝛼)𝜇 − 𝑒
 ≤ 2𝛽 . (4.36)

We will need a bound on the product of the LLS residuals:RxllRsll − 1
𝜇
Δ𝑥llΔ𝑠ll

 =

𝑥1/2𝑠1/2
√
𝜇
· 𝛿Δ𝑥

ll + 𝛿−1Δ𝑠ll + 𝑥1/2𝑠1/2
√
𝜇


≤ 6(1 + 2𝛽)𝑛3/2𝜆 ≤ 𝛽

4 ,
(4.37)

using Proposition 4.3.1, part (i), and the assumptions 𝜆 ≤ 𝛽/(32𝑛2), 𝛽 ≤ 1/4. Another useful bound
will be

∥RxllRsll∥2 =
∑
𝑖∈[𝑛]

��Rxll
𝑖

��2��Rsll
𝑖

��2 ≤ 𝜖2
∑
𝑖∈[𝑛]

max
{��Rxll

𝑖

��2 , ��Rsll
𝑖

��2}
≤ 𝜖2(∥Rxll∥2 + ∥Rsll∥2) ≤ 2𝑛𝜖2 .

(4.38)

The last inequality uses part (iii). With (4.34) we are ready to get the bound in (4.36), as (𝑥 + 𝛼Δ𝑥ll)(𝑠 + 𝛼Δ𝑠ll)
(1 − 𝛼)𝜇 − 1

 ≤ 𝛽 +
 𝛼

(1 − 𝛼)𝜇 (𝑥 + Δ𝑥
ll)(𝑠 + Δ𝑠ll) − 𝛼

𝜇
Δ𝑥llΔ𝑠ll


= 𝛽 +

( 𝛼
1 − 𝛼

− 𝛼
)
RxllRsll + 𝛼

(
RxllRsll − 1

𝜇
Δ𝑥llΔ𝑠ll

)
≤ 𝛽 + 𝛼2

1 − 𝛼
∥RxllRsll∥ + 𝛼

RxllRsll − 1
𝜇
Δ𝑥llΔ𝑠ll


≤ 𝛽 +

√
2𝑛𝜖

1 − 𝛼
+ 𝛽

4 ≤
5
4𝛽 +

√
2𝑛𝜖

1 − 𝛼
.

This value is ≤ 2𝛽 whenever 2
√
𝑛𝜖/(1 − 𝛼) ≤ (3/4)𝛽⇐ 𝛼 < 1 − 3

√
𝑛𝜖
𝛽 , as needed.

Part (v). From part (iv), it is immediate that 𝜖ll(𝑤) = 0 implies 𝛼 = 1. If 𝛼 = 1, we have that𝑤+Δ𝑤ll

is the limit of (strictly) feasible solutions to (LP) and thus is also a feasible solution. Optimality
of 𝑤 + Δ𝑤ll now follows from Part (iv), since 𝛼 = 1 implies 𝜇(𝑤 + Δ𝑤ll) = 0. The remaining
implication is that if 𝑤 + Δ𝑤ll is optimal, then 𝜖ll(𝑤) = 0. Recall that Rxll

𝑖
= 𝛿𝑖(𝑥𝑖 + Δ𝑥ll

𝑖
)/√𝜇 and

Rsll
𝑖
= 𝛿−1

𝑖 (𝑠𝑖 +Δ𝑠ll
𝑖
)/√𝜇. The optimality of 𝑤 +Δ𝑤ll means that for each 𝑖 ∈ [𝑛], either 𝑥𝑖 +Δ𝑥ll

𝑖
= 0

or 𝑠𝑖 + Δ𝑠ll
𝑖
= 0. Therefore, 𝜖ll(𝑤) = 0. □
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4.6 Proofs of the main lemmas for the potential analysis

Lemma 4.4.2 (Restatement). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/8] and let 𝑤∗ = (𝑥∗ , 𝑦∗ , 𝑠∗) be the
optimal solution corresponding to 𝜇∗ = 0 on the central path. Let further𝒥 = (𝐽1 , . . . , 𝐽𝑝) be a 𝛿(𝑤)-balanced
layering (Definition 4.3.13), and let Δ𝑤ll = (Δ𝑥ll ,Δ𝑦ll ,Δ𝑠ll) be the corresponding LLS direction. Then the
following statement holds for every 𝑞 ∈ [𝑝]:

(i) There exists 𝑖 ∈ 𝐽𝑞 such that

𝑥∗𝑖 ≥
2𝑥𝑖
3
√
𝑛
· (∥Rxll

𝐽𝑞
∥ − 2𝛾𝑛) . (4.25)

(ii) There exists 𝑗 ∈ 𝐽𝑞 such that

𝑠∗𝑗 ≥
2𝑠 𝑗

3
√
𝑛
· (∥Rsll

𝐽𝑞
∥ − 2𝛾𝑛) . (4.26)

Proof of Lemma 4.4.2. We prove part (i); part (ii) follows analogously using Lemma 4.3.9. Let 𝑧 be a
vector fulfilling the statement of Lemma 4.5.1 for 𝑢 = 𝑥∗, 𝑣 = 𝑥 + Δ𝑥ll, and 𝐼 = 𝐽>𝑞 . Then 𝑧 ∈𝑊 + 𝑥,
𝑧𝐽>𝑞 = 𝑥𝐽>𝑞 + Δ𝑥ll

𝐽>𝑞
and by ℓ 𝛿(𝒥) ≤ 𝛾𝛿𝐽≤𝑞 (𝑥∗𝐽≤𝑞 − 𝑧𝐽≤𝑞 ) ≤ 𝛾

𝛿𝐽>𝑞 (𝑥∗𝐽>𝑞 − (𝑥𝐽>𝑞 + Δ𝑥ll
𝐽>𝑞
)
).

Restricting to the components in 𝐽𝑞 , and dividing by √𝜇, we get 𝛿𝐽𝑞 (𝑥∗𝐽𝑞 − 𝑧𝐽𝑞 )√
𝜇

 ≤ 𝛾

 𝛿𝐽>𝑞
(
𝑥∗
𝐽>𝑞
− (𝑥𝐽>𝑞 + Δ𝑥ll

𝐽>𝑞
)
)

√
𝜇

 ≤ 𝛾

 𝛿𝐽>𝑞 𝑥∗𝐽>𝑞√
𝜇

 + 𝛾∥Rxll
𝐽>𝑞
∥ . (4.39)

Since 𝑤 ∈ 𝒩(𝛽), from Proposition 4.3.1 and (4.9) we see that for 𝑖 ∈ [𝑛]

𝛿𝑖√
𝜇
≤ 1√

1 − 2𝛽
· 𝛿𝑖(𝑤(𝜇))√

𝜇
=

1√
1 − 2𝛽

· 1
𝑥𝑖(𝜇)

,

and therefore 𝛿𝐽>𝑞 𝑥∗𝐽>𝑞√
𝜇

 ≤ 1√
1 − 2𝛽

𝑥(𝜇)−1
𝐽>𝑞
𝑥∗𝐽>𝑞

 ≤ 1√
1 − 2𝛽

·
𝑥(𝜇)−1

𝐽>𝑞
𝑥∗𝐽>𝑞


1
≤ 𝑛√

1 − 2𝛽
,

where the last inequality follows by Lemma 4.3.3.
Using the above bounds with (4.39), along with ∥Rxll

𝐽≥𝑞
∥ ≤ ∥Rxll∥ ≤

√
2𝑛 from Lemma 4.3.10(iii),

we get  𝛿𝐽𝑞 𝑧𝐽𝑞√
𝜇

 ≤  𝛿𝐽𝑞 𝑥∗𝐽𝑞√
𝜇

 + 𝛾𝑛√
1 − 2𝛽

+ 𝛾
√

2𝑛 ≤
 𝛿𝐽𝑞 𝑥∗𝐽𝑞√

𝜇

 + 2𝛾𝑛 ,

using that 𝛽 ≤ 1/8 and 𝑛 ≥ 3. Note that 𝑧 is a feasible solution to the least-squares problem which
is optimally solved by 𝑥ll

𝐽𝑞
for layer 𝐽𝑞 and so

∥𝑅𝑥ll
𝐽𝑞
∥ ≤

 𝛿𝐽𝑞 𝑧𝐽𝑞√
𝜇

 .
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It follows that  𝛿𝐽𝑞 𝑥∗𝐽𝑞√
𝜇

 ≥ ∥𝑅𝑥ll
𝐽𝑞
∥ − 2𝛾𝑛 .

Let us pick 𝑖 = arg max𝑡∈𝐽𝑞 |𝛿𝑡𝑥
∗
𝑡 |. Using Proposition 4.3.2,

𝑥∗
𝑖

𝑥𝑖
≥ 1

1 + 𝛽
·
𝛿𝑖𝑥∗𝑖√
𝜇
≥
∥𝑅𝑥ll

𝐽𝑞
∥ − 2𝛾𝑛

(1 + 𝛽)
√
𝑛
≥ 2

3
√
𝑛
· (∥Rxll

𝐽𝑞
∥ − 2𝛾𝑛) ,

completing the proof. □

Lemma 4.4.3 (Restatement). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(2𝛽) for 𝛽 ∈ (0, 1/8], let 𝜇 = 𝜇(𝑤) and 𝛿 = 𝛿(𝑤). Let
𝑖 , 𝑗 ∈ [𝑛] and 2 ≤ 𝜏 ≤ 𝑛 such that for the optimal solution 𝑤∗ = (𝑥∗ , 𝑦∗ , 𝑠∗), we have 𝑥∗

𝑖
≥ 𝛽𝑥𝑖/(210𝑛5.5)

and 𝑠∗
𝑗
≥ 𝛽𝑠 𝑗/(210𝑛5.5), and assume 𝜚𝜇(𝑖 , 𝑗) ≥ −𝜏. After 𝑂(𝛽−1√𝑛𝜏 log(�̄�∗ + 𝑛)) further iterations the

duality gap 𝜇′ fulfills Ψ𝜇′(𝑖 , 𝑗) ≥ 2𝜏, and for every ℓ ∈ [𝑛] \ {𝑖 , 𝑗}, either Ψ𝜇′(𝑖 , ℓ ) ≥ 2𝜏, or Ψ𝜇′(ℓ , 𝑗) ≥ 2𝜏.

Proof of Lemma 4.4.3. Let us select a value 𝜇′ such that

log𝜇 − log𝜇′ ≥ 5𝜏 log
(

4𝑛𝜅∗
𝛾

)
+ 31 log 𝑛 + 44 − 4 log 𝛽 .

The normalized duality gap decreases to such value within 𝑂(𝛽−1√𝑛𝜏 · log(�̄�∗ + 𝑛)) iterations,
recalling that log(�̄�∗ + 𝑛) = Θ(log(𝜅∗ + 𝑛)). The step-lengths for the affine scaling and LLS steps
are stated in Proposition 4.3.4 and Lemma 4.3.10(iv). Whenever the algorithm chooses an LLS step,
𝜖a(𝑤) < 10𝑛3/2𝛾. Thus, the progress in 𝜇 will be at least as much (in fact, much better) than the
1 − 𝛽/

√
𝑛 guarantee for the affine scaling step in Proposition 4.3.4.

Let 𝑤′ = (𝑥′, 𝑦′, 𝑠′) be the central path element corresponding to 𝜇′, and let 𝛿′ = 𝛿(𝑤′). From now
on we use the shorthand notation

Γ ≔ log
(

4𝑛𝜅∗
𝛾

)
.

We first show that
Γ𝜚𝜇

′(𝑖 , 𝑗) ≥ 4Γ𝜏 + 18 log 𝑛 + 22 log 2 − 2 log 𝛽 (4.40)

for 𝜇′, and therefore, ΓΨ𝜇′(𝑖 , 𝑗) ≥ min(2Γ𝑛, 4Γ𝜏 + 18 log 𝑛 + 22 log 2 − 2 log 𝛽) ≥ 2Γ𝜏 as 𝜏 ≤ 𝑛.
Recalling the definition 𝜅𝛿

𝑖 𝑗
= 𝜅𝑖 𝑗𝛿 𝑗/𝛿𝑖 , we see that according to Proposition 4.3.2,

𝜅𝛿
𝑖 𝑗 ≤

𝜅𝑖 𝑗

(1 − 𝛽)2 ·
𝑥𝑖𝑠 𝑗

𝜇
, and 𝜅𝛿′

𝑖 𝑗 = 𝜅𝑖 𝑗 ·
𝑥′
𝑖
𝑠′
𝑗

𝜇′
.

Thus,

Γ𝜚𝜇
′(𝑖 , 𝑗) ≥ Γ𝜚𝜇(𝑖 , 𝑗) + log𝜇 − log𝜇′ + 2 log(1 − 𝛽) + log 𝑥′𝑖 − log 𝑥𝑖 + log 𝑠′𝑗 − log 𝑠 𝑗

≥ Γ𝜚𝜇(𝑖 , 𝑗) + 5Γ𝜏 + 31 log 𝑛 + 44 − 4 log 𝛽 + 2 log(1 − 𝛽) + log 𝑥′𝑖 − log 𝑥𝑖 + log 𝑠′𝑗 − log 𝑠 𝑗 .

Using the near-monotonicity of the central path (Lemma 5.2.3), we have 𝑥′
𝑖
≥ 𝑥∗

𝑖
/𝑛 and 𝑠′

𝑗
≥ 𝑠∗

𝑗
/𝑛.

Together with our assumptions 𝑥∗
𝑖
≥ 𝛽𝑥𝑖/(210𝑛5.5) and 𝑠∗

𝑖
≥ 𝛽𝑠𝑖/(210𝑛5.5), we see that

log 𝑥′𝑖 − log 𝑥𝑖 + log 𝑠′𝑗 − log 𝑠 𝑗 ≥ −13 log 𝑛 − 20 log 2 + 2 log 𝛽 .

Using the assumption 𝜚𝜇(𝑖 , 𝑗) > −𝜏 of the lemma, we can establish (4.40) as 𝛽 < 1/8.
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Next, consider any ℓ ∈ [𝑛] \ {𝑖 , 𝑗}. From the triangle inequality Theorem 3.2.22(ii) it follows that
𝜅𝛿′

𝑖 𝑗
≤ 𝜅𝛿′

𝑖ℓ
· 𝜅𝛿′

ℓ 𝑗
, which gives 𝜚𝜇′(𝑖 , ℓ ) + 𝜚𝜇′(ℓ , 𝑗) ≥ 𝜚𝜇

′(𝑖 , 𝑗). We therefore get

max{Γ𝜚𝜇′(𝑖 , ℓ ), Γ𝜚𝜇′(ℓ , 𝑗)} ≥ 1
2Γ𝜚

𝜇′(𝑖 , 𝑗)
(4.40)
≥ 2Γ𝜏 + 9 log 𝑛 + 11 log 2 − log 𝛽.

We next show that if Γ𝜚𝜇′(𝑖 , ℓ ) ≥ 2Γ𝜏 + 9 log 𝑛 + 11 log 2 − log 𝛽, then Ψ𝜇′(𝑖 , ℓ ) ≥ 2𝜏. The case
Γ𝜚𝜇

′(ℓ , 𝑗) ≥ 2Γ𝜏 + 9 log 𝑛 + 11 log 2 − log 𝛽 follows analogously.
Consider any 0 < �̄� < 𝜇′ with the corresponding central path point �̄� = (�̄� , �̄� , 𝑠). The proof is

complete by showing Γ𝜚 �̄�(𝑖 , ℓ ) ≥ Γ𝜚𝜇
′(𝑖 , ℓ ) − 9 log 𝑛 − 11 log 2 + log 𝛽. Recall that for central path

elements, we have 𝜅𝛿′

𝑖 𝑗
= 𝜅𝑖 𝑗𝑥′𝑖/𝑥

′
𝑗
, and 𝜅�̄�

𝑖 𝑗
= 𝜅𝑖 𝑗 �̄�𝑖/�̄� 𝑗 . Therefore

Γ𝜚 �̄�(𝑖 , 𝑗) = Γ𝜚𝜇
′(𝑖 , 𝑗) + log �̄�𝑖 − log 𝑥′𝑖 − log �̄� 𝑗 + log 𝑥′𝑗 .

Using Proposition 4.3.1, Lemma 4.3.3 and the assumption 𝑥∗
𝑖
≥ 𝛽𝑥𝑖/(210𝑛5.5), we have �̄� 𝑗 ≤ 𝑛𝑥′𝑗 and

�̄�𝑖 ≥
𝑥∗
𝑖

𝑛
≥

𝛽𝑥𝑖
210𝑛6.5 ≥

𝛽(1 − 𝛽)𝑥′
𝑖

210𝑛7.5 ≥
𝛽𝑥′

𝑖

211𝑛7.5 .

Using these bounds, we get

Γ𝜚 �̄�(𝑖 , 𝑗) ≥ Γ𝜚𝜇
′(𝑖 , 𝑗) − 9 log 𝑛 − 11 log 2 + log 𝛽,

completing the proof. □

It remains to prove Lemma 4.4.4 and Lemma 4.4.5, addressing the more difficult case 𝜉ll
𝒥 < 4𝛾𝑛.

It is useful to decompose the variables into two sets. We let

𝔅 ≔
{
𝑡 ∈ [𝑛] : |Rsll

𝑡 | < 4𝛾𝑛
}
, and 𝔑 ≔

{
𝑡 ∈ [𝑛] : |Rxll

𝑡 | < 4𝛾𝑛
}
. (4.41)

The assumption 𝜉ll
𝒥 < 4𝛾𝑛 implies that for every layer 𝐽𝑘 , either 𝐽𝑘 ⊆ 𝔅 or 𝐽𝑘 ⊆ 𝔑. The next two

lemmas describe the relations between 𝛿 and 𝛿+.

Lemma 4.6.1. Let 𝑤 ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/8], and assume ℓ 𝛿(𝒥) ≤ 𝛾 and 𝜖ll(𝑤) < 4𝛾𝑛. For the next
iterate 𝑤+ = (𝑥+ , 𝑦+ , 𝑠+) ∈ 𝒩(2𝛽), we have

(i) For 𝑖 ∈ 𝔅,
1
2 ·

√
𝜇+

𝜇
≤

𝛿+𝑖
𝛿𝑖
≤ 2 ·

√
𝜇+

𝜇
and 𝛿−1

𝑖 𝑠
+
𝑖 ≤

3𝜇+
√
𝜇
.

(ii) For 𝑖 ∈ 𝔑,
1
2 ·

√
𝜇

𝜇+
≤

𝛿+𝑖
𝛿𝑖
≤ 2 ·

√
𝜇

𝜇+
and 𝛿𝑖𝑥

+
𝑖 ≤

3𝜇+
√
𝜇
.

(iii) If 𝑖 , 𝑗 ∈ 𝔅 or 𝑖 , 𝑗 ∈ 𝔑, then

1
4 ≤

𝜅𝛿
𝑖 𝑗

𝜅𝛿+

𝑖 𝑗

=
𝛿+𝑖 𝛿 𝑗

𝛿𝑖𝛿
+
𝑗

≤ 4 .

(iv) If 𝑖 ∈ 𝔑 and 𝑗 ∈ 𝔅, then
𝜅𝛿
𝑖 𝑗

𝜅𝛿+

𝑖 𝑗

≥ 4𝑛3.5 .
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Proof. Part (i). By Lemma 4.3.10(i), we see that

∥𝛿𝐵Δ𝑥ll
𝐵∥∞ ≤ ∥𝛿𝐵Δ𝑥

ll
𝐵 + 𝛿−1

𝐵 Δ𝑠ll
𝐵 + 𝑥

1/2
𝐵
𝑠

1/2
𝐵
∥∞ + ∥𝛿−1

𝐵 (Δ𝑠
ll
𝐵 + 𝑠𝐵)∥∞

= ∥𝛿𝐵Δ𝑥ll
𝐵 + 𝛿−1

𝐵 Δ𝑠ll
𝐵 + 𝑥

1/2
𝐵
𝑠

1/2
𝐵
∥∞ +

√
𝜇∥Rsll

𝐵∥∞

≤ √𝜇
(
6𝑛ℓ 𝛿(𝒥) + 4𝑛𝛾

)
≤ 10𝑛𝛾√𝜇 ≤ √𝜇/64 ,

by the assumption on ℓ 𝛿(𝒥) and the definition of 𝔅.
By construction of the LLS step, |𝑥+

𝑖
− 𝑥𝑖 | = 𝛼+ |Δ𝑥ll

𝑖
| ≤ |Δ𝑥ll

𝑖
|, recalling that 0 ≤ 𝛼+ ≤ 1. Using

the bound derived above, for 𝑖 ∈ 𝔅 we get����𝑥+𝑖𝑥𝑖 − 1
���� ≤ �����Δ𝑥ll

𝑖

𝑥𝑖

����� = |𝛿𝑖Δ𝑥ll
𝑖
|

𝛿𝑖𝑥𝑖
≤
√
𝜇

64𝛿𝑖𝑥𝑖
≤ 1

32 ,

where the last inequality follows from Proposition 4.3.2. As

𝛿+𝑖
𝛿𝑖

=

√
𝑥+
𝑖
𝑠+
𝑖

𝑥𝑖𝑠𝑖
· 𝑥𝑖
𝑥+
𝑖

and
1 − 2𝛽
1 + 𝛽

√
𝜇+
√
𝜇
≤

√
𝑥+
𝑖
𝑠+
𝑖

𝑥𝑖𝑠𝑖
≤ 1 + 2𝛽

1 − 𝛽

√
𝜇+
√
𝜇

by Proposition 4.3.2 the claimed bounds follow with 𝛽 ≤ 1/8.
To get the upper bound on 𝛿−1

𝑖 𝑠
+
𝑖
, again with Proposition 4.3.2

𝛿−1
𝑖 𝑠
+
𝑖 =

𝛿+𝑖
𝛿𝑖𝛿
+
𝑖

𝑠+𝑖 =
𝛿+𝑖
𝛿𝑖
·
√
𝑥+
𝑖
𝑠+
𝑖
≤ 2

√
𝜇+

𝜇
· (1 + 2𝛽)

√
𝜇+ ≤ 3𝜇+

√
𝜇
.

Part (ii). Analogously to (i).

Part (iii). Immediate from parts (i) and (ii).

Part (iv). Follows by parts (i) and (ii), and by the lower bound on
√
𝜇/𝜇+ obtained from

Lemma 4.3.10(iv) as follows

𝜅𝛿
𝑖 𝑗

𝜅𝛿+

𝑖 𝑗

=
𝛿+𝑖 𝛿 𝑗

𝛿𝑖𝛿
+
𝑗

≥
𝜇

4𝜇+ =
1

4(1 − 𝛼+) ≥
𝛽

12
√
𝑛𝜖ll(𝑤)

≥ 4𝑛3.5. □

Lemma 4.4.4 (Restatement). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/8], and let 𝒥 = (𝐽1 , . . . , 𝐽𝑝) be a
𝛿(𝑤)-balanced partition. Assume that 𝜉ll

𝒥 (𝑤) < 4𝛾𝑛, and let 𝑤+ = (𝑥+ , 𝑦+ , 𝑠+) ∈ 𝒩(2𝛽) be the next iterate
obtained by the LLS step with 𝜇+ = 𝜇(𝑤+) and assume 𝜇+ > 0. Let 𝑞 ∈ [𝑝] such that 𝜉ll

𝒥 (𝑤) = 𝜉ll
𝐽𝑞
(𝑤). If

ℓ 𝛿
+(𝒥) ≤ 4𝛾𝑛, then there exist 𝑖 , 𝑗 ∈ 𝐽𝑞 such that 𝑥∗

𝑖
≥ 𝛽𝑥+

𝑖
/(16𝑛3/2) and 𝑠∗

𝑗
≥ 𝛽𝑠+

𝑗
/(16𝑛3/2). Further, for

any ℓ , ℓ ′ ∈ 𝐽𝑞 , we have 𝜚𝜇+(ℓ , ℓ ′) ≥ −|𝐽𝑞 |.

Proof of Lemma 4.4.4. Without loss of generality, let 𝜉ll
𝒥 = 𝜉ll

𝐽𝑞
= ∥Rxll

𝐽𝑞
∥ for a layer 𝑞 with 𝐽𝑞 ⊆ 𝔑.

The case 𝜉ll
𝐽𝑞
= ∥Rsll

𝐽𝑞
∥ and 𝐽𝑞 ⊆ 𝔅 can be treated analogously.

By Lemma 4.3.10(iii), ∥Rsll
𝐽𝑞
∥ ≥ 1

2 − 3
4𝛽 > 1

4 + 2𝑛𝛾, and therefore Lemma 4.4.2 provides a 𝑗 ∈ 𝐽𝑞
such that 𝑠∗

𝑗
/𝑠 𝑗 ≥ 1/(6

√
𝑛). Using Lemma 5.2.3 and Proposition 4.3.1 we find that 𝑠+

𝑗
/𝑠 𝑗 ≤ 2𝑛 and

so 𝑠∗
𝑗
/𝑠+

𝑗
= 𝑠∗

𝑗
/𝑠 𝑗 · 𝑠 𝑗/𝑠+𝑗 ≥ 1/(12𝑛3/2) > 1/(16𝑛3/2).
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The final statement𝜚𝜇+(ℓ , ℓ ′) ≥ −|𝐽𝑞 | for any ℓ , ℓ ′ ∈ 𝐽𝑞 is also straightforward. From Lemma 4.6.1(iii)
and the strong connectivity of 𝐽𝑞 in 𝐺𝛿,𝛾/𝑛 , we obtain that 𝐽𝑞 is strongly connected in 𝐺𝛿+ ,𝛾/(4𝑛).
Hence, 𝜚𝜇+(ℓ , ℓ ′) ≥ −|𝐽𝑞 | follows by Lemma 4.4.1.

The rest of the proof is dedicated to showing the existence of an 𝑖 ∈ 𝐽𝑞 such that 𝑥∗
𝑖
≥ 𝛽𝑥+

𝑖
/(16𝑛3/2).

For this purpose, we will prove following claim.

Claim 1. ∥𝛿𝐽𝑞 𝑥∗𝐽𝑞 ∥ ≥
𝛽𝜇+

8√𝑛𝜇 .

In order to prove Claim 1, we define

𝑧 ≔ (𝛿+)−1𝐿𝛿
+

𝐽>𝑞

(
𝛿+𝐽>𝑞 (𝑥

∗
𝐽>𝑞
− 𝑥+𝐽>𝑞 )

)
and 𝑤 ≔ 𝑥∗ − 𝑥+ − 𝑧 ,

as in Lemma 4.5.1. By construction, 𝑤 ∈ 𝑊 and 𝑤𝐽>𝑞 = 0. Thus, 𝑤𝐽𝑞 ∈ 𝑊𝒥 ,𝑞 as defined in
Section 4.3.4.

Using the triangle inequality, we get

∥𝛿𝐽𝑞 𝑥∗𝐽𝑞 ∥ ≥ ∥𝛿𝐽𝑞 (𝑥
+
𝐽𝑞
+ 𝑤𝐽𝑞 )∥ − ∥𝛿𝐽𝑞 𝑧𝐽𝑞 ∥ . (4.42)

We bound the two terms separately, starting with an upper bound on ∥𝛿𝐽𝑞 𝑧𝐽𝑞 ∥. Since ℓ 𝛿+(𝒥) ≤ 4𝛾𝑛,
we have with Lemma 4.5.1 that𝛿+𝐽𝑞 𝑧𝐽𝑞 ≤ ℓ 𝛿+(𝒥)𝛿+𝐽>𝑞 (𝑥∗𝐽>𝑞 − 𝑥+𝐽>𝑞 )

≤ 4𝑛𝛾
𝛿+𝐽>𝑞 (𝑥∗𝐽>𝑞 − 𝑥+𝐽>𝑞 )

= 4𝑛𝛾

𝛿+𝐽>𝑞 𝑥+𝐽>𝑞
(
𝑥∗
𝐽>𝑞

𝑥+
𝐽>𝑞

− 1

)
≤ 4𝑛𝛾

(
∥𝛿+𝑥+∥∞ ·

 𝑥∗𝑥+ 1
+

√
𝑛𝜇+

)
≤ 4𝑛𝛾

(
3
2
√
𝜇+ · 4

3𝑛 +
√
𝑛𝜇+

)
≤ 16𝑛2√𝜇+𝛾,

(4.43)

where the penultimate inequality follows by Proposition 4.3.2 and Lemma 5.2.3. We can use this
and Lemma 4.6.1(ii) to obtain

∥𝛿𝐽𝑞 𝑧𝐽𝑞 ∥ ≤ ∥𝛿𝐽𝑞/𝛿+𝐽𝑞 ∥∞ · ∥𝛿
+
𝐽𝑞
𝑧𝐽𝑞 ∥ ≤

32𝑛2𝛾𝜇+
√
𝜇

≤ 𝛽𝜇+

32𝑛3√𝜇 , (4.44)

using the definition of 𝛾.
The first RHS term in (4.42) will be bounded as follows.

Claim 2. ∥𝛿𝐽𝑞 (𝑥+𝐽𝑞 + 𝑤𝐽𝑞 )∥ ≥
1
2
√
𝜇𝜉ll
𝒥 .

Proof of Claim 2. We recall the characterization (4.18) of the LLS step Δ𝑥ll ∈𝑊 . Namely, there exists
Δ𝑠 ∈𝑊⊥𝒥 ,1 × · · · ×𝑊

⊥
𝒥 ,𝑞 that is the unique solution to 𝛿−1Δ𝑠 + 𝛿Δ𝑥ll = −𝛿𝑥. From the above, note

that
∥𝛿−1

𝐽𝑞
Δ𝑠𝐽𝑞 ∥ = ∥𝛿𝐽𝑞 (𝑥𝐽𝑞 + Δ𝑥ll

𝐽𝑞
)∥ = √𝜇∥Rxll

𝐽𝑞
∥ = √𝜇𝜉ll

𝒥 .
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From the Cauchy-Schwarz inequality,

∥𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 ∥ · ∥𝛿𝐽𝑞 (𝑥+𝐽𝑞 + 𝑤𝐽𝑞 )∥ ≥

���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞 (𝑥+𝐽𝑞 + 𝑤𝐽𝑞 )

〉���
=

���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞 𝑥

+
𝐽𝑞

〉��� . (4.45)

Here, we used that Δ𝑠𝐽𝑞 ∈𝑊⊥𝒥 ,𝑞 and 𝑤𝐽𝑞 ∈𝑊𝒥 ,𝑞 . Note that

𝑥+ = 𝑥 + 𝛼Δ𝑥ll = 𝑥 + Δ𝑥ll − (1 − 𝛼)Δ𝑥ll = −𝛿−2Δ𝑠 − (1 − 𝛼)Δ𝑥ll .

Therefore, ���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞 𝑥

+
𝐽𝑞

〉��� = ���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 ,−𝛿−1

𝐽𝑞
Δ𝑠𝐽𝑞 − (1 − 𝛼)𝛿𝐽𝑞Δ𝑥ll

𝐽𝑞

〉���
≥ ∥𝛿−1

𝐽𝑞
Δ𝑠𝐽𝑞 ∥2 − (1 − 𝛼)

���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞Δ𝑥

ll
𝐽𝑞

〉��� .
By Lemma 4.5.2, there exists Δ�̄� ∈ 𝑊𝒥 ,1 × · · · ×𝑊𝒥 ,𝑝 such that ∥𝛿𝐽𝑞 (Δ𝑥ll

𝐽𝑞
− Δ�̄�𝐽𝑞 )∥ ≤ 2𝑛ℓ 𝛿(𝒥)√𝜇.

Therefore, using the orthogonality of Δ𝑠𝐽𝑞 and Δ�̄�𝐽𝑞 , we get that���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞Δ𝑥

ll
𝐽𝑞

〉��� = ���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞 (Δ𝑥ll

𝐽𝑞
− Δ�̄�ll

𝐽𝑞
)
〉��� ≤ 2𝑛ℓ 𝛿(𝒥)√𝜇 · ∥𝛿−1

𝐽𝑞
Δ𝑠𝐽𝑞 ∥ .

From the above inequalities, we see that

∥𝛿𝐽𝑞 (𝑥+𝐽𝑞 + 𝑤𝐽𝑞 )∥ ≥ ∥𝛿
−1
𝐽𝑞
Δ𝑠𝐽𝑞 ∥ − 2(1 − 𝛼)𝑛ℓ 𝛿(𝒥)√𝜇 =

√
𝜇𝜉ll
𝒥 − 2(1 − 𝛼)𝑛ℓ 𝛿(𝒥)√𝜇 .

It remains to show (1 − 𝛼)𝑛ℓ 𝛿(𝒥) ≤ 𝜉ll
𝒥/4. From Lemma 4.3.10(iv), we obtain

(1 − 𝛼)𝑛ℓ 𝛿(𝒥) ≤ 3𝑛3/2ℓ 𝛿(𝒥)𝜉ll
𝒥𝛽
−1 ,

using 𝜉ll
𝒥 ≥ 𝜀ll. The claim now follows by the assumption ℓ 𝛿(𝒥) ≤ 𝛾, and the choice of 𝛾. ■

Proof of Claim 1. Using Lemma 4.3.10(iv),

𝜇+ ≤
3
√
𝑛𝜉ll
𝒥𝜇

𝛽
,

implying ∥𝛿𝐽𝑞 (𝑥+𝐽𝑞 + 𝑤𝐽𝑞 )∥ ≥ 𝛽𝜇+/(6√𝑛𝜇) by Claim 2. Now the claim follows using (4.42) and (4.44).
■

By Lemma 4.6.1(ii), we see that

∥𝛿𝐽𝑞 𝑥+𝐽𝑞 ∥ ≤
√
𝑛∥𝛿𝐽𝑞 𝑥+𝐽𝑞 ∥∞ ≤

3
√
𝑛𝜇+
√
𝜇

.

Thus, the lemma follows immediately from Claim 1: for at least one 𝑖 ∈ 𝐽𝑞 , we must have

𝑥∗
𝑖

𝑥𝑖
≥
∥𝛿𝐽𝑞 𝑥∗𝐽𝑞 ∥
∥𝛿𝐽𝑞 𝑥+𝐽𝑞 ∥

≥ 𝛽

24𝑛 ≥
𝛽

16𝑛3/2 . □

Lemma 4.4.5 (Restatement). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/8], and let 𝒥 = (𝐽1 , . . . , 𝐽𝑝) be a
𝛿(𝑤)-balanced partition. Assume that 𝜉ll

𝒥 (𝑤) < 4𝛾𝑛, and let 𝑤+ = (𝑥+ , 𝑦+ , 𝑠+) ∈ 𝒩(2𝛽) be the next
iterate obtained by the LLS step with 𝜇+ = 𝜇(𝑤+) and assume 𝜇+ > 0. If ℓ 𝛿+(𝒥) > 4𝛾𝑛, then there exist
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two layers 𝐽𝑞 and 𝐽𝑟 and 𝑖 ∈ 𝐽𝑞 and 𝑗 ∈ 𝐽𝑟 such that 𝑥∗
𝑖
≥ 𝑥+

𝑖
/(8𝑛3/2), and 𝑠∗

𝑗
≥ 𝑠+

𝑗
/(8𝑛3/2). Further,

𝜚𝜇
+(𝑖 , 𝑗) ≥ −|𝐽𝑞 ∪ 𝐽𝑟 |, and for all ℓ , ℓ ′ ∈ 𝐽𝑞 ∪ 𝐽𝑟 , ℓ ≠ ℓ ′ we have Ψ𝜇(ℓ , ℓ ′) ≤ |𝐽𝑞 ∪ 𝐽𝑟 |.

Proof of Lemma 4.4.5. Recall the sets 𝔅 and 𝔑 defined in (4.41). The key is to show the existence of
an edge

(𝑖′, 𝑗′) ∈ 𝐸𝛿+ ,𝛾/(4𝑛) such that 𝑖′ ∈ 𝐽𝑞 ⊆ 𝔅, 𝑗′ ∈ 𝐽𝑟 ⊆ 𝔑, 𝑟 < 𝑞 . (4.46)

Before proving the existence of such 𝑖′ and 𝑗′, we show how the rest of the statements follow.
Note that 𝑥+ ≤ (1 − 𝛽)−1(1 + 2 · 2𝛽)𝑛𝑥 ≤ 7

4𝑛𝑥 by Lemma 4.3.3 and Proposition 4.3.1. Further, we
have ∥Rxll

𝐽𝑞
∥ − 2𝛾𝑛 ≥ 1

2 − 3
4𝛽 − 2𝛾𝑛 ≥ 2

5 by Lemma 4.3.10 (iii). The existence of 𝑖 ∈ 𝐽𝑞 such that
𝑥∗
𝑖
≥ 𝑥+

𝑖
/(8𝑛3/2) now follows immediately from Lemma 4.4.2, as there is an 𝑖 ∈ 𝐽𝑞 such that

𝑥∗𝑖 ≥
2𝑥𝑖
3
√
𝑛
· (∥Rxll

𝐽𝑞
∥ − 2𝛾𝑛) ≥ 2

3
√
𝑛

4𝑥+
𝑖

7𝑛
2
5 ≥

𝑥+
𝑖

8𝑛3/2 . (4.47)

With analogous argumentation it can be shown that there exists 𝑗 ∈ 𝐽𝑟 such that 𝑠∗
𝑗
≥ 𝑠+

𝑗
/(8𝑛3/2). The

other statements are that 𝜚𝜇+(𝑖 , 𝑗) ≥ −|𝐽𝑞 ∪ 𝐽𝑟 |, and for each ℓ , ℓ ′ ∈ 𝐽𝑞 ∪ 𝐽𝑟 , ℓ ≠ ℓ ′, Ψ𝜇(ℓ , ℓ ′) ≤ |𝐽𝑞 ∪ 𝐽𝑟 |.
According to Lemma 4.4.1, the latter is true (even with the stronger bound max{|𝐽𝑞 |, |𝐽𝑟 |}) whenever
ℓ , ℓ ′ ∈ 𝐽𝑞 , or ℓ , ℓ ′ ∈ 𝐽𝑟 , or if ℓ ∈ 𝐽𝑞 and ℓ ′ ∈ 𝐽𝑟 . It is left to show the lower bound on 𝜚𝜇

+(𝑖 , 𝑗) and
Ψ𝜇(ℓ , ℓ ′) ≤ |𝐽𝑞 ∪ 𝐽𝑟 | for ℓ ′ ∈ 𝐽𝑞 and ℓ ∈ 𝐽𝑟 .

From Lemma 4.6.1(iii), we have that if ℓ , ℓ ′ ∈ 𝐽𝑞 ⊆ 𝔅 or ℓ , ℓ ′ ∈ 𝐽𝑟 ⊆ 𝔑, then 𝜅𝛿
ℓℓ ′/4 ≤ 𝜅𝛿+

ℓℓ ′ . Hence,
the strong connectivity of 𝐽𝑟 and 𝐽𝑞 in 𝐺𝛿,𝛾 implies the strong connectivity of these sets in 𝐺𝛿+ ,𝛾/(4𝑛).
Together with the edge (𝑖′, 𝑗′), we see that every ℓ ′ ∈ 𝐽𝑞 can reach every ℓ ∈ 𝐽𝑟 on a directed
path of length ≤ |𝐽𝑞 ∪ 𝐽𝑟 | − 1 in 𝐺𝛿+ ,𝛾/(4𝑛). Applying Lemma 4.4.1 for this setting, we obtain
Ψ𝜇(ℓ , ℓ ′) ≤ 𝜚𝜇

+(ℓ , ℓ ′) ≤ |𝐽𝑞 ∪ 𝐽𝑟 | for all such pairs, and also 𝜚𝜇
+(𝑖 , 𝑗) ≥ −|𝐽𝑞 ∪ 𝐽𝑟 |.

The rest of the proof is dedicated to showing the existence of 𝑖′ and 𝑗′ as in (4.46). We let 𝑘 ∈ [𝑝]
such that ℓ 𝛿+(𝐽≥𝑘) = ℓ 𝛿

+(𝒥) > 4𝑛𝛾. To simplify the notation, we let 𝐼 = 𝐽≥𝑘 .
When constructing 𝒥 in Layering(𝛿, �̂�), the subroutine Verify-Lift(diag(𝛿)𝑊, 𝐼, 𝛾) was called

for the set 𝐼 = 𝐽≥𝑘 , with the answer ‘pass’. Besides ℓ 𝛿(𝐼) ≤ 𝛾, this guaranteed the stronger property
that max𝑗𝑖 |B𝑗𝑖 | ≤ 𝛾 for the matrix B implementing the lift (see Remark 4.2.3).

Let us recall how this matrix B was obtained. The subroutine starts by finding a minimal
𝐼′ ⊂ 𝐼 such that dim(𝜋𝐼′(𝑊)) = dim(𝜋𝐼(𝑊)). Recall that 𝜋𝐼′(𝑊) = R𝐼

′ and 𝐿𝛿
𝐼
(𝑝) = 𝐿𝛿

𝐼′(𝑝𝐼′) for every
𝑝 ∈ 𝜋𝐼(diag(𝛿)𝑊).

Consider the optimal lifting 𝐿𝛿
𝐼

: 𝜋𝐼(diag(𝛿)𝑊) → diag(𝛿)𝑊 . We defined 𝐵 ∈ R([𝑛]\𝐼)×𝐼′ as the
matrix sending any 𝑞 ∈ 𝜋𝐼′(diag(𝛿)𝑊) to the corresponding vector [𝐿𝛿

𝐼′(𝑞)][𝑛]\𝐼 . The column B𝑖 can
be computed as [𝐿𝛿

𝐼′(𝑒 𝑖)][𝑛]\𝐼 for 𝑒 𝑖 ∈ R𝐼′ .
We consider the transformation

B̄ ≔ diag(𝛿+𝛿−1)Bdiag
(
(𝛿+𝐼′)

−1𝛿𝐼′
)
.

This maps 𝜋𝐼′(diag(𝛿+)𝑊) → 𝜋[𝑛]\𝐼(diag(𝛿+)𝑊).
Let 𝑧 ∈ 𝜋𝐼(diag(𝛿+)𝑊) be the singular vector corresponding to the maximum singular value of

𝐿𝛿
+

𝐼
, namely, ∥[𝐿𝛿+

𝐼
(𝑧)][𝑛]\𝐼 ∥ > 4𝑛𝛾∥𝑧∥. Let us normalize 𝑧 such that ∥𝑧𝐼′ ∥ = 1. Thus,[𝐿𝛿+𝐼′ (𝑧𝐼′)][𝑛]\𝐼 > 4𝑛𝛾 .
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Let us now apply B̄ to 𝑧𝐼′ ∈ 𝜋𝐼′(diag(𝛿+)𝑊). Since 𝐿𝛿+
𝐼

is the minimum-norm lift operator, we see
that B̄𝑧𝐼′

 ≥ [𝐿𝛿+𝐼′ (𝑧𝐼′)]𝑛\𝐼 > 4𝑛𝛾 .

We can upper bound the operator norm by the Frobenius norm ∥B̄∥ ≤ ∥B̄∥𝐹 =

√∑
𝑗𝑖 B̄𝑗𝑖

2 ≤
𝑛max𝑗𝑖 |�̄� 𝑗𝑖 |, and therefore

max
𝑗𝑖
|B̄𝑗𝑖 | > 4𝛾 .

Let us fix 𝑖′ ∈ 𝐼′ and 𝑗′ ∈ [𝑛] \ 𝐼 as the indices giving the maximum value of B̄. Note that
B̄𝑗′𝑖′ = B𝑗′𝑖′𝛿

+
𝑗′𝛿𝑖′/(𝛿

+
𝑖′𝛿 𝑗′).

Let us now use Lemma 3.3.9 for the pair 𝑖′, 𝑗′, the matrix B and the subspace diag(𝛿)𝑊 . Noting
that B𝑗′𝑖′ = [𝐿𝛿𝐼′(𝑒 𝑖

′)]𝑗′ , we obtain 𝜅𝛿
𝑖′ 𝑗′ ≥ |B𝑗′𝑖′ |. Now,

𝜅𝛿+

𝑖′ 𝑗′ = 𝜅𝛿
𝑖′ 𝑗′ ·

𝛿+𝑗′𝛿𝑖′

𝛿+𝑖′𝛿 𝑗′
≥ |B𝑗′𝑖′ | ·

𝛿+𝑗′𝛿𝑖′

𝛿+𝑖′𝛿 𝑗′
= |B̄𝑗′𝑖′ | > 4𝛾 . (4.48)

The next claim finishes the proof.

Claim 4.6.1.1. For 𝑖′ and 𝑗′ selected as above, (4.46) holds.

Proof. (𝑖′, 𝑗′) ∈ 𝐸𝛿+ ,𝛾/(4𝑛) holds by (4.48). From the above, we have

|B𝑗′𝑖′ | > 4𝛾 ·
𝛿+𝑖′𝛿 𝑗′

𝛿𝑖′𝛿
+
𝑗′
.

According to Remark 4.2.3, |B𝑗′𝑖′ | ≤ 𝛾 follows since Verify-Lift(diag(𝛿)𝑊, 𝐼, 𝛾) returned with
‘pass’. We thus have

𝛿+𝑖′𝛿 𝑗′

𝛿𝑖′𝛿
+
𝑗′
<

1
4 .

Lemma 4.6.1 excludes the scenarios 𝑖′, 𝑗′ ∈ 𝔑, 𝑖′, 𝑗′ ∈ 𝔅, and 𝑖′ ∈ 𝔑, 𝑗′ ∈ 𝔅, leaving 𝑖′ ∈ 𝔅 and 𝑗′ ∈ 𝔑
as the only possibility. Therefore, 𝑖′ ∈ 𝐽𝑞 ⊆ 𝔅 and 𝑗′ ∈ 𝐽𝑟 ⊆ 𝔑. We have 𝑟 < 𝑞 since 𝑖 ∈ 𝐼 = 𝐽≥𝑘 and
𝑗 ∈ [𝑛] \ 𝐼 = 𝐽<𝑘 . □

4.7 Initialization

Our main algorithm (Algorithm 4.2 in Section 4.3.6), requires an initial solution 𝑤0 = (𝑥0 , 𝑦0 , 𝑠0) ∈
𝒩(𝛽). In this section, we remove this assumption by adapting the initialization method of [VY96]
to our setting.
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4 SCALING-INVARIANT IPM 4.7 Initialization

We use the “big-𝑀 method”, a standard initialization approach for path-following interior point
methods that introduces an auxiliary system whose optimal solutions map back to the optimal
solutions of the original system. The primal-dual system we consider is

min 𝑐⊤𝑥+𝑀1⊤
¯
𝑥 max 𝑦⊤𝑏 + 2𝑀1⊤𝑧

A𝑥 −A
¯
𝑥 = 𝑏 A⊤𝑦 + 𝑧 + 𝑠 = 𝑐

𝑥 + �̄� = 2𝑀1 𝑧 + 𝑠 = 0

𝑥, �̄�,
¯
𝑥 ≥ 0 −A⊤𝑦 +

¯
𝑠 = 𝑀1

𝑠, 𝑠,
¯
𝑠 ≥ 0.

(Init-LP)

The constraint matrix used in this system is

Â =

[
A −A 0
I 0 I

]
The next lemma asserts that the �̄� condition number of Â is not much bigger than that of A of the
original system 1.1.

Lemma 4.7.1 ([VY96, Lemma 23]). �̄�Â ≤ 3
√

2(�̄� + 1).

We extend this bound for �̄�∗.

Lemma 4.7.2. �̄�∗Â ≤ 3
√

2(�̄�∗A + 1).

Proof. Let D ∈ 𝔇𝑛 and let D̂ ∈ 𝔇3𝑛 the matrix consisting of three copies of D, i.e.

D̂ =


D 0 0
0 D 0
0 0 D

 .
Then

ÂD̂ =

[
AD −AD 0
D 0 D

]
.

Row-scaling does not change �̄� as the kernel of the matrix remains unchanged. Thus, we can
rescale the last 𝑛 rows of �̂��̂�, to the identity matrix, i.e., multiplying by

[
I D−1

]
from the left

hand side. We observe that

�̄��̂��̂� = �̄�

([
AD −AD 0

I 0 I

])
≤ 3
√

2(�̄�AD + 1)

where the inequality follows from Lemma 4.7.1. The lemma now readily follows as

�̄�∗
Â
= inf

{
�̄�ÂD̂ : D ∈ 𝔇3𝑛

}
≤ inf

{
3
√

2(�̄�AD + 1) : D ∈ 𝔇𝑛

}
= 3
√

2(�̄�∗A + 1). □

We show next that the optimal solutions of the original system are preserved for sufficiently
large 𝑀. We let 𝑑 be the min-norm solution to A𝑥 = 𝑏, i.e., 𝑑 = A⊤(AA⊤)−1𝑏.

Proposition 4.7.3. Assume both primal and dual of System 1.1 are feasible, and 𝑀 > max{(�̄�A +
1)∥𝑐∥ , �̄�A∥𝑑∥}. Every optimal solution (𝑥, 𝑦, 𝑠) to System 1.1, can be extended to an optimal solution
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(𝑥,
¯
𝑥, �̄�, 𝑦, 𝑧, 𝑠,

¯
𝑠, 𝑠) to (Init-LP); and conversely, from every optimal solution (𝑥,

¯
𝑥, �̄�, 𝑦, 𝑧, 𝑠,

¯
𝑠, 𝑠) to

(Init-LP), we obtain an optimal solution (𝑥, 𝑦, 𝑠) by deleting the auxiliary variables.

Proof. If system System 1.1 is feasible, it admits a basic optimal solution (𝑥∗ , 𝑦∗ , 𝑠∗) with basis 𝐵
such that A𝐵𝑥

∗
𝐵
= 𝑏, 𝑥∗ ≥ 0,A⊤

𝐵
𝑦∗ = 𝑐 and A⊤𝑦∗ ≤ 𝑐. Using Proposition 3.3.1 we see that

∥𝑥∗𝐵∥ = ∥A
−1
𝐵 𝑏∥ = ∥A

−1
𝐵 A𝑑∥ ≤ �̄�A∥𝑑∥ < 𝑀 , (4.49)

and using that ∥A∥ = ∥A⊤∥ we observe

∥A⊤𝑦∗∥ = ∥A⊤A−⊤𝐵 𝑐∥ ≤ ∥A⊤A−⊤𝐵 ∥∥𝑐∥ = ∥A
−1
𝐵 A∥∥𝑐∥ ≤ �̄�∥𝑐∥ < 𝑀. (4.50)

We can extend this solution to a solution of system (Init-LP) via setting �̄�∗ = 2𝑀1 − 𝑥∗ ,
¯
𝑥∗ = 0, 𝑧∗ =

𝑠∗ = 0 and
¯
𝑠∗ = 𝑀1 + A⊤𝑦∗. Observe that �̄�∗ > 0 and

¯
𝑠∗ > 0 by (4.49) and (4.50). Furthermore

observe that by complementary slackness this extended solution for (Init-LP) is an optimal solution.
The property that

¯
𝑠∗ > 0 immediately tells us that

¯
𝑥 vanishes for all optimal solutions of (Init-LP)

and thus all optimal solutions of System 1.1 coincide with the optimal solutions of (Init-LP), with
the auxiliary variables removed. □

The next lemma is from [MT03, Lemma 4.4]. Recall that 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒩(𝛽) if ∥𝑥𝑠/𝜇(𝑤)− 𝑒∥ ≤ 𝛽.

Lemma 4.7.4. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ 𝒫++ × 𝒟++, and let 𝜈 > 0. Assume that ∥𝑥𝑠/𝜈 − 𝑒∥ ≤ 𝜏. Then
(1 − 𝜏/

√
𝑛)𝜈 ≤ 𝜇(𝑤) ≤ (1 + 𝜏/

√
𝑛)𝜈 and 𝑤 ∈ 𝒩(𝜏/(1 − 𝜏)).

The new system has the advantage that we can easily initialize the system with a feasible solution
in close proximity to central path:

Proposition 4.7.5. We can initialize system (Init-LP) close to the central path with initial solution
𝑤0 = (𝑥0 , 𝑦0 , 𝑠0) ∈ 𝒩(1/8) and parameter 𝜇(𝑤0) ≈ 𝑀2 if 𝑀 > 15 max{(�̄�A + 1)∥𝑐∥ , �̄�A∥𝑑∥}.

Proof. The initialization follows along the lines of [VY96, Section 10]. We let 𝑑 as above, and set

�̄�0 = 𝑀1, 𝑥0 = 𝑀1,
¯
𝑥0 = 𝑀1 − 𝑑

𝑦0 = 0, 𝑧0 = −𝑀1

𝑠0 = 𝑀1, 𝑠0 = 𝑀1 + 𝑐,
¯
𝑠0 = 𝑀1.

This is a feasible primal-dual solution to system (Init-LP) with parameter

𝜇0 = (3𝑛)−1(
〈
𝑥0 , 𝑠0〉 + 〈

¯
𝑥0 ,
¯
𝑠0〉 + 〈

�̄�0 , 𝑠0〉) = (3𝑛)−1(3𝑛𝑀2 +𝑀𝑐⊤1 −𝑀𝑑⊤1) ≈ 𝑀2 .

We see that  1
𝑀2


�̄�0𝑠0

𝑥0𝑠0

¯
𝑥0
¯
𝑠0

 − 1


2

= 𝑀−2∥𝑐∥2 +𝑀−2∥𝑑∥2 ≤ 1
92�̄�2

A
≤ 1

92 .

With Lemma 4.7.4 we conclude that 𝑤0 = (𝑥0 , 𝑦0 , 𝑠0) ∈ 𝒩
(

1/9
1−1/9

)
= 𝒩(1/8). □

Detecting infeasibility. To use the extended system (Init-LP), we still need to assume that both
the primal and dual programs in System 1.1 are feasible. For arbitrary instances, we first need to
check if this is the case, or conclude that the primal or the dual (or both) are infeasible.

98



4 SCALING-INVARIANT IPM 4.7 Initialization

This can be done by employing a two-phase method. The first phase decides feasibility by running
(Init-LP) with data (A, 𝑏, 0) and 𝑀 > �̄�A∥𝑑∥1. The objective value of the optimal primal-dual
pair is 0 if and only if System 1.1 has a feasible solution. If the optimal primal/dual solution
(𝑥∗ ,
¯
𝑥∗ , �̄�∗ , 𝑦∗ , 𝑧∗ , 𝑠∗ ,

¯
𝑠∗ , 𝑠∗) has positive objective value, we can extract an infeasibility certificate in

the following way.
We can w.l.o.g. assume that 𝑥∗ is supported on some basis 𝐵 of A. Note that the objective function

of the primal is equivalent to ∥
¯
𝑥∥1. Therefore, ∥

¯
𝑥∗∥1 ≤ −

∑
𝑖:𝑑𝑖<0 𝑑𝑖 ≤ ∥𝑑∥1 and so ∥

¯
𝑥∗∥ ≤ ∥𝑑∥1. Due

to the constraint A𝑥∗ −A
¯
𝑥∗ = 𝑏 = A𝑑 we get that

∥𝑥∗∥ = ∥B−1A(𝑑 +
¯
𝑥∗)∥ ≤ ∥B−1A∥(∥𝑑∥ + ∥

¯
𝑥∗∥) ≤ 2�̄�A∥𝑑∥1. (4.51)

Therefore, if 𝑀 > �̄�A∥𝑑∥1, then �̄�∗ = 2𝑀1 − ∥𝑥∗∥ > 0 so by strong duality, 𝑠∗ = 0. From the dual,
we conclude that 𝑧∗ = 0, and therefore A⊤𝑦∗ ≤ A⊤𝑦∗ + 𝑠∗ + 𝑧∗ = 𝑐 = 0. On the other hand, by
assumption the objective value of the dual is positive, and so (𝑦∗)⊤𝑏 ≥ (𝑦∗)⊤𝑏 + 2𝑀𝑒⊤𝑧∗ > 0. Hence,
𝑦∗ is the desired certificate.

Feasibility of the dual of System 1.1 can be decided by running (Init-LP) on data (A, 0, 𝑐) and
𝑀 > (�̄�A + 1)∥𝑐∥ with the same argumentation: Either the objective value of the dual is 0 and
therefore the dual optimal solution (𝑦∗ , 𝑧∗ ,

¯
𝑠∗ , 𝑠∗ , 𝑠∗) corresponds to a feasible dual solution of

System 1.1 or the objective value is negative and we extract a dual infeasibility certificate in the
following way: For the optimal corresponding primal solution (𝑥∗ ,

¯
𝑥∗ , �̄�∗)we have by assumption

⟨𝑐, 𝑥∗⟩ ≤ ⟨𝑐, 𝑥∗⟩ + ⟨𝑀1,
¯
𝑥∗⟩ < 0. Furthermore, w.l.o.g. the support of 𝑠∗ is contained in a basis

which allows us to conclude that
¯
𝑠∗ > 0 and therefore

¯
𝑥∗ = 0. So we have A𝑥∗ = 0 +A

¯
𝑥∗ = 0, which

together with ⟨𝑐, 𝑥∗⟩ < 0 yields the certificate of dual infeasibility.

Finding the right value of 𝑀. While Algorithm 4.2 does not require any estimate on �̄�∗ or �̄�, the
initialization needs to set 𝑀 ≥ max{(�̄�A + 1)∥𝑐∥ , �̄�A∥𝑑∥} as in Proposition 4.7.3.

A straightforward guessing approach (attributed to J. Renegar in [VY96]) starts with a constant
guess, say �̄�A = 100, constructs the extended system, and runs the algorithm. In case the optimal
solution to the extended system does not map to an optimal solution of System 1.1, we restart with
�̄�A = 1002 and try again; we continue squaring the guess until an optimal solution is found.

This would still require a series of log log �̄�A guesses, and thus, result in a dependence on �̄�A

in the running time. However, if we initially rescale our system using the near-optimal rescaling
Theorem 3.4.7, then we can turn the dependence from �̄�A to �̄�∗A. The overall iteration complexity
remains 𝑂(𝑛2.5 log 𝑛 log(�̄�∗A + 𝑛)), since the running time for the final guess on �̄�∗A dominates the
total running time of all previous computations due to the repeated squaring.

An alternative approach, that does not rescale the system, is to use Theorem 3.4.7 to approximate
�̄�A. In this case we repeatedly square a guess of �̄�∗A instead of �̄�A which takes 𝑂(log log �̄�∗A)
iterations until our guess corresponds to a valid upper bound for �̄�A.

Note that either guessing technique can handle bad guesses gracefully. For the first phase, if
neither a feasible solution to System 1.1 is returned nor a Farkas’ certificate can be extracted, we
have proof that the guess was too low by the above paragraph. Similarly, in phase two, when
feasibility was decided in the affirmative for primal and dual, an optimal solution to (Init-LP) that
corresponds to an infeasible solution to System 1.1 serves as a certificate that another squaring of
the guess is necessary.
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5 Interior Point Methods are not worse
than Simplex

Whereas interior point methods provide polynomial-time linear programming algo-
rithms, the running time bounds depend on bit-complexity or condition measures
that can be unbounded in the problem dimension. This is in contrast with the simplex
method that always admits an exponential bound. We introduce a new polynomial-
time path-following interior point method where the number of iterations also admits
a combinatorial upper bound 𝑂(2𝑛𝑛1.5 log 𝑛) for an 𝑛-variable linear program in stan-
dard form. This complements previous work by [ABGJ18] that exhibited a family of
instances where any path-following method must take exponentially many iterations.

The number of iterations of our algorithm is at most 𝑂(𝑛1.5 log 𝑛) times the number of
segments of any piecewise linear curve in the wide neighborhood of the central path.
In particular, it matches the number of iterations of any path following interior point
method up to this polynomial factor. The overall exponential upper bound derives
from studying the ‘max central path’, a piecewise-linear curve with the number of
pieces bounded by the total length of 2𝑛 shadow vertex simplex paths.

From the existence of a line segment in the wide neighborhood we derive strong
implications on the structure of the corresponding segment of the central path. Our
algorithm is able to detect this structure from the local geometry at the current
iterate, and constructs a step direction that descends along this segment. The
bound 𝑂(𝑛1.5 log 𝑛) that applies for arbitrarily long line segments is derived from a
combinatorial progress measure.

Our algorithm falls into the family of layered least squares interior point methods
introduced by Vavasis and Ye [VY96]. In contrast to previous layered least squares
methods that partition the kernel of the constraint matrix into coordinate subspaces,
our method creates layers based on a general subspace providing more flexibility. Our
result also implies the same bound on the number of iterations of the trust region
interior point method by Lan, Monteiro, and Tsuchiya [LMT09].

This chapter is based on joint work with Daniel Dadush, Georg Loho, László A. Végh,
and Xavier Allamigeon [All+22].
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5.1 Introduction

In this chapter, we explore connections between interior point methods and the simplex method,
the two most commonly used classes of algorithms for linear programming. We consider linear
programming (LP) in the primal-dual form as in System 1.1. We let

𝒫 = { 𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 𝑥 ≥ 0 } , 𝒟 =
{
𝑠 ∈ R𝑛 : ∃𝑦 : A⊤𝑦 + 𝑠 = 𝑐, 𝑠 ≥ 0

}
denote the primal and dual feasible regions. Our focus is on LP algorithms that find exact primal
and dual optimal solutions.

Breakthrough developments in the the seventies and eighties led to the first polynomial-time
algorithms for linear programming: the ellipsoid method by Khachiyan [Kha79], and interior point
methods introduced by Karmarkar [Kar84]. The running time of these algorithms is poly(𝑛, 𝐿),
where 𝐿 denotes the encoding-length 𝐿 of the rational input (A, 𝑏, 𝑐) of LP.

Even though LPs with exponential encoding length do not frequently appear in practice, there are
examples when the binary encoding is exponential yet one could efficiently implement arithmetic
operations using a different encoding, see Megiddo [Meg82]. The net present value problem
in project scheduling is a particular example of a natural optimization problem that can be
reformulated as an LP of exponential encoding length, see Grinold [Gri72]. From a theoretical
perspective, finding an interior point method with an absolute bound 𝑓 (𝑛) on the number of
iterations connects to the fundamental open question on finding a strongly polynomial algorithm
to solve linear programming. Besides being polynomial time, such an algorithm must achieve a
number of arithmetic operations in poly(𝑚, 𝑛). This question takes its roots in the development of
the simplex method, and appears in Smale’s list of open problems for the 21st century [Sma98].

Interior point methods and the central path. Whereas the simplex method moves on the
boundary of the feasible region 𝒫, interior point methods (IPM) reach an optimal solution by
iterating through the strict interior of 𝒫. Path-following interior point methods are driven to an
optimal point by following a smooth trajectory called the central path. Recall the most standard
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setting [Ren88], where the latter is defined as the parametric curve 𝜇 ∈ (0,∞) ↦→ 𝑧(𝜇) B (𝑥(𝜇), 𝑠(𝜇)),
where 𝑥(𝜇) and (𝑦(𝜇), 𝑠(𝜇)) are the unique solutions to the system

A𝑥(𝜇) = 𝑏 , 𝑥(𝜇) > 0

A⊤𝑦(𝜇) + 𝑠(𝜇) = 𝑐 , 𝑠(𝜇) > 0

𝑥(𝜇)𝑖𝑠(𝜇)𝑖 = 𝜇 for all 𝑖 ∈ [𝑛] .
(5.1)

This system arises from the optimality conditions of convex problems obtained by penalizing the
original linear programs with the logarithmic barrier, i.e., respectively adding terms of the form
−𝜇∑𝑛

𝑖=1 log 𝑥𝑖 and 𝜇
∑𝑛
𝑖=1 log 𝑠𝑖 to the objective functions of the primal and dual LP. The weight of

the penalty is given by the parameter 𝜇 > 0. When 𝜇↘ 0, the central path 𝑧(𝜇) converges to a pair
of optimal solutions (𝑥★, 𝑠★) of LP, which can be easily deduced from the fact that the duality gap
of 𝑧(𝜇) is given by ⟨𝑐, 𝑥(𝜇)⟩ − ⟨𝑏, 𝑦(𝜇)⟩ = ⟨𝑥(𝜇), 𝑠(𝜇)⟩ = 𝑛𝜇. Accordingly, we define the quantity
𝜇(𝑧) B ⟨𝑥, 𝑠⟩/𝑛 for any feasible point 𝑧 = (𝑥, 𝑠) ∈ 𝒫 ×𝒟, which we refer to as the normalized duality
gap of 𝑧.

Interior point methods iteratively compute approximations of the points on the central path
associated with successive values of 𝜇 that decrease geometrically; at most 𝑂(

√
𝑛 log(𝜇/𝜇′))

iterations are needed to decrease the normalized duality gap from 𝜇 to 𝜇′. The iterations follow
an improvement direction, e.g., a Newton step, while remaining in a certain neighborhood of the
central path, and can be implemented in polynomial time. The classical analysis yields a running
time 𝑂(𝑛3.5𝐿) for solving LP for a rational input (A, 𝑏, 𝑐) of total encoding length 𝐿. There have
been significant improvements in recent years both for general LP as well as for special classes, see
Section 5.1.3.

A running time bound dependent on 𝐿 requires a rational input; in contrast, the simplex method
can be implemented in 2𝑛poly(𝑛) even in the real model of computation. Whereas standard IPMs
use bit-complexity arguments to terminate, they have also been extended to the real model of
computation, e.g., by Vavasis and Ye [VY95]. The running time of such algorithms is parametrized
by condition numbers that capture geometric properties of the input. In a remarkable paper,
Vavasis and Ye [VY96] introduced a layered least squares (LLS) interior point method that runs in
𝑂(𝑛3.5 log(�̄�A + 𝑛)) iterations, where �̄�A is the Dikin–Stuart–Todd condition number associated
with the kernel of A (but .independent of 𝑏 and 𝑐). As a consequence, they also derive a structural
characterization of the central path: there are at most

(𝑛
2
)

‘short and curved’ segments, possibly
separated by ‘long and straight’ segments. The LLS directions are refined Newton steps that can
traverse the latter segments.

Lan, Monteiro and Tsuchiya [LMT09] gave a scaling invariant trust region IPM taking𝑂(𝑛3.5 log(�̄�∗A+
𝑛)) iterations. Here, �̄�∗A is the minimum value of �̄�A that can be achieved by any column rescaling.
However, computing the step directions in this algorithm has a weakly polynomial dependence on
the right hand side. In Chapter 4 we desribed the scaling invariant LLS algorithm of [DHNV20]
with iteration bound 𝑂(𝑛2.5 log(𝑛) log(�̄�∗A + 𝑛)), where the step directions can be computed in
strongly polynomial time, by solving linear systems. We discuss the literature on such IPM methods
in more detail in Section 5.1.3.

Lower bounds on interior point methods. LLS methods provide strongly polynomial LP algo-
rithms whenever �̄�∗A ∈ 2poly(𝑛); this is always the case if the encoding-length of A is polynomially
bounded. One may wonder if some variant of IPM could be strongly polynomial for all LPs. A
negative answer to this question was given in recent work by Allamigeon, Benchimol, Gaubert,
and Joswig: they used tropical geometry to build pathological linear programs on which the
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number of iterations of IPM has to be exponential (in 𝑚, 𝑛) [ABGJ18; ABGJ21]. Their construction
shows that, when the entries of A, 𝑏, and 𝑐 are of very different orders of magnitude, the central
path can be significantly deformed to the boundary of the feasible set. Allamigeon, Gaubert
and Vandame later extended this result to the broad class of path-following IPMs using any
self-concordant barrier function [AGV22]. They exhibited a counterexample where the feasible
set is an 𝑛-dimensional combinatorial cube and the shape of the central path is analogous to the
simplex paths on pathological instances of LP for the simplex method, akin to the Klee–Minty
cube [KM72].

The shadow vertex simplex rule. We introduce a new IPM in this chapter whose analysis can
be related to the shadow vertex simplex rule. Originally dubbed ‘parametric simplex’ by Gass
and Saaty [GS55], this is one of the most extensively analyzed simplex rules from a theoretical
perspective. The shadow vertex rule was used in Borgwardt’s average case analysis [Bor12] and
in Spielman and Teng’s smoothed analysis [ST04b]. The interested reader may refer to the recent
survey for a detailed exposition [DH20].

Given a pointed polyhedron 𝒫 ⊆ R𝑛 and two objectives 𝑐(1) , 𝑐(2) ∈ R𝑛 , the shadow vertex rule
consists in iterating over the vertices of 𝒫 successively maximizing the objectives (1 − 𝜆)𝑐(1) + 𝜆𝑐(2)
as 𝜆 goes from 0 to 1. Under non-degeneracy assumptions, the vertices of the path correspond to
those vertices of the two-dimensional projection

{(〈
𝑐(1) , 𝑥

〉
,
〈
𝑐(2) , 𝑥

〉)
: 𝑥 ∈ 𝒫

}
that maximize some

open interval of objectives (1 − 𝜆)𝑒1 + 𝜆𝑒2, 𝜆 ∈ [0, 1] (where 𝑒1 and 𝑒2 stand for the unit vectors of
R2). We denote by 𝑆𝒫(𝑐(1) , 𝑐(2)) the number of vertices of the projection of the simplex path in this
two-dimensional projection; this corresponds to the number of non-degenerate pivots.

5.1.1 Contributions

The purpose of this work is to establish a natural connection between the complexity of IPM and
that of the simplex method, and deduce combinatorial bounds on the number of iterations. To this
end, we introduce an interior point method called IPM with subspace LLS (see Algorithm 5.1),
whose number of iterations is, up to a factor 𝑂(𝑛1.5 log 𝑛), bounded by the number of pieces of
any piecewise linear curve contained a wide neighborhood of the central path. This neighborhood is
defined as

𝒩−∞(𝜃) ≔ { 𝑧 = (𝑥, 𝑠) ∈ 𝒫 × 𝒟 : 𝑥𝑠 ≥ (1 − 𝜃)𝜇(𝑧)1 } , (0 < 𝜃 < 1) (5.2)

where 𝑥𝑠 ∈ R𝑛 denotes the Hadamard-product and 1 ∈ R𝑛 is the 𝑛-dimensional all-one vector.
Our algorithm will however navigate through the narrower ℓ2-neighborhood of the central path:

𝒩(𝛽) B
{
𝑧 = (𝑥, 𝑠) ∈ 𝒫 × 𝒟 :

 𝑥𝑠

𝜇(𝑧) − 1
 ≤ 𝛽

}
, (0 < 𝛽 < 1/4) . (5.3)

Theorem 5.1.1. Assume that there exists Γ : (0, 𝜇0) → 𝒩−∞(𝜃), 𝜃 ∈ (0, 1), a piecewise linear curve
satisfying 𝜇(Γ(𝜇)) = 𝜇, ∀𝜇 ∈ (0, 𝜇0). Starting from any point 𝑧0 ∈ 𝒩(𝛽) such that 𝜇(𝑧0) ≤ 𝜇0, the
algorithm IPM with subspace LLS finds an optimal solution of LP in 𝑂(𝑛1.5 log( 𝑛

1−𝜃 )𝑇), where 𝑇 is the
number of linear segments in Γ.

At a high level, our strategy is to show that any ‘somewhat straight’ segment of the central path,
corresponding to a single straight segment in the wide neighborhood𝒩−∞(𝜃), can be decomposed
into at most 𝑛 short segments of length poly(𝑛/(1 − 𝜃)) (as measured by the ratio of the start and
end parameter), where consecutive short segments are possibly separated by ‘long and straight’
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segments. To traverse the long and straight segments we develop a novel subspace LLS step, which
generalizes prior LLS steps from coordinate subspaces to general ones. Before describing this in
more details, we present two applications of Theorem 5.1.1.

An exponential upper bound on the number of iterations. The first application relies on a
piecewise linear curve that we call the max central path, and that is related with 2𝑛 simplex paths. It
is defined as the parametric curve 𝑔 ↦→ 𝑧𝔪(𝑔) B (𝑥𝔪(𝑔), 𝑠𝔪(𝑔)) ∈ R2𝑛

+ , where 𝑥𝔪
𝑖
(𝑔) and 𝑠𝔪

𝑖
(𝑔) are

the optimal values of the following parametric LP, respectively:

max 𝑥𝑖
A𝑥 = 𝑏 , 𝑥 ≥ 0

⟨𝑐, 𝑥⟩ ≤ 𝑣★ + 𝑔 ,

max 𝑠𝑖
A⊤𝑦 + 𝑠 = 𝑐 , 𝑠 ≥ 0

⟨𝑏, 𝑦⟩ ≥ 𝑣★ − 𝑔 ,
(5.4)

where we denote by 𝑣★ the optimal value of LP. As we show in Section 5.5, the maps 𝑥𝔪
𝑖
(𝑔) and

𝑠𝔪
𝑖
(𝑔) are piecewise linear, and the number of pieces can be related to the complexity of the simplex

method with the shadow vertex rule.

𝑥1

𝑥2

Figure 5.1: The max-central path in the coordinates (𝑥1 , 𝑥2)with cost function 𝑥1+𝑥2. Dashed lines correspond
to level sets at breakpoints.

Recall that (𝑥★, 𝑠★) is the optimal solution of LP at the central path limit point, and 𝑆𝒫(−𝑠★, 𝑒 𝑖)
and 𝑆𝒟(−𝑥★, 𝑒 𝑖) denote the number of nondegenerate pivots in the primal and dual shadow vertex
paths for the indicated objective functions. We let𝒱𝒫 and𝒱𝒟 denote the number of vertices of the
primal and dual feasible polytopes, respectively.

In Lemma 5.5.4, we show that the number of pieces in the max-central path is bounded by
the sum of the quantities 𝑆𝒫(−𝑠★, 𝑒 𝑖) and 𝑆𝒟(−𝑥★, 𝑒 𝑖) for 𝑖 ∈ [𝑛]. Whereas the max-central path
does not necessarily lie in the primal-dual feasible set 𝒫 × 𝒟, we prove that the corresponding
shadow-vertex paths induce a piecewise linear curve in the wide neighborhood 𝒩−∞(𝜃), for
𝜃 = 1 − 1

2𝑛 , with the same number of pieces; see Theorem 5.5.6 and an illustration in Figure 5.2. As
a consequence, we obtain the following bound:
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Theorem 5.1.2. From any point 𝑧0 ∈ 𝒩(𝛽), the algorithm IPM with subspace LLS finds an optimal solution
of LP in a number of iterations bounded by

𝑂

(
𝑛1.5 log 𝑛 min

{
𝑛∑
𝑖=1

𝑆𝒫(−𝑠★, 𝑒 𝑖) + 𝑆𝒟(−𝑥★, 𝑒 𝑖),𝒱𝒫 +𝒱𝒟

})
.

This in particular implies an 𝑂(2𝑛𝑛1.5 log 𝑛) iteration bound for IPM with subspace LLS. The-
orem 5.1.2 thus complements the results of [ABGJ18; ABGJ21] by giving a singly exponential
upper bound. We note that the max central path also plays an important if implicit role in the
papers [ABGJ18; ABGJ21; AGV22], as it can be directly related to the tropical central path by the
log-limit, see discussion in Section 5.1.3.

Theorem 5.1.2 assumes that a feasible starting point 𝑧0 ∈ 𝒩(𝛽) is given. This assumption can be
removed e.g. by using the standard homogeneous self-dual embedding [Ye97, Section 5.3.1]. Then,
the bounds in the theorem will refer to the shadow vertex paths and the number of vertices in the
self-dual program.

Matching the complexity of any path following method. The second implication of Theorem 5.1.1
provides polynomial-time bounds in case the bit-complexity or a condition number such as �̄�∗A is
bounded. We show that—apart from a factor 𝑂(𝑛1.5 log 𝑛

1−𝜃 )—the number of iterations of IPM
with subspace LLS is at most that of any IPM that stays in the wide neighborhood.

Indeed, any IPM induces a piecewise linear curve formed by the line segments between the
successive iterates. Already the wide neighborhood𝒩−∞(1/2) is known to contain this piecewise
linear curve for a large class of IPM based on the logarithmic barrier; we refer to [ABGJ18, Section 2]
for a detailed discussion. We note that our algorithm matches—up to a polynomial factor—even
any IPM that only stays in the extremely wide neighbourhood𝒩−∞

(
1 − 1/2poly(𝑛)

)
.

Theorem 5.1.3. Suppose that an IPM reduces the duality gap from 𝜇0 to 𝜇1 ≥ 0 in 𝑇 iterations staying
throughout in the wide neighborhood 𝒩−∞(𝜃) for some 0 < 𝜃 < 1. Then, from any point 𝑧0 ∈ 𝒩(𝛽)
satisfying 𝜇(𝑧0) ≤ 𝜇0, the algorithm IPM with subspace LLS finds a solution 𝑧1 with 𝜇(𝑧1) ≤ 𝜇1 in at most
𝑂(𝑛1.5 log( 𝑛

1−𝜃 )𝑇) iterations.

Comparison to the Trust Region IPM. IPM with subspace LLS also has an interesting relation to
the Trust Region IPM algorithm by Lan, Monteiro, and Tsuchiya [LMT09]. The trust region steps
are obtained as optimal solutions to primal and dual quadratic programs (5.6). These programs in
essence capture the longest possible step achievable at the current point (up to a certain factor).
However, solving these programs to sufficient accuracy requires weakly polynomial dependence
on the input. Lan, Monteiro, and Tsuchiya show in [LMT09] that the number of iterations of the
trust region algorithm can be bounded as 𝑂(𝑛3.5 log(�̄�∗A + 𝑛)), by adapting the analysis of the LLS
methods [MT03; VY96].

The step directions used by our algorithm are feasible solutions to (5.6) for a suitable parameter.
This implies that the steps of the Trust Region algorithm are always at least as long as the steps
in our algorithm; as a consequence, the iteration bounds of our algorithm are also applicable to
the Trust Region algorithm. Whereas any individual step of our algorithm could be arbitrarily
worse than the one using the trust region step, Theorem 5.1.3 implies that overall we may only
take 𝑂(𝑛1.5 log 𝑛)more iterations. We emphasize that [LMT09] only provides the �̄�∗A dependent
iteration bound, and we do not see any obvious ways to obtain any 𝑓 (𝑛) bound on their algorithm,
other than comparing it to IPM with subspace LLS.
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A further advantage of our algorithm is that the iterations can be implemented in strongly
polynomial time, using simple projection steps. The description of this chapter requires a subspace
𝑉 that can be obtained as a singular value subspace from a singular value decomposition. However,
it suffices to compute rough approximations on the singular values, see Section 5.4.1.

5.1.2 Techniques

We now explain the key ideas behind the proof of Theorem 5.1.1.

Polarization of the Central Path

The first idea underlying to the proof is the following: every linear segment in the wide neighborhood
gives rise to a polarized segment of the central path. A segment of the central path CP[𝜇1 , 𝜇0] ≔
{ 𝑧(𝜇) : 𝜇 ∈ [𝜇1 , 𝜇0] }, 0 ≤ 𝜇0 < 𝜇1, is polarized if it admits a partition 𝐵 ∪· 𝑁 = [𝑛] such that the
primal variables in 𝐵 are essentially fixed and those in 𝑁 are scaling down linearly with the
parameter 𝜇 (vice versa for the dual variables). More precisely, ∀𝜇 ∈ [𝜇1 , 𝜇0], we require

𝛾𝑥𝑖(𝜇0) ≤ 𝑥𝑖(𝜇) ≤ 𝑛𝑥𝑖(𝜇0) , ∀𝑖 ∈ 𝐵 ,
𝜇

𝑛𝜇0
𝑥𝑖(𝜇0) ≤ 𝑥𝑖(𝜇) ≤

𝜇

𝛾𝜇0
𝑥𝑖(𝜇0) , ∀𝑖 ∈ 𝑁 , (5.5)

where 𝛾 ∈ [0, 1] is a polarization parameter (see Definition 5.3.1 and Corollary 5.3.3). By definition of
the central path, the same relation holds for dual variables 𝑠(𝜇), 𝜇 ∈ [𝜇1 , 𝜇0], with the roles of 𝑁
and 𝐵 swapped. We note that the upper bound on 𝑥𝑖(𝜇) for 𝑖 ∈ 𝐵 and the lower bound on 𝑥𝑖(𝜇) for
𝑖 ∈ 𝑁 hold for any point of the central path by the near-monotonicity property (Lemma 5.2.3); the
important parts of the definition are the other two bounds.

For simplicity of notation, let us restrict to line segments between two points on the central path.
To relate polarization to the wide neighborhood, we show that if the line segment [𝑧(𝜇1), 𝑧(𝜇0)]
between central path points is contained in the wide neighborhod𝒩−∞(𝜃), then the corresponding
segment of the central path is polarized with 𝛾 =

(1−𝜃)2
16𝑛3 with respect to some partition 𝐵 ∪· 𝑁 = [𝑛]

(see Lemma 5.3.5 for the general statement).
One should read this last statement as saying that segment of central path is ‘approximately

linear’ if and only if it is polarized (in fact, a segment is 1-polarized if and only if it is linear, see
Lemma 5.3.7). The link between polarization and linearity is surprisingly elementary; it follows
from the analysis of the inequalities

((1 − 𝛼)𝑥𝑖(𝜇0) + 𝛼𝑥𝑖(𝜇1)) ((1 − 𝛼)𝑠𝑖(𝜇0) + 𝛼𝑠𝑖(𝜇1)) ≥ (1 − 𝜃)((1 − 𝛼)𝜇0 + 𝛼𝜇1) , ∀𝛼 ∈ [0, 1] , 𝑖 ∈ [𝑛],

where we recall that 𝑧(𝜇0) = (𝑥(𝜇0), 𝑠(𝜇0)), 𝑧(𝜇1) = (𝑥(𝜇1), 𝑠(𝜇1)). For example, if 𝜃 = 0, it is not
hard to check that for each 𝑖 ∈ [𝑛], one must have either 𝑥𝑖(𝜇0) = 𝑥𝑖(𝜇1) and 𝑠𝑖(𝜇1) = 𝜇1

𝜇0
𝑠𝑖(𝜇0) (i.e.,

𝑖 ∈ 𝐵) or 𝑥𝑖(𝜇0) = 𝜇1
𝜇0
𝑥𝑖(𝜇1) and 𝑠𝑖(𝜇1) = 𝑠𝑖(𝜇0) (i.e., 𝑖 ∈ 𝑁).

Given the above, the main task in Theorem 5.1.1, namely traversing linear segments in the wide-
neighborhood, can be reduced to traversing 𝛾-polarized segments of the central path. The main
guarantee of our algorithm IPM with subspace LLS is in fact that it can traverse any 𝛾-polarized
segment of the path in 𝑂(𝑛1.5 log(𝑛/𝛾)) iterations.

We note that polarization plays an important if implicit role in prior layered least squares
analyses [DHNV20; MT05; VY96]. In particular, the ‘long and straight’ segments in these works
are all polarized. What was unclear in these works, however, is whether polarization by itself
was sufficient to make a segment easy to traverse. Indeed, these works all crucially rely upon
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numerical condition numbers of the instance which can be effectively unbounded in the present
context. Beyond the LLS context, we are further unaware of central path analyses exploiting the
tight connection between approximate linearity and polarization, and we hope this will encourage
future study.

As is clear from the definition, polarization provides us extremely useful ‘long-range’ control
over the evolution of variables on a segment. We note that 𝛾-polarization is mostly interesting
when the segment itself is long, namely, when 𝜇0/𝜇1 ≫ 1/𝛾. We now explain how to leverage this
control to traverse any 𝛾-polarized segment using subspace LLS steps.

Traversing a Polarized Segment

Let CP[𝜇1 , 𝜇0], 0 ≤ 𝜇1 < 𝜇0, be a 𝛾-polarized segment with partition 𝐵 ∪· 𝑁 = [𝑛].
For simplicity of presentation, let us assume that given any iterate (𝑥, 𝑠) in the narrow neighbor-

hood𝒩(1/6) used in our algorithm, we can jump to the exact central path point 𝑧(𝜇) ∈ CP = 𝒩(0)
with 𝜇 = 𝜇(𝑥, 𝑠) for free. Let us further assume that the algorithm knows the partition 𝐵, 𝑁

(we discuss how to effectively compute it at the end) and that we are given the starting point
𝑧(0) ≔ 𝑧(𝜇0).

Our abstract algorithm will thus compute iterates 𝑧(0) , 𝑧(1) , . . . on the central path CP with
𝜇(𝑧(0)) > 𝜇(𝑧(1)) > . . . . To move from 𝑧(𝑡) to 𝑧(𝑡+1), we first compute a movement direction

Δ𝑧(𝑡) = (Δ𝑥(𝑡) ,Δ𝑠(𝑡)) ∈ ker(A) × im(A⊤) C 𝑊 ×𝑊⊥ ,

together with a step-length 𝛼(𝑡) ∈ [0, 1], chosen such that 𝑧(𝑡)+𝛼Δ𝑧(𝑡) ∈ 𝒩(1/6), 0 ≤ 𝛼 ≤ 𝛼(𝑡). Lastly,
we jump for free to 𝑧(𝑡+1) ∈ CP satisfying 𝜇(𝑧𝑡+1) = 𝜇(𝑧(𝑡) + 𝛼(𝑡)Δ𝑧(𝑡)).

Given this setup, our goal is to compute movement directions, such that after 𝑘 = 𝑂(𝑛1.5 log(𝑛/𝛾))
iterations, we have 𝜇(𝑧(𝑘)) ≤ 𝜇1, i.e., that we have crossed the segment. We would like to emphasize
that our algorithm will in fact compute the movement direction Δ𝑧(𝑡) using only local information at
𝑧(𝑡), without any explicit knowledge of the polarized segment.

A natural movement direction is affine scaling used in predictor-corrector methods, see Section 4.3.2.
This direction guarantees 1 −Ω(1/

√
𝑛) decrease in normalized gap per step. Hence, if 𝜇0/𝜇1 ≤

poly(𝑛, 1/𝛾), then simply using
√
𝑛 ln(𝜇0/𝜇1) affine scaling iterations is sufficient for our purposes.

Thus, we may assume that 𝜇0/𝜇1 ≫ poly(𝑛, 1/𝛾). In this case, we show that computing an affine
scaling direction (Δ𝑥a ,Δ𝑠a) at the current iterate (𝑥(𝑡) , 𝑠(𝑡)) reveals the correct partition 𝐵 ∪· 𝑁 = [𝑛]
of the current polarized segment. This is because the standard affine scaling step itself exhibits a
polarized behaviour: we can simply select 𝐵 as the set of coordinates 𝑖 where |Δ𝑥a

𝑖
/𝑥(𝑡)

𝑖
| < |Δ𝑠a

𝑖
/𝑠(𝑡)
𝑖
|,

i.e., the relative primal movement is smaller than the relative dual movement (see Definition 5.4.4).

Trust Region Programs and Subspace LLS. The trust region programs by Lan, Monteiro,
Tsuchiya [LMT09] provide a good starting point for defining our movement direction Δ𝑧(𝑡) =

(Δ𝑥(𝑡) ,Δ𝑠(𝑡)) ∈ 𝑊 × 𝑊⊥ from an iterate 𝑧(𝑡) = (𝑥(𝑡) , 𝑠(𝑡)) ∈ CP[𝜇1 , 𝜇0] and a given a partition
[𝑛] = 𝐵 ∪· 𝑁 :

min
Δ𝑥∈𝑊

{
∥(𝑥(𝑡)

𝑁
+ Δ𝑥𝑁 )/𝑥(𝑡)𝑁 ∥ : ∥Δ𝑥𝐵/𝑥(𝑡)𝐵 ∥ ≤ 𝜚

}
min

Δ𝑠∈𝑊⊥

{
∥(𝑠(𝑡)

𝐵
+ Δ𝑠𝐵)/𝑠(𝑡)𝐵 ∥ : ∥Δ𝑠𝑁/𝑠(𝑡)𝑁 ∥ ≤ 𝜚

} (5.6)

where𝜚 = 1/100 is sufficient for our purposes. We use the notationΔ𝑥/𝑥(𝑡) ≔ (Δ𝑥1/𝑥𝑡1 , . . . ,Δ𝑥𝑛/𝑥
(𝑡)
𝑛 )

and similarly for Δ𝑠/𝑠(𝑖). The norms ∥𝑥/𝑥(𝑡)∥ and ∥𝑠/𝑠(𝑡)∥ are the so-called primal and dual local
norms at 𝑥(𝑡) and 𝑠(𝑡). By definition, the optimal primal trust region direction Δ𝑥∗ achieves a
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maximal multiplicative decrease on the coordinates in 𝑁 while ‘barely moving’ the coordinates in
𝐵 as measured in the local norm. The optimal dual direction Δ𝑠∗ achieves the same on the dual
side with the role of 𝑁 and 𝐵 swapped.

Note that these directions mesh very well with polarization of the segment CP[𝜇1 , 𝜇0]. In
particular, they reflect the idea that the coordinates of 𝑥(𝜇) in 𝑁 should be linearly scaling down
while those in 𝐵 are staying mostly fixed, and vice versa for 𝑠(𝜇). As shown in [LMT09], moving in
any direction Δ𝑧(𝑡) = (Δ𝑥(𝑡) ,Δ𝑠(𝑡)) corresponding to feasible solutions to (5.6), the normalized gap
can be reduced as

𝜇(𝑧(𝑡+1))
𝜇(𝑧(𝑡))

≤ ∥(𝑥(𝑡)
𝑁
+ Δ𝑥(𝑡)

𝑁
)/𝑥(𝑡)

𝑁
∥ + ∥(𝑠(𝑡)

𝐵
+ Δ𝑠(𝑡)

𝐵
)/𝑠(𝑡)

𝐵
∥. (5.7)

That is, we can achieve a drop that corresponds to the sum of primal and dual objective values.
In many ways, the trust region direction can be seen as the ‘optimal’ movement direction.

However, [LMT09] solves the quadratic convex programs in (5.6) in weakly polynomial time with
dependence on the vectors 𝑏 and 𝑐 in LP. It is not known whether a strongly polynomial algorithm
(with dependence only on 𝑛) exists. Further, the analysis in [LMT09] relies on combinatorial
progress measures adapted from the LLS analyses. It remains unclear how to analyze the
convergence of the trust region steps by only using only the fact that they are maximally long.

Instead of optimally solving (5.6), we introduce what we call subspace LLS steps that yield ‘good
enough’ approximate solutions for our purposes. We restrict the set of primal and dual directions
to come from carefully selected subspaces 𝑉 (𝑡) ⊆ 𝑊 and𝑈 (𝑡) ⊆ 𝑊⊥ satisfying:

∥Δ𝑥𝐵/𝑥(𝑡)𝐵 ∥ ≤ 𝜏∥Δ𝑥𝑁/𝑥(𝑡)𝑁 ∥ , ∀Δ𝑥 ∈ 𝑉
(𝑡) (5.8)

∥Δ𝑠𝑁/𝑠(𝑡)𝑁 ∥ ≤ 𝜏∥Δ𝑠𝐵/𝑠(𝑡)𝐵 ∥ , ∀Δ𝑠 ∈ 𝑈
(𝑡) , (5.9)

where we set 𝜏 = 𝜚/(16
√
𝑛). We call any such subspaces𝑈 (𝑡) , 𝑉 (𝑡) cheap lift subspaces. Note that every

such solution automatically satisfies the constraints in program (5.6). Hence, the optimal solutions
can be computed by solving systems of linear equations that correspond to minimum-norm points
in the local norms.

In terms of the choice of subspaces, there is quite a lot of flexibility. A canonical choice, which
we use for simplicity in the analysis, consists of choosing a space spanned by the singular vectors
of a certain ‘lifting map’ whose corresponding singular values are at most 𝜏. While singular values
(and their corresponding spaces) are not computable in strongly polynomial time, one can indeed
compute sufficiently good approximations for our purposes (see Section 5.4.1).

Analyzing Subspace LLS. At each iteration, our algorithm computes the affine scaling steps
and the subspace LLS steps as above, and uses the one that enables more progress by chosing the
largest possible step-length. We use the subspaces𝑈 (𝑡) , 𝑉 (𝑡) to compute the subspace LLS direction
Δ𝑧(𝑡) as above.

Let us now explain the key idea in showing that subspace LLS steps can reach the end of the
current 𝛾-polarized segment CP[𝜇1 , 𝜇0] in 𝑘 = 𝑂(𝑛1.5 ln(𝑛/𝛾)) iterations. Let 𝑘 = Ω(

√
𝑛 ln(𝑛/𝛾)).

Given any iterate 𝑧(𝑡) ∈ CP[𝜇1 , 𝜇0], if 𝜇(𝑧(𝑡+𝑘)) > 𝜇1—i.e., we have not reached the end of the
segment—then we show that both dim(𝑈 (𝑡+𝑘)) > dim(𝑈 (𝑡)) and dim(𝑉 (𝑡+𝑘)) > dim(𝑉 (𝑡)). The
overall bound follows since this can occur at most 𝑛 times.

To get this result, we analyze the evolution of what we call the ‘empirical gradient’ at 𝑧(𝑡), which
we define to be Δ�̃�(𝑡) ≔ 𝑧(𝜇1) − 𝑧(𝑡), i.e., the difference between the current iterate and the end of the
segment. A crucial observation is that if Δ�̃�(𝑡) were a feasible solution to (5.6), then following this
direction would get to within a poly(𝑛/𝛾) factor for the end of the segment in one step (though
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we do not know how to compute it). Furthermore, the empirical gradient is never far from being
feasible, in particular, it is feasible if the bound of 𝛽 is replaced by 𝑂(𝑛). We show the following
dichotomy. Given an iteration 𝑧(𝑡), either the empirical gradient Δ�̃�(𝑡) is mostly “aligned” with the
LLS subspaces𝑈 (𝑡) ×𝑉 (𝑡), in which case we get close to the end of the segment in one step, or we
can extract from Δ�̃�(𝑡) an additional “cheap lift” dimension in the next 𝑂(

√
𝑛 ln(𝑛/𝛾)) iterations. In

the latter case, we use the polarization property to analyze the evolution of the singular values of
lifting maps.

This concludes our overview of the proof of Theorem 5.1.1. For more details, see Section 5.4.

5.1.3 Related Work

Interior points methods have been a tremendously active and fruitful research area since the
seminal works of Karmarkar [Kar84] and Renegar [Ren88] in the 80’s. Remarkable advances have
been made both in speed as well as applicability of IPMs. We first briefly review works that—unlike
the present chapter—aim for 𝜀-approximate solutions. A key ingredient has been using different,
self-concordant barrier functions. We refer to [NN94] for an introduction into self-concordant
functions. Like the logarithmic barrier, every such function gives rise to a notion of central path.
In the general setting, the iteration complexity to get an 𝜀-approximation of the optimal value is
bounded by 𝑂(𝜗1/2 log 𝜀−1), where 𝜗 is a complexity parameter specific to the barrier function.
General bounds on self-concordant barriers were given by Nesterov and Nemirovski [NN94],
improved recently by Lee and Yue [LY21]. Specific barrier functions include Vaidya’s volumetric
barrier [Vai89], the entropic barrier by Bubeck and Eldan [BE15], and the weighted log-barrier by
Lee and Sidford [LS14; LS19].

Recent improvements make use of efficient data structures to amortize the cost of the iterative
updates, and work with approximate computations, see Cohen, Lee and Song [CLS19], van den
Brand [Bra20], and van den Brand, Lee, Sidford, and Song [BTSS20]. For special classes of LP such
as network flow and matching problems, even faster algorithms have been obtained using, among
other techniques, fast Laplacian solvers [ST04a], see e.g. [AMV22; Bra+20; Bra+21; DS08; GLP22;
Mad13], culminating in the very recent near-linear time minimum-cost flow algorithm [Che+22].

Layered least squares IPMs, initiated by Vavasis and Ye [VY96] find exact optimal solutions
and their running time bound is independent of 𝑏 and 𝑐. Improved LLS algorithms were given
by Megiddo, Mizuno, and Tsuchiya [MMT98] and Monteiro and Tsuchiya [MT03; MT05]. As
discussed previously, scaling invariant algorithms with a �̄�∗A dependence are the Trust Region
algorithm by Lan, Monteiro, and Tsuchiya [LMT09], and the LLS algorithm [DHNV20] that relies
on approximating circuit imbalances.

There is an interesting connection between IPMs and differential geometry. Sonnevend, Stoer,
and Zhao [SSZ91] introduced a primal-dual curvature concept for the central path, and related the
curvature integral to the iteration complexity of IPMs. Monteiro and Tsuchiya [MT08] showed
that a curvature integral is bounded by 𝑂(𝑛3.5 log(�̄�∗A + 𝑛)). This has been extended to SDP and
symmetric cone programming [KOT14], and also studied in the context of information geometry
[KOT13].

Relating the central path with a simplex path has been mainly used to build LP with pathological
properties. On top of the construction of [AGV22] that we already discussed, Deza, Nematollahi
and Terlaky [DNT08] built a Klee–Minty cube with exponentially many redundant inequalities
where the central path is distorted into the neighbhorhood of the simplex path that visits the 2𝑛

vertices.
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The max central path studied in this chapter is related to the tropical central path in [ABGJ18;
ABGJ21; AGV22]. The latter arises when studying parametric families of LP where the input
(A, 𝑏, 𝑐) depend on a parameter 𝑡 > 1. The tropical central path is defined as the log-limit, i.e.,
the limit as 𝑡 → ∞ of the image under the map 𝑧 ↦→ log𝑡 𝑧 =

log 𝑧
log 𝑡 , of the central path of these

LP. In [ABGJ18; ABGJ21; AGV22], it was shown that the tropical central path corresponds to the
greatest point (entrywise) of the log-limit of the feasible sets of (5.4). This turns to be precisely the
log-limit of the max central path.

5.1.4 Organization of the chapter

In Section 5.2, we recall some basic properties related to the central path and its neighborhoods (Sec-
tion 5.2.1). We also discuss the affine scaling steps used in predictor-correct methods (Section 4.3.2).
We finally introduce the lifting maps used in the subspace LLS step (Section 5.2.3). Section 5.3
deals with the polarized segments of the central path and their connection with linear segments in
the wide neighborhood. Section 5.4 provides the complexity analysis of the algorithm IPM with
subspace LLS for traversing polarized segments. Section 5.5 studies the max central path. We give
a direct proof of the polarization of the central path along the max central path (Section 5.5.2), and
an alternative proof via a piecewise linear curve in the wide neighborhood induced by the max
central path (Section 5.5.3). Omitted proofs are deferred to the Appendix.

5.2 Preliminaries

In this section we reintroduce preliminaries to IPM. Many concepts will be familiar from Chapter 4,
but the notation deviates.

5.2.1 Preliminaries on Interior-Point Methods

In this section, we recall standard properties of the central path and IPM that will be required for
our algorithm. To ensure that the central path is well-defined, we assume that 𝒫 and 𝒟 admit
strictly feasible solutions, i.e., the sets

𝒫++ B {𝑥 ∈ 𝒫 : 𝑥 > 0} , 𝒟++ B {𝑠 ∈ 𝒟 : 𝑠 > 0}

are both nonempty. We use 𝑧cp(𝜇) = (𝑥cp(𝜇), 𝑠cp(𝜇)) to denote the central path point at 𝜇 rather
than 𝑧(𝜇) = (𝑥(𝜇), 𝑠(𝜇)) used in the Introduction.

Given 𝑧 = (𝑥, 𝑠) ∈ 𝒫 × 𝒟, we recall that the normalized duality gap is defined as 𝜇(𝑧) = ⟨𝑥,𝑠⟩
𝑛 .

The following identity is useful in comparing duality gaps:

Proposition 5.2.1. Given 𝑥, 𝑥′ ∈𝑊 + 𝑑, 𝑠, 𝑠′ ∈𝑊⊥ + 𝑐, we have that

⟨𝑥, 𝑠⟩ + ⟨𝑥′, 𝑠′⟩ = ⟨𝑥, 𝑠′⟩ + ⟨𝑥′, 𝑠⟩.

In particular, if ⟨𝑥′, 𝑠′⟩ = 0, then
⟨𝑥, 𝑠⟩ = ⟨𝑥, 𝑠′⟩ + ⟨𝑥′, 𝑠⟩.

The next proposition shows that the normalized duality gap is a linear function for convex
combinations of points.
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Proposition 5.2.2 (Linearity duality gap). Given 𝑥(1) , . . . , 𝑥(𝑘) ∈𝑊 +𝑑, 𝑠(1) , . . . , 𝑠(𝑘) ∈𝑊⊥+ 𝑐 forming
the sequence 𝑧(1) = (𝑥(1) , 𝑠(1)), . . . , 𝑧(𝑘) = (𝑥(𝑘) , 𝑠(𝑘)) and 𝜆 ∈ R𝑘 such that

∑𝑘
𝑖=1 𝜆𝑖 = 1, we have that

𝜇

(
𝑘∑
𝑖=1

𝜆𝑖𝑧
(𝑖)

)
=

𝑘∑
𝑖=1

𝜆𝑖𝜇(𝑧(𝑖)) .

A key property of the central path is ‘near monotonicity’, formulated in the following lemma, see
[VY96, Lemma 16].

Lemma 5.2.3. For the central path points at 0 ≤ 𝜇′ ≤ 𝜇, we have𝑥cp(𝜇′)
𝑥cp(𝜇) +

𝑠cp(𝜇′)
𝑠cp(𝜇)


∞
≤ 𝑛 .

We will also require following lemma which was implicit in the proof of [VY96, Lemma 16].

Lemma 5.2.4. For the central path points at 0 ≤ 𝜇′ ≤ 𝜇, we have𝑥cp(𝜇′)
𝑥cp(𝜇) +

𝑠cp(𝜇′)
𝑠cp(𝜇)


1
≤ 2𝑛 .

Proof. There is nothing to prove if 𝜇 = 𝜇′ = 0; let us assume 𝜇 > 0, and denote (𝑥, 𝑠) =

(𝑥cp(𝜇), 𝑠cp(𝜇)), (𝑥′, 𝑠′) = (𝑥cp(𝜇′), 𝑠cp(𝜇′)). Using Proposition 5.2.1,

∥𝑥′/𝑥 + 𝑠′/𝑠∥1 = 𝜇−1(⟨𝑠, 𝑥′⟩ + ⟨𝑥, 𝑠′⟩) = 𝜇−1(⟨𝑥, 𝑠⟩ + ⟨𝑥′, 𝑠′⟩)
= 𝜇−1(𝑛𝜇 + 𝑛𝜇′ + 0) = 𝑛(1 + 𝜇−1𝜇′) ≤ 2𝑛. □

Central path neighborhoods. The neighborhoods𝒩(𝛽) and𝒩−∞(𝜃) introduced in (5.3) and (5.2)
comprise the points 𝑧 = (𝑥, 𝑠) ∈ 𝒫 × 𝒟 such that the centrality error, i.e., the norm of the vector
𝑥𝑠
𝜇(𝑧) −1, is bounded. They use of the ℓ2-norm and the ℓ∞-seminorm ∥𝑢∥−∞ B max1≤𝑖≤𝑛 max(0,−𝑢𝑖),
respectively.

The following proposition gives a bound on the distance between a point 𝑧 ∈ 𝒩(𝛽) in the
𝛽-neighbourhood and the corresponding central path point with the same normalized duality gap
𝑧(𝜇) for 𝜇 = 𝜇(𝑧). See e.g. [Gon92, Lemma 5.4], [MT03, Proposition 2.1].

Proposition 5.2.5. Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4] and 𝜇 = 𝜇(𝑧), and consider the central path
point 𝑧cp(𝜇) = (𝑥cp(𝜇), 𝑠cp(𝜇)). For each 𝑖 ∈ [𝑛],

𝑥𝑖

1 + 2𝛽 ≤
1 − 2𝛽
1 − 𝛽

𝑥𝑖 ≤ 𝑥cp
𝑖
(𝜇) ≤ 𝑥𝑖

1 − 𝛽
, and

𝑠𝑖

1 + 2𝛽 ≤
1 − 2𝛽
1 − 𝛽

𝑠𝑖 ≤ 𝑠cp
𝑖
(𝜇) ≤ 𝑠𝑖

1 − 𝛽
.

We will often use the following proposition which is immediate from the definition of𝒩(𝛽).

Proposition 5.2.6. Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4], and 𝜇 = 𝜇(𝑧). Then for each 𝑖 ∈ [𝑛]

(1 − 𝛽)𝜇 ≤ 𝑠𝑖𝑥𝑖 ≤ (1 + 𝛽)𝜇 .

We will need the following lemma regarding the near-optimality of the choice 𝜇(𝑧) as ⟨𝑥, 𝑠⟩/𝑛
for a point 𝑧 = (𝑥, 𝑠)with respect to minimizing centrality error.
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Lemma 5.2.7 ([MT05, Lemma 4.4]). For 𝛽 ∈ (0, 1/4], let 𝑧 = (𝑥, 𝑠) ∈ 𝒫++ × 𝒟++ and 𝜇′ > 0 satisfy
∥𝑥𝑠/𝜇′ − 1∥2 ≤ 𝛽. Then,

(1 − 𝛽/
√
𝑛)𝜇′ ≤ 𝜇(𝑧) ≤ (1 + 𝛽/

√
𝑛)𝜇 and 𝑧 ∈ 𝒩(𝛽/(1 − 𝛽)) .

The next lemma relates a point in the wide neighborhood to the corresponding central path
point.

Lemma 5.2.8. Let 𝑧 = (𝑥′, 𝑠′) ∈ 𝒩−∞(𝜃), 𝜃 ∈ [0, 1). Then for 𝜇 = 𝜇(𝑧), and the corresponding central
path point 𝑧cp(𝜇) = (𝑥cp(𝜇), 𝑠cp(𝜇)), we have that

(1) 1
2𝑛 𝑥
′ ≤ 𝑥cp(𝜇) ≤ 2𝑛

1−𝜃 𝑥
′.

(2) 1
2𝑛 𝑠
′ ≤ 𝑠cp(𝜇) ≤ 2𝑛

1−𝜃 𝑠
′.

Proof. We only prove (1), as the proof of (2) is symmetric. Let (𝑥, 𝑠) = (𝑥cp(𝜇), 𝑠cp(𝜇)). Using
Proposition 5.2.1, for 𝑖 ∈ [𝑛]we have that

𝑥′
𝑖

𝑥𝑖
=
𝑥′
𝑖
𝑠𝑖

𝜇
≤ 1

𝜇
(⟨𝑥′, 𝑠⟩ + ⟨𝑥, 𝑠′⟩) = 1

𝜇
(⟨𝑥′, 𝑠′⟩ + ⟨𝑥, 𝑠⟩) = 2𝑛.

This proves the first inequality of (1); note that this part does not use 𝑧 ∈ 𝒩−∞(𝜃), but only that
𝑧 ∈ 𝒫++ × 𝒟++. For the second inequality, 𝑧 ∈ 𝒩−∞(𝜃) by definition implies

𝑥𝑖

𝑥′
𝑖

≤
𝑥𝑖𝑠
′
𝑖

𝜇(1 − 𝜃) ≤
1

𝜇(1 − 𝜃) (⟨𝑥
′, 𝑠′⟩ + ⟨𝑥, 𝑠⟩) = 2𝑛

1 − 𝜃
,

as needed. □

5.2.2 Predictor-Corrector Methods

Given 𝑧 = (𝑥, 𝑠) ∈ 𝒫++ × 𝒟++, the search directions commonly used in interior-point methods are
obtained as the solution (Δ𝑥,Δ𝑠) to the following linear system for some 𝜈 ∈ [0, 1].

Δ𝑥 ∈𝑊 (5.10)

Δ𝑠 ∈𝑊⊥ (5.11)

𝑠Δ𝑥 + 𝑥Δ𝑠 = 𝜈𝜇1 − 𝑥𝑠 (5.12)

Predictor-corrector methods, such as the Mizuno–Todd–Ye Predictor-Corrector (MTY P-C) algorithm
[MTY93], alternate between two types of steps. In predictor steps, we use 𝜈 = 0. This direction is also
called the affine scaling direction, and will be denoted as Δ𝑧a = (Δ𝑥a ,Δ𝑠a) throughout. In corrector
steps, we use 𝜈 = 1. This gives the centrality direction, denoted as Δ𝑧c = (Δ𝑥c ,Δ𝑠c).

In the predictor steps, we make progress along the central path. Given the search direction on
the current iterate 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽), the step-length is chosen maximal such that we remain in
𝒩(2𝛽), i.e.,

𝛼a B sup{𝛼 ∈ [0, 1] : ∀𝛼′ ∈ [0, 𝛼] : 𝑧 + 𝛼′Δ𝑧a ∈ 𝒩(2𝛽)}.

Thus, we obtain a point 𝑧+ = 𝑧+𝛼aΔ𝑤a ∈ 𝒩(2𝛽). The corrector step finds a next iterate 𝑧𝑐 = 𝑧++Δ𝑧c,
where Δ𝑧c is the centrality direction computed at 𝑧+. The next proposition summarizes well-known
properties, see e.g., [Ye97, Section 4.5.1].
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Proposition 5.2.9. Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4].

(i) For the affine scaling step, we have 𝜇(𝑧+) = (1 − 𝛼a)𝜇(𝑧).

(ii) The affine scaling step-length is

𝛼a ≥ max
{

𝛽
√
𝑛
, 1 − ∥Δ𝑥

aΔ𝑠a∥
𝛽𝜇(𝑧)

}
.

(iii) For 𝑧+ ∈ 𝒩(2𝛽), and 𝑧c = 𝑧+ + Δ𝑤c, we have 𝜇(𝑧c) = 𝜇(𝑧+) and 𝑧c ∈ 𝒩(𝛽).

(iv) After a sequence of 𝑂(
√
𝑛𝑡) predictor and corrector steps, we obtain an iterate 𝑧′ = (𝑥′, 𝑠′) ∈ 𝒩(𝛽)

such that 𝜇(𝑧′) ≤ 𝜇(𝑧)/2𝑡 .

Minimum-norm viewpoint We introduce some useful notation for the algorithm, and derive the
minimum-norm interpretation of the affine scaling steps. For 𝑧 = (𝑥, 𝑠) ∈ 𝒫++ × 𝒟++, we let

𝜉(𝑧) = 𝑥1/2𝑠1/2

𝜇(𝑧)1/2
∈ R𝑛 , �̂� = 𝑥𝜉−1(𝑧) = 𝑥1/2𝑠−1/2𝜇(𝑧)1/2 ∈ R𝑛 , 𝑠 = 𝑠𝜉−1(𝑧) = 𝑠1/2𝑥−1/2𝜇(𝑧)1/2 ∈ R𝑛 .

(5.13)
If clear from the context, we simply use 𝜉. If 𝑧 = (𝑥, 𝑠) falls on the central path, that is, 𝑥𝑠 = 𝜇(𝑧)1,
then 𝜉(𝑧) = 1, �̂� = 𝑥 and 𝑠 = 𝑠. The variables �̂� and 𝑠 represent natural adjustments for points off
the central path. The following is a simple corollary of Proposition 5.2.6.

Proposition 5.2.10. For 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/4], we have ∥𝜉∥ =
√
𝑛. Moreover,√

1 − 𝛽1 ≤ 𝜉 ≤
√

1 + 𝛽1 ,
√

1 − 𝛽𝑥 ≤ �̂� ≤
√

1 + 𝛽𝑥 and
√

1 − 𝛽𝑠 ≤ 𝑠 ≤
√

1 + 𝛽𝑠 .

We will frequently use the rescaled subspaces �̂�−1𝑊 and 𝑠−1𝑊⊥ that correspond to using the
local geometry at the point 𝑧 = (𝑥, 𝑠). Throughout, we will refer to ∥𝑤/�̂�∥ and ∥𝑤/𝑠∥ as the primal
and dual local norms of the vector 𝑤 ∈ R𝑛 at the point 𝑧 = (𝑥, 𝑠) ∈ 𝒫++ × 𝒟++. The following
statement is immediate from the definitions using �̂�𝑠 = 𝜇(𝑧)1.

Proposition 5.2.11. The subspaces �̂�−1𝑊 and 𝑠−1𝑊⊥ are orthogonal.

Equation (5.12) for the predictor step (𝜈 = 0) with update direction (Δ𝑥a ,Δ𝑠a) can be written as

𝑥−1Δ𝑥a + 𝑥−1Δ𝑠a = −1 , (5.14)

or equivalently,
�̂�−1Δ𝑥a + 𝑠−1Δ𝑠a = −𝜉, (5.15)

which serves the purpose that now �̂�−1Δ𝑥a ∈ �̂�−1𝑊 and 𝑠−1Δ𝑠a ∈ 𝑠−1𝑊⊥ are orthogonal vectors
(Proposition 5.2.11). Thus, �̂�−1Δ𝑥a and 𝑠−1Δ𝑠a give an orthogonal decomposition of −𝜉. This leads
to the following formulas:

Δ𝑥a = −�̂�Π�̂�−1𝑊 (𝜉) ,
Δ𝑠a = −𝑠Π𝑠−1𝑊⊥(𝜉) .

(5.16)

Equivalently, we can see Δ𝑧a = (Δ𝑥a ,Δ𝑠a) as the optimal solutions of the following minimum-norm
problems:

Δ𝑥a = arg min
Δ𝑥∈𝑊

∥ �̂�−1(𝑥 + Δ𝑥)∥ ,

Δ𝑠a = arg min
Δ𝑠∈𝑊⊥

∥𝑠−1(𝑠 + Δ𝑠)∥ .
(5.17)
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A further equivalent way to express these movement directions is by projections in the rescaled
subspaces �̂�−1𝑊 and 𝑠−1𝑊⊥; this viewpoint will be used in Section 5.4.

Δ𝑥a = �̂� arg min
𝛿∈�̂�−1𝑊

∥𝜉 + 𝛿∥ ,

Δ𝑠a = 𝑠 arg min
𝛿∈𝑠−1𝑊⊥

∥𝜉 + 𝛿∥ .
(5.18)

The equivalence of the two forms follows by noting that �̂�−1𝑥 = 𝑠−1𝑠 = 𝜉.

Step-length estimates We will also need good estimates on the size on predictor steps beyond
affine scaling. Our main estimate in this regard is given below.

Lemma 5.2.12 (Step-length estimate for general directions). Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽), 𝛽 ∈ (0, 1/6].
Consider directions Δ𝑥 ∈𝑊 , Δ𝑠 ∈𝑊⊥ that satisfy ∥Δ𝑥Δ𝑠∥ ≤ 𝛽𝜇/4. Let

𝛾 =
∥(𝑥 + Δ𝑥)(𝑠 + Δ𝑠)∥

𝜇
.

Then (𝑥+𝛼Δ𝑥, 𝑠+𝛼Δ𝑠) ∈ 𝒩(2𝛽) and 𝜇(𝑥+𝛼Δ𝑥, 𝑠+𝛼Δ𝑠) ≤ (1+ 3
2𝛽/
√
𝑛)(1−𝛼)𝜇, for all 0 ≤ 𝛼 ≤ 1− 4𝛾

𝛽 .

Proof. Let 𝑧𝛼 B (𝑥 + 𝛼Δ𝑥, 𝑠 + 𝛼Δ𝑠). We first bound the centrality error using the estimate (1 − 𝛼)𝜇
for 𝜇(𝑧𝛼) as follows:

 (𝑥 + 𝛼Δ𝑥)(𝑠 + 𝛼Δ𝑠)
(1 − 𝛼)𝜇 − 1

 =

 (1 − 𝛼)𝑥𝑠 + 𝛼(𝑥 + Δ𝑥)(𝑠 + Δ𝑠) − 𝛼(1 − 𝛼)Δ𝑥Δ𝑠
(1 − 𝛼)𝜇 − 1


≤

𝑥𝑠𝜇 − 1
 + 𝛼

1 − 𝛼

 (𝑥 + Δ𝑥)(𝑠 + Δ𝑠)𝜇

 + 𝛼

Δ𝑥Δ𝑠𝜇


≤ 𝛽 + 𝛼

1 − 𝛼
𝛾 + 𝛼

𝛽

4 ≤
3
2𝛽, (5.19)

where the last inequality follows since 𝛼
1−𝛼𝛾 ≤ 𝛽/4 for 0 ≤ 𝛼 ≤ 1 − 4𝛾/𝛽.

Given (5.19), by Lemma 5.2.7, we get that𝜇(𝑧𝛼) ≤ (1+ 3
2𝛽/
√
𝑛)(1−𝛼)𝜇 and 𝑧𝛼 ∈ 𝒩

( 3
2 𝛽

1− 3
2 𝛽

)
⊆ 𝒩(2𝛽),

for 𝛽 ∈ (0, 1/6]. □

5.2.3 Lifting Maps

Our algorithm in Section 5.4 uses a layered least squares step that consists of solving a minimum-
norm point in a smaller subspace first, and then extending it to the entire space. A crucial operation
in both computing the layered step as well as in identifying the appropriate subspaces is the lifting
map defined next.

Definition 5.2.13. Given a partition 𝐼 ∪ 𝐽 = [𝑛] and a subspace 𝑊 ⊆ R𝑛 , we define the lifting map
𝐿𝑊
𝐼

: R𝐼 →𝑊 ⊆ R𝑛 as follows:

𝐿𝑊𝐼 (𝑥) B arg min
{
∥𝑤∥ : 𝑤 ∈𝑊,𝑤𝐼 = Π𝜋𝐼 (𝑊)(𝑥)

}
. (5.20)

We further define ℓ𝑊
𝐼

: R𝐼 → R𝐽 by

ℓ𝑊𝐼 (𝑥) B (𝐿
𝑊
𝐼 (𝑥))𝐽 = 𝜋𝐽

(
𝐿𝑊𝐼 (𝑥)

)
. (5.21)
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Note that if 𝑥 ∈ 𝜋𝐼(𝑊), 𝑤 = 𝐿𝑊
𝐼
(𝑥) is the minimum-norm point in𝑊 with 𝑤𝐼 = 𝑥. The following

lists the key properties of the lifting map.

Lemma 5.2.14. For a partition 𝐼 ∪ 𝐽 = [𝑛] and a linear subspace𝑊 , 𝐿𝑊
𝐼

: R𝐼 →𝑊 and ℓ𝑊
𝐼

: R𝐼 → R𝐽

are linear maps. Moreover, for 𝑥 ∈ R𝐼 , 𝑤 = 𝐿𝑊
𝐼
(𝑥) is the unique solution to the following linear system:

𝑤 ∈𝑊 ,

𝑤𝐼 ∈ 𝜋𝐼(𝑊)⊥ + 𝑥 ,
𝑤𝐽 ∈ 𝜋𝐽(𝑊⊥) .

(5.22)

We now give the fundamental duality relation between lifting maps. For this purpose, we define
ℓ𝑊∗
𝐼

: R𝐽 → R𝐼 to denote the adjoint of ℓ𝑊
𝐼

, namely, the map satisfying
〈
ℓ𝑊∗
𝐼
(𝑦), 𝑥

〉
= ⟨𝑦, ℓ𝐼(𝑥)⟩,

∀𝑦 ∈ R𝐽 , 𝑥 ∈ R𝐼 . If we are expressing ℓ𝑊
𝐼

as matrix 𝑀 ∈ R𝐽×𝐼 , then ℓ𝑊∗
𝐼

is represented by 𝑀⊤. That
is, if ℓ𝑊

𝐼
(𝑥) = 𝑀𝑥, then ℓ𝑊∗

𝐽
(𝑦) = 𝑀⊤𝑦.

Lemma 5.2.15. For a partition 𝐼 ∪ 𝐽 = [𝑛] and a linear subspace𝑊 , we have that ℓ𝑊
𝐼

= ℓ𝑊
⊥∗

𝐽
. In particular,

the non-zero singular values of ℓ𝑊
𝐼

and ℓ𝑊⊥∗
𝐽

are the same.

5.3 Polarization of the Central Path

We now introduce the notion of polarized segments of the central path. For 0 ≤ 𝜇1 ≤ 𝜇0, the central
path segment between these values is denoted by

CP[𝜇1 , 𝜇0] B { 𝑧cp(𝜇) : 𝜇1 ≤ 𝜇 ≤ 𝜇0 } . (5.23)

Definition 5.3.1 (Polarization). For 𝛾 ∈ [0, 1] and 𝜇0 ≥ 𝜇1 ≥ 0, we say that the segment CP[𝜇1 , 𝜇0] is
𝛾-polarized if there exists a partition 𝐵 ∪· 𝑁 = [𝑛] such that for all 𝜇 ∈ [𝜇1 , 𝜇0]:

𝑥
cp
𝑖
(𝜇) ≥ 𝛾𝑥

cp
𝑖
(𝜇0) , ∀𝑖 ∈ 𝐵 ,

𝑠
cp
𝑖
(𝜇) ≥ 𝛾𝑠

cp
𝑖
(𝜇0) , ∀𝑖 ∈ 𝑁 .

Remark 5.3.2. As stated, the notion of polarization requires an inequality to hold for all 𝜇 ∈ [𝜇1 , 𝜇0].
At the cost of losing a factor 𝑛 however, it is in fact sufficient to check the polarization condition
only at 𝜇 = 𝜇1. This follows by the near-monotonicity of the central path (Lemma 5.2.3):

𝑥
cp
𝑖
(𝜇)

𝑥
cp
𝑖
(𝜇0)

=
𝑥

cp
𝑖
(𝜇)

𝑥
cp
𝑖
(𝜇1)
·
𝑥

cp
𝑖
(𝜇1)

𝑥
cp
𝑖
(𝜇0)
≥ 1
𝑛
·
𝑥

cp
𝑖
(𝜇1)

𝑥
cp
𝑖
(𝜇0)

, ∀𝑖 ∈ [𝑛] ,

The same is true for 𝑠(𝜇) by a symmetric argument.

As a direct consequence of the definition together with near-monotonicity, we deduce the
following crucial corollary:

Corollary 5.3.3. Let CP[𝜇1 , 𝜇0], 0 ≤ 𝜇1 ≤ 𝜇0, be 𝛾-polarized with respect to the partition 𝐵 ∪· 𝑁 = [𝑛].
Then, for all 𝜇 ∈ [𝜇1 , 𝜇0], the following holds:

(1) 𝛾𝑥𝑖(𝜇0) ≤ 𝑥𝑖(𝜇) ≤ 𝑛𝑥𝑖(𝜇0), 𝑖 ∈ 𝐵.

(2) 𝛾𝑠𝑖(𝜇0) ≤ 𝑠𝑖(𝜇) ≤ 𝑛𝑠𝑖(𝜇0), 𝑖 ∈ 𝑁 .

(3) 𝜇
𝑛𝜇0

𝑥𝑖(𝜇0) ≤ 𝑥𝑖(𝜇) ≤ 𝜇
𝛾𝜇0

𝑥𝑖(𝜇0), 𝑖 ∈ 𝑁 .
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(4) 𝜇
𝑛𝜇0

𝑠𝑖(𝜇0) ≤ 𝑠𝑖(𝜇) ≤ 𝜇
𝛾𝜇0

𝑠𝑖(𝜇0), 𝑖 ∈ 𝐵.

Proof. The first inequalities in (1) and (2) are the definition of 𝛾-polarization and the second
inequalities are from Lemma 5.2.3. (3) and (4) are equivalent to (1) and (2) using the central path
relations 𝑥(𝜇0)𝑠(𝜇0) = 𝜇01 and 𝑥(𝜇)𝑠(𝜇) = 𝜇1. □

Section 5.4 introduces the algorithm IPM with subspace LLS that can traverse 𝛾-polarized
segments in 𝑂(𝑛1.5 log(𝑛/𝛾)) iterations. Theorem 5.1.1 follows by combining this algorithm with
the following decomposition result that is the main result of this section.

Theorem 5.3.4. Let Γ : (𝜇1 , 𝜇0) → 𝒩−∞(𝜃), 𝜃 ∈ (0, 1), 0 ≤ 𝜇1 ≤ 𝜇0 ≤ ∞, be a piecewise linear curve
satisfying 𝜇(Γ(𝜇)) = 𝜇, ∀𝜇 ∈ (𝜇1 , 𝜇0) consisting of 𝑇 linear segments. Then, CP[𝜇1 , 𝜇0] can be decomposed
into 𝑇 segments that are (1−𝜃)

2

16𝑛3 -polarized.

Theorem 5.1.2 showing the combinatorial bound on the number of iterations of algorithm IPM
with subspace LLS follows from the existence of a piecewise linear curve traversing the wide
neighborhood with at most 𝑂(2𝑛) pieces. This will be shown in Section 5.5, where we extract such
a path from the max central path. We will also give a direct proof that the central path can be
decomposed into 𝑂(2𝑛) polarized segments, by showing that linear segments of the max-central
path correspond to polarized segments of the central path. Theorem 5.3.4 is a direct consequence
of the following key lemma.

Lemma 5.3.5. For 𝜃 ∈ (0, 1), let [𝑧(0) , 𝑧(1)] ⊆ 𝒩−∞(𝜃), 𝜇(𝑧(0)) > 𝜇(𝑧(1)). Then, CP[𝜇(𝑧(1)), 𝜇(𝑧(0))] is
(1−𝜃)2
16𝑛3 -polarized.

The proof requires the following simple technical lemma that allows us to relate approximate
centrality along lines to polarization.

Lemma 5.3.6. For any 𝑢, 𝑣 > 0,

min
𝛼∈[0,1]

(1 − 𝛼 + 𝛼𝑢)(1 − 𝛼 + 𝛼𝑣)
1 − 𝛼 + 𝛼𝑢𝑣

= min

{
1,

(√
𝑢 +
√
𝑣

1 +
√
𝑢𝑣

)2}
≤ 2(𝑢 + 𝑣) . (5.24)

Proof. To show the equality, let 𝜇 ≔ 𝑢𝑣. Note that

min
𝛼∈[0,1]

(1 − 𝛼 + 𝛼𝑢)(1 − 𝛼 + 𝛼𝑣)
1 − 𝛼 + 𝛼𝑢𝑣

= min
𝛼∈[0,1]

(1 − 𝛼)2 + 𝛼2𝜇 + 𝛼(1 − 𝛼)(𝑢 + 𝑣)
1 − 𝛼 + 𝛼𝜇

= 1 + min
𝛼∈[0,1]

(𝑢 + 𝑣 − (1 + 𝜇)) 𝛼(1 − 𝛼)
1 − 𝛼 + 𝛼𝜇

.

(5.25)

Case I:
(√

𝑢+
√
𝑣

1+
√
𝑢𝑣

)2
≥ 1. In this case, we need to show that the minimum of the expression is 1. It

is easy to see that the condition equivalent to 𝑢 + 𝑣 ≥ 1 + 𝑢𝑣 = 1 + 𝜇. Thus, the minimum value
of (5.25) is 1, attained at 𝛼 ∈ {0, 1}.
Case II:

(√
𝑢+
√
𝑣

1+
√
𝑢𝑣

)2
< 1, or equivalently, 𝑢+𝑣 < 1+𝜇. In this case, the minimizer of (5.25) corresponds

to the maximizer of 𝛼(1−𝛼)
1−𝛼+𝛼𝜇 . This function takes value 0 at 𝛼 ∈ {0, 1} and is strictly positive for

0 < 𝛼 < 1. Furthermore, the unique critical point in the interval [0, 1] occurs at 𝛼∗ = 1
1+√𝜇 , which is

thus the maximizer. The minimum value of (5.25) is therefore

1 + (𝑢 + 𝑣 − (1 + 𝜇)) 𝛼∗(1 − 𝛼∗)
1 − 𝛼∗ + 𝛼∗𝜇

=
𝑢 + 𝑣 + 2√𝜇
(1 + √𝜇)2 ,

116



5 IPM NOT WORSE THAN SIMPLEX 5.3 Polarization of the Central Path

as required. The inequality in the statement follows easily as(√
𝑢 +
√
𝑣

1 +
√
𝑢𝑣

)2

≤
(√
𝑢 +
√
𝑣
)2

= 2(𝑢 + 𝑣) − (
√
𝑢 −
√
𝑣)2 .

□

Proof of Lemma 5.3.5. For 𝛼 ∈ [0, 1], let 𝑧(𝛼) ≔ (𝑥(𝛼) , 𝑠(𝛼)) ≔ (1 − 𝛼)𝑧(0) + 𝛼𝑧(1). By Proposition 5.2.2,
we first note that the normalized gap function 𝜇(𝑧) is in fact linear on [𝑧(0) , 𝑧(1)]. That is,

𝜇𝛼 = 𝜇(𝑧(𝛼)) = (1 − 𝛼)𝜇(𝑧(0)) + 𝛼𝜇(𝑧(1)) .

For any 𝑖 ∈ [𝑛], 𝑧(𝛼) ∈ 𝒩−∞(𝜃) implies

𝑥
(𝛼)
𝑖
𝑠
(𝛼)
𝑖

(1 − 𝛼)𝑥(0)
𝑖
𝑠
(0)
𝑖
+ 𝛼𝑥(1)

𝑖
𝑠
(1)
𝑖

≥ (1 − 𝜃)𝜇𝛼

(1 − 𝛼)𝑥(0)
𝑖
𝑠
(0)
𝑖
+ 𝛼𝑥(1)

𝑖
𝑠
(1)
𝑖

≥ (1 − 𝜃)𝜇𝛼

𝑛((1 − 𝛼)𝜇(𝑧(0)) + 𝛼𝜇(𝑧(1)))
≥ 1 − 𝜃

𝑛
.

From Lemma 5.3.6 for 𝑢 = 𝑥
(1)
𝑖
/𝑥(0)

𝑖
, 𝑣 = 𝑠

(1)
𝑖
/𝑠(0)
𝑖

we get that

1 − 𝜃
𝑛
≤ 2

(
𝑥
(1)
𝑖

𝑥
(0)
𝑖

+
𝑠
(1)
𝑖

𝑠
(0)
𝑖

)
.

Let

𝐵 ≔

{
𝑖 ∈ 𝑁 :

𝑥
(1)
𝑖

𝑥
(0)
𝑖

≥
𝑠
(1)
𝑖

𝑠
(0)
𝑖

}
, 𝑁 ≔ [𝑛] \ 𝐵 .

Then, 𝑥(1)
𝑖
/𝑥(0)

𝑖
≥ 1−𝜃

4𝑛 , for all 𝑖 ∈ 𝐵, and 𝑠(1)
𝑖
/𝑠(0)
𝑖
≥ 1−𝜃

4𝑛 for all 𝑖 ∈ 𝑁 .
For any 𝛼 ∈ [0, 1] and 𝑖 ∈ 𝐵,

𝑥
(𝛼)
𝑖

𝑥
(0)
𝑖

= (1 − 𝛼) + 𝛼
𝑥
(1)
𝑖

𝑥
(0)
𝑖

≥ min
{
1, 1 − 𝜃

4𝑛

}
=

1 − 𝜃
4𝑛 .

Similarly, for 𝑖 ∈ 𝑁 , 𝑠(𝛼)
𝑖
/𝑠(0)
𝑖
≥ 1−𝜃

4𝑛 .
For the central path point 𝑧cp(𝜇𝛼) = (𝑥cp(𝜇𝛼), 𝑠cp(𝜇𝛼)) at 𝜇𝛼, the bounds in Lemma 5.2.8 relating

points in a neighborhood with central path points give

𝑥
cp
𝑖
(𝜇𝛼)

𝑥
cp
𝑖
(𝜇0)

≥
𝑥
(𝛼)
𝑖
/(2𝑛)

2𝑛
1−𝜃 𝑥

(0)
𝑖

≥ (1 − 𝜃)2
16𝑛3 , ∀𝑖 ∈ 𝐵 .

By a similar argument, we also have 𝑠cp
𝑖
(𝜇𝛼)/𝑠cp

𝑖
(𝜇0) ≥ (1−𝜃)

2

16𝑛3 , ∀𝑖 ∈ 𝑁 . Thus, CP[𝜇1 , 𝜇0] is (1−𝜃)
2

16𝑛3

polarized. □

To conclude this section, we show that linearity of the central path can be equivalently restated
in terms of polarization. While not needed in the sequel, we believe it to be of independent interest.
The proof can be found in the Appendix.

Lemma 5.3.7. For 𝜇0 > 𝜇1 ≥ 0, let CP[𝜇1 , 𝜇0] be 𝛾-polarized. Then 𝛾 ∈ [0, 1]. Furthermore, 𝛾 = 1 if and
only if CP[𝜇1 , 𝜇0] is linear.
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5.4 The Subspace Layered Least Squares IPM

In this section, we introduce the algorithm IPM with subspace LLS (Algorithm 5.1) and prove
the following result.

Theorem 5.4.1 (Proof on 130). Let CP[𝜇1 , 𝜇0] be 𝛾-polarized. Then, given an iterate 𝑧 ∈ 𝒩(𝛽) with
parameter 𝜇(𝑧) ∈ (𝜇1 , 𝜇0), the algorithm IPM with subspace LLS (Algorithm 5.1) takes 𝑂

(
𝑛1.5 log(𝑛/𝛾)

)
many iterations to find 𝑧′ ∈ 𝒩(𝛽) such that 𝜇(𝑧′) ≤ 𝜇1.

Recall from Theorem 5.3.4 that the existence of a line segment in the wide neighborhood of the
central path implies polarization of the corresponding central path segment. Hence, Theorem 5.1.1
directly follows from Theorem 5.3.4 and Theorem 5.4.1. Recall from the discussion after the
statement of Theorem 5.3.4 in Section 5.3 how Theorem 5.1.2 and Theorem 5.1.3 can also be derived.
We stress that IPM with subspace LLS does not have any information about the polarization of
CP[𝜇1 , 𝜇0], but only defines the steps using local information.

The subspace LLS direction We now introduce a new update direction, called the subspace layered
least squares update direction. At a given point 𝑧 ∈ 𝒩(𝛽), this step direction is specified by a partition
𝐵 ∪ 𝑁 = [𝑛] and two subspaces 𝑉 ⊆ 𝜋𝑁 (�̂�−1𝑊) and𝑈 ⊆ 𝜋𝐵(𝑠−1𝑊⊥).

Recall the notation 𝜉 for the local error scaling and the thereby adjusted versions �̂� and 𝑠 of 𝑥
and 𝑠 defined in (5.13). For a given partition 𝐵 ∪𝑁 = [𝑛] such that 𝐵, 𝑁 ≠ ∅, recall the lifting maps
introduced in Section 5.2.3. We use the following shorthand notation

ℓ 𝑧,𝑁 B ℓ �̂�
−1𝑊
𝑁 and ℓ⊥𝑧,𝐵 B ℓ 𝑠

−1𝑊⊥
𝐵 .

Thus, the linear map ℓ 𝑧,𝑁 : R𝑁 → R𝐵 computes a minimum-norm lift in the rescaling �̂�−1𝑊

corresponding to the local geometry at the point 𝑧. Recall from Lemma 5.2.15 that the linear map
ℓ⊥
𝑧,𝐵

: R𝐵 → R𝑁 is the adjoint of ℓ 𝑧,𝑁 , thus, they are represented by matrices that are transposed of
each other.

Also recall the affine scaling direction (Δ𝑥a ,Δ𝑠a); the most convenient formulation in the context
of the next definition is (5.18).

Definition 5.4.2 (Subspace LLS direction). Let 𝑧 ∈ 𝒩(𝛽), and let 𝜉, �̂�, 𝑠 be defined as in (5.13). Assume
we are given a partition 𝐵 ∪ 𝑁 = [𝑛] and two subspaces 𝑉 ⊆ 𝜋𝑁 (�̂�−1𝑊) and 𝑈 ⊆ 𝜋𝐵(𝑠−1𝑊⊥). The
Subspace LLS update direction (Δ𝑥ℓ ,Δ𝑠ℓ ) ∈ 𝑊 ×𝑊⊥ at 𝑧 with respect to (𝐵, 𝑁,𝑈,𝑉) is defined as
follows. If 𝐵, 𝑁 ≠ ∅, then

𝛿𝑉 B arg min
𝛿∈𝑉

∥𝜉𝑁 + 𝛿∥ ,

𝛿𝑥 B
(
ℓ 𝑧,𝑁 (𝛿𝑉 ), 𝛿𝑉

)
,

Δ𝑥ℓ B �̂�𝛿𝑥 ,

𝛿𝑈 B arg min
𝛿∈𝑈

∥𝜉𝐵 + 𝛿∥ ,

𝛿𝑠 B
(
𝛿𝑈 , ℓ⊥𝑧,𝐵(𝛿

𝑈 )
)
,

Δ𝑠ℓ B 𝑠𝛿𝑠 .

If 𝑁 = ∅, then we let (Δ𝑥ℓ ,Δ𝑠ℓ ) = (0,Δ𝑠a) and if 𝐵 = ∅, then we let (Δ𝑥ℓ ,Δ𝑠ℓ ) = (Δ𝑥a , 0).

The formula defining 𝛿𝑉 is similar to the definition (5.18) of the affine scaling direction. However,
when defining 𝛿𝑉 , we restrict ourselves to norm minimization in 𝜋𝑁 (�̂�−1𝑊), and within that, we
require 𝛿𝑉 ∈ 𝑉 . This step is then extended to the coordinates in 𝐵 using a minimum norm lift in
the rescaled subspace �̂�−1𝑊 .
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Note that we can equivalently write 𝛿𝑉 = −Π𝑉 (𝜉𝑁 ) and 𝛿𝑈 = −Π𝑈 (𝜉𝐵). An equivalent definition
of Δ𝑥ℓ , using the primal local norm in the original space𝑊—similarly to (5.17)—is the following:

Δ𝑣ℓ B arg min
{ �̂�−1

𝑁 (𝑥𝑁 + Δ𝑣)
 : Δ𝑣 ∈ �̂�𝑉

}
,

Δ𝑥ℓ B arg min
{ �̂�−1Δ𝑥

 : Δ𝑥𝑁 = Δ𝑣ℓ ,Δ𝑥 ∈𝑊
}
.

(5.26)

Analogous formulas can be given for Δ𝑠ℓ .
For the subspace LLS direction as in Definition 5.4.2, let us define the residuals

𝜚𝑉 B 𝜉 + 𝛿𝑥 =
𝑥 + Δ𝑥ℓ

�̂�
, 𝜚𝑈 B 𝜉 + 𝛿𝑠 =

𝑠 + Δ𝑠ℓ
𝑠

. (5.27)

Cheap lifts and singular values To argue for the usefulness of the above defined step direction,
and to select suitable subspaces𝑉 and𝑈 for a given partition (𝐵, 𝑁), we recall the discussion of the
trust region step from the Introduction (Section 5.1). As long as the step primal and dual directions
(Δ𝑥,Δ𝑠) are feasible to the systems (5.6) for a suitably small threshold 𝜚 , we are guaranteed to
make progress as measured by the primal and dual objective values as in (5.7).

Simply selecting𝑉 = 𝜋𝑁 (�̂�−1𝑊) and𝑈 = 𝜋𝐵(𝑠−1𝑊⊥)would attain the smallest possible objective
values; however, the constraints bounding the local norms of Δ𝑥ℓ

𝐵
and Δ𝑠ℓ

𝑁
in (5.6) could be

arbitrarily violated. Therefore, we select the subspaces 𝑉 and𝑈 such that no matter how 𝛿𝑉 and
𝛿𝑈 are selected, the lifts Δ𝑥ℓ

𝐵
= �̂�𝑁ℓ 𝑧,𝑁 (𝛿𝑉 ) and Δ𝑠ℓ

𝑁
= 𝑠𝑁ℓ

⊥
𝑧,𝐵
(𝛿𝑈 ) will have small local norms; that

is, ∥ℓ 𝑧,𝑁 (𝛿𝑉 )∥ and ∥ℓ⊥
𝑧,𝐵
(𝛿𝑈 )∥ are suitably bounded.

Using that ∥𝛿𝑉 ∥ ≤ ∥𝜉𝑁 ∥ as 𝛿𝑉 is the projection of 𝜉𝑁 , and Proposition 5.2.10, we get

∥𝛿𝑉 ∥ ≤ ∥𝜉𝑁 ∥ ≤
√
𝑛 .

Hence, if we can guarantee that the lifting map satisfies ∥ℓ 𝑧,𝑁 (𝛿)∥ ≤ 𝜏∥𝛿∥ for all 𝛿 ∈ 𝑉 for a suitably
small threshold 𝜏, we can guarantee Δ𝑥ℓ to be feasible to the primal trust region program (5.6);
analogous arguments can be made for the dual direction. Naturally, we would like to select the
largest subspaces 𝑉 and𝑈 with this property.

Let us define the threshold
𝜏 B

𝛽

16
√
𝑛
. (5.28)

Our goal is to ensure that

∥ℓ 𝑧,𝑁 (𝛿)∥ ≤ 𝜏∥𝛿∥ , ∀𝛿 ∈ 𝑉 and ∥ℓ⊥𝑧,𝐵(𝛿)∥ ≤ 𝜏∥𝛿∥ , ∀𝛿 ∈ 𝑈 . (5.29)

This holds if𝑉 is the subspace spanned by the singular vectors of the map ℓ 𝑧,𝑁 corresponding to the
singular values ≤ 𝜏 in absolute value; analogously for ℓ⊥

𝑧,𝐵
and𝑈 . In the following definition, we

use a full Singular Value Decomposition (SVD) of the matrix M ∈ R|𝐵|×|𝑁 | representing the map ℓ 𝑧,𝑁 .
The Singular Value Decomposition (SVD) gives M = UΣV⊤ where U ∈ R|𝐵|×|𝐵| and V ∈ R|𝑁 |×|𝑁 |
are orthogonal matrices, and Σ ∈ R|𝐵|×|𝑁 | is a rectangular diagonal matrix also including the zero
singular values.

Definition 5.4.3 (Cheap Subspaces). For a partition 𝐵 ∪𝑁 = [𝑛] with 𝐵, 𝑁 ≠ ∅ and 𝑧 ∈ 𝒩(𝛽), consider
an SVD decomposition

ℓ 𝑧,𝑁 = UΣV⊤ , ℓ⊥𝑧,𝐵 = VΣ⊤U⊤ .
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Depending on a threshold parameter 𝑡 ∈ R>0, we set

𝑉𝑧,𝑁 (𝑡) B im(V𝑆) ∩ 𝜋𝑁 (�̂�−1𝑊) for 𝑆 B { 𝑖 : ∥Σ·,𝑖 ∥ ≤ 𝑡 } ,
𝑈𝑧,𝐵(𝑡) B im(U𝑇) ∩ 𝜋𝐵(𝑠−1𝑊⊥) for 𝑇 B { 𝑖 : ∥Σ𝑖 ,·∥ ≤ 𝑡 } .

Further, we let𝑉 𝑧,𝑁 (𝑡) be the orthogonal complement of𝑉𝑧,𝑁 (𝑡) in 𝜋𝑁 (�̂�−1𝑊), that is, 𝑉𝑧,𝑁 (𝑡) ⊕𝑉 𝑧,𝑁 (𝑡) =
𝜋𝑁 (�̂�−1𝑊) and 𝑉𝑧,𝑁 (𝑡) ⊥ 𝑉 𝑧,𝑁 (𝑡). Analogously we define 𝑈 𝑧,𝐵(𝑡) such that 𝑈𝑧,𝐵(𝑡) ⊕ 𝑈 𝑧,𝐵(𝑡) =
𝜋𝐵(𝑠−1𝑊⊥) and𝑈𝑧,𝐵(𝑡) ⊥ 𝑈 𝑧,𝐵(𝑡).

Note that ∥Σ·,𝑖 ∥ and ∥Σ·,𝑖 ∥ are the absolute values of the singular values corresponding to the
𝑖-th columns of V and U, respectively. It is clear from the definition that 𝑉 = 𝑉𝑧,𝑁 and 𝑈 = 𝑈𝑧,𝐵

satisfy (5.29).
Definition 5.4.3 gives a natural way of defining 𝑉 = 𝑉𝑧,𝑁 (𝜏) and𝑈 = 𝑈𝑧,𝐵(𝜏) for our algorithm.

However, this requires an exact SVD decomposition of the matrix M representing the lifting map
ℓ𝑧,𝑁 . It is important to note that our arithmetic model does not allow for computing an exact
decomposition. Since we would like to implement each iteration of the algorithm in strongly
polynomial time, we cannot use a numerical approximation for the SVD , as such approximations
would depend on the norm of the matrix. However, a weaker property suffices for our analysis.
Namely, we need that the subspace𝑉 ⊆ 𝜋�̃� (�̂�−1𝑊) has singular values at most 𝜏—and thus satisfies
(5.29)—and further it includes the subspace of right singular vectors corresponding to the singular
values ≤ 𝜏/𝑛𝑐 for some constant 𝑐 > 0; analogously for 𝑈 . A strongly polynomial subroutine
Approx-SVD finding such a subspace is given in Section 5.4.1.

The associated partition Definition 5.4.2 and Definition 5.4.3 are applicable for any partition
𝐵 ∪ 𝑁 = [𝑛], 𝐵, 𝑁 ≠ ∅ and 𝑧 ∈ 𝒩(𝛽). Our algorithm chooses a natural partition derived from the
relative step lengths in the affine scaling step:

Definition 5.4.4 (associated partition). For 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽), let (Δ𝑥a ,Δ𝑠a) be the affine scaling step as
in (5.16). Let us define the associated partition 𝐵𝑧 ∪ 𝑁𝑧 = [𝑛] as

𝐵𝑧 B

{
𝑖 :

����Δ𝑥a
𝑖

𝑥𝑖

���� < ����Δ𝑠a
𝑖

𝑠𝑖

���� } 𝑁𝑧 B [𝑛] \ 𝐵𝑧 .

Further, let ℓ̃ 𝑧 B ℓ
𝑧,𝑁𝑧

and ℓ̃
⊥
𝑧 B ℓ⊥

𝑧,𝐵𝑧
denote the lifting maps corresponding to this partition, assuming

𝐵𝑧 , 𝑁𝑧 ≠ ∅.

The affine scaling step is the canonical candidate for an improving direction. Namely, for each
𝑖 ∈ 𝐵𝑧 the variable 𝑠𝑖 decreases at a faster rate than 𝑥𝑖 , and vice versa for 𝑖 ∈ 𝑁𝑧 . As shown in the
analysis (Lemma 5.4.11), for a sufficiently long polarized segment, (𝐵𝑧 , 𝑁𝑧) reveals the polarizing
partition.

Description of the algorithm We are ready to describe the predictor-corrector algorithm IPM
with subspace LLS, shown in Algorithm 5.1. We are given a starting point (𝑥0 , 𝑠0) ∈ 𝒩(𝛽). In each
iteration, we compute the affine scaling direction (Δ𝑥a ,Δ𝑠a) and identify the associated partition
(𝐵, 𝑁). Using this partition, we approximate the cheap subspaces 𝑈 and 𝑉 using Approx-SVD
(Algorithm 5.2). We then compute the subspace LLS direction (Δ𝑥ℓ ,Δ𝑠ℓ ) for (𝐵, 𝑁,𝑉,𝑈). For both
directions, compute the feasible step-lengths according to the bounds in Proposition 5.2.9 and
Lemma 5.2.12. We use the better of these two possible steps, and obtain the next iterate after a
corrector step.
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Algorithm 5.1: IPM with subspace LLS

Input : Instance of LP and initial (𝑥0 , 𝑠0) ∈ 𝒩(𝛽), 𝛽 ∈ (0, 1/6].
Output :Optimal solution (𝑥★, 𝑠★) to LP.

1 𝑥 ← 𝑥0 , 𝑠 ← 𝑠0

2 while ⟨𝑥, 𝑠⟩ > 0 do
3 Compute affine scaling direction (Δ𝑥a ,Δ𝑠a)
4 Set 𝛼a for (Δ𝑥a ,Δ𝑠a) according to Proposition 5.2.9(ii)
5 (�̂�a , 𝑠a) ← (𝑥 + 𝛼aΔ𝑥a , 𝑠 + 𝛼aΔ𝑠a)
6 𝐵←

{
𝑖 :

���Δ𝑥a
𝑖

𝑥𝑖

��� < ���Δ𝑠a
𝑖

𝑠𝑖

��� } , 𝑁 ← [𝑛] \ 𝐵
7 V← Approx-SVD(ℓ (𝑥,𝑠),𝑁 )

8 𝑖 ← max{ 𝑗 :
∥ℓ (𝑥,𝑠),𝑁 (V𝑗 )∥
∥V𝑗 ∥ ≤ 𝜏

𝑛 }
9 𝑉 ← im(V≤𝑖) ∩ 𝜋

𝑁
(�̂�−1𝑊)

10 U← Approx-SVD(ℓ⊥
(𝑥,𝑠),𝐵

)

11 𝑖 ← max
{
𝑗 :
∥ℓ⊥
(𝑥,𝑠),𝐵

(U𝑗 )∥
∥U𝑗 ∥ ≤ 𝜏

𝑛

}
12 𝑈 ← im(U≤𝑖) ∩ 𝜋

𝐵
(𝑠−1𝑊⊥)

13 Find subspace LLS direction (Δ𝑥ℓ ,Δ𝑠ℓ ) according to Definition 5.4.2 for 𝑉 and𝑈
14 Set 𝛼ℓ for (Δ𝑥ℓ ,Δ𝑠ℓ ) according to Lemma 5.2.12
15 (�̂�ℓ , 𝑠ℓ ) ← (𝑥 + 𝛼ℓΔ𝑥ℓ , 𝑠 + 𝛼ℓΔ𝑠ℓ )
16 if 𝜇(�̂�a , 𝑠a) ≤ 𝜇(�̂�ℓ , 𝑠ℓ ) then
17 (𝑥, 𝑠) ← (�̂�a , 𝑠a)
18 else
19 (𝑥, 𝑠) ← (�̂�ℓ , 𝑠ℓ )
20 (Δ𝑥𝑐 ,Δ𝑠𝑐) = Corrector(𝑥, 𝑠)
21 𝑥 ← 𝑥 + Δ𝑥𝑐 , 𝑠 ← 𝑠 + Δ𝑠𝑐

22 return (𝑥, 𝑠)

The main potential in the analysis is the 𝜎(𝑧), the non-decreasing vector of non-zero singular
values of ℓ 𝑧 and ℓ⊥𝑧 , which are the same by Lemma 5.2.15.

In particular, we have

𝜎(𝑧)𝑖 = 𝜎𝑖+dim(ker(ℓ 𝑧 ))(ℓ 𝑧) = 𝜎𝑖+dim(ker(ℓ⊥𝑧 ))(ℓ
⊥
𝑧 ) . (5.30)

for all 𝑖 ∈ [dim(im(ℓ 𝑧))].
Throughout this section, we will analyze the behaviour of IPM with subspace LLS on a fixed

𝛾-polarized segment CP[𝜇1 , 𝜇0]with respect to the polarizing partition 𝐵 ∪· 𝑁 = [𝑛]. This partition
will be fixed throughout, and for 𝑧 ∈ 𝒩(𝛽)with 𝜇(𝑧) ∈ [𝜇1 , 𝜇0], we use the shorthands

ℓ 𝑧 B ℓ 𝑧,𝑁 = ℓ �̂�
−1𝑊
𝑁 , ℓ⊥𝑧 B ℓ⊥𝑧,𝐵 = ℓ 𝑠

−1𝑊⊥
𝐵 .

5.4.1 Algorithmic Tools

Polynomial approximation of singular values

To compute the subspace LLS direction, we need to identify the linear spaces 𝑈 and 𝑉 that are
obtained from an exact SVD of the matrix 𝑀 representing the lifting map ℓ̃𝑧 . It is important to note
that our arithmetic model does not allow for computing an exact decomposition. Since our goal is
to be able to implement each iteration of the algorithm in strongly polynomial time, we cannot use
a numerical approximation for the SVD, as such approximations would depend on the norm of the
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matrix. However, the analysis of the main algorithm (Algorithm 5.1) is robust, and it suffices to
identify a subspace 𝑉 ⊆ 𝜋�̃� (�̂�−1𝑊) such that the lifting map from 𝑉 has singular values at most 𝜏
and includes the subspace of right singular vectors corresponding to the singular values ≤ 𝜏/𝑛𝑐 for
some threshold 𝜏 and 𝑐 > 0. In the following we provide such an approximation for 𝑐 = 1/2.

Algorithm 5.2: Approx-SVD

Input :A matrix M ∈ R𝑚×𝑛 .
Output :A matrix V ∈ R𝑛×𝑛 .

1 V← I𝑛
2 for 𝑖 = 1, . . . , 𝑛 do
3 V← orthogonalize(I𝑛 ,V)
4 V≥𝑖 ← orthogonalize(M,V≥𝑖)
5 𝑐 ← arg min𝑖≤ 𝑗≤𝑛

∥MV𝑗 ∥
∥V𝑗 ∥

6 V← V with column 𝑖 swapped with column 𝑐
7 V(𝑖) ← V // Only needed for the analysis

8 return V
9 procedure Orthogonalize(N,V):

Input :Matrices N ∈ R𝑚×𝑛 and V ∈ R𝑛×𝑘
Output :A matrix V̂ ∈ R𝑛×𝑘 with

im(V≤𝑖) = im(V̂≤𝑖) for all 𝑖 ∈ [𝑘] and
N-orthogonal columns, i.e., V̂⊤N⊤NV̂
is diagonal. // If 𝑚 = 0 return V.

10 Perform standard Gram-Schmidt orthogonalization
with the inner product induced by N

We denote the set of 𝑖-dimensional linear subspaces of R𝑛 by 𝒮(𝑖). Recall the min-max principle
for singular values:

𝜎𝑖(M) = min
𝑆∈𝒮(𝑖)

max
𝑢∈𝑆\{0}

∥M𝑢∥
∥𝑢∥ = max

𝑆∈𝒮(𝑛−𝑖+1)
min

𝑢∈𝑆\{0}

∥M𝑢∥
∥𝑢∥ . (5.31)

The next statement gives an approximate version based on an the approximate representatives
for 𝑖-dimensional linear subspaces of R𝑛 .

Lemma 5.4.5. Algorithm 5.2 returns a matrix V with orthogonal columns such that

𝜎𝑖(M)
𝑛
≤ 1
𝑛

max
𝑣∈im(V≤𝑖 )\{0}

∥M𝑣∥
∥𝑣∥ ≤

∥MV𝑖 ∥
∥V𝑖 ∥

≤
√
𝑛 min
𝑣∈im(V≥𝑖 )\{0}

∥M𝑣∥
∥𝑣∥ ≤

√
𝑛𝜎𝑖(M) , (5.32)

for all 𝑖 ∈ [𝑛].

Proof. Note that the first and last inequality follow from (5.31). We prove the second and the third
inequality. Note that by choice of 𝑗 in line 5 we have for all 𝑗 with 𝑖 ≤ 𝑗 ≤ 𝑛 that

∥MV(𝑖)
𝑖
∥

∥V(𝑖)
𝑖
∥
≤
∥MV(𝑖)

𝑗
∥

∥V(𝑖)
𝑗
∥
. (5.33)

Therefore, by M-orthogonality of V(𝑖)≥𝑖 we have

∥MV(𝑖)≥𝑖𝑢∥

∥V(𝑖)≥𝑖𝑢∥
=

√∑
𝑗≥𝑖 𝑢

2
𝑗
∥MV(𝑖)

𝑗
∥2

∥V(𝑖)≥𝑖𝑢∥

(5.33)
≥
∥MV(𝑖)

𝑖
∥

∥V(𝑖)
𝑖
∥

√∑
𝑗≥𝑖 𝑢

2
𝑗
∥V(𝑖)

𝑗
∥2

∥V(𝑖)≥𝑖𝑢∥
≥
∥MV(𝑖)

𝑖
∥

∥V(𝑖)
𝑖
∥

√∑
𝑗≥𝑖 𝑢

2
𝑗
∥V(𝑖)

𝑗
∥2(∑

𝑗≥𝑖 𝑢𝑗 ∥V
(𝑖)
𝑗
∥
)

≥ 1√
𝑛

∥MV(𝑖)
𝑖
∥

∥V(𝑖)
𝑖
∥
.

(5.34)
Note that im(V(𝑖)≥𝑖) = im(V≥𝑖) for and V(𝑖)

𝑖
= V𝑖 for all 𝑖 ∈ [𝑛].

Therefore,
122



5 IPM NOT WORSE THAN SIMPLEX 5.4 The Subspace Layered Least Squares IPM

min
𝑣∈im(V≥𝑖 )

∥M𝑣∥
∥𝑣∥ = min

𝑣∈im(V(𝑖)≥𝑖 )

∥M𝑣∥
∥𝑣∥

(5.34)
≥ 1√

𝑛

∥MV(𝑖)
𝑖
∥

∥V(𝑖)
𝑖
∥

=
1√
𝑛

∥MV𝑖 ∥
∥V𝑖 ∥

, (5.35)

which proves the third inequality of the lemma.
It remains to prove the second inequality of the lemma. Note that by the I𝑛-orthogonality of the

columns of V we have for all 𝑖 ∈ [𝑛] that

max
𝑣∈im(V≤𝑖 )\{0}

∥M𝑣∥
∥𝑣∥ = max

𝑢∈R𝑖\{0}

∥MV≤𝑖𝑢∥
∥V≤𝑖𝑢∥

orthogonality
= max

𝑢∈R𝑖\{0}

∥MV≤𝑖𝑢∥√∑
𝑗≤𝑖 ∥V𝑗 ∥2𝑢2

𝑗

≤ max
𝑢∈R𝑖\{0}

∑
𝑗≤𝑖 ∥MV𝑗 ∥|𝑢𝑗 |√∑
𝑗≤𝑖 ∥V𝑗 ∥2𝑢2

𝑗

AM-QM
≤ max

𝑢∈R𝑖\{0}

√
𝑛

∑
𝑗≤𝑖 ∥MV𝑗 ∥|𝑢𝑗 |∑
𝑗≤𝑖 ∥V𝑗 ∥|𝑢𝑗 |

mediant
≤
√
𝑛max

𝑗≤𝑖

∥MV𝑗 ∥
∥V𝑗 ∥

.

(5.36)

Further, we have for all 𝑗 ≤ 𝑖 that V𝑖 ∈ im(V(𝑗)≥ 𝑗) = im(V≥ 𝑗). Therefore,

∥MV𝑖 ∥
∥V𝑖 ∥

≥ min
𝑣∈im(V≥ 𝑗 )

∥M𝑣∥
∥𝑣∥

(5.35)
≥ 1√

𝑛

∥MV𝑗 ∥
∥V𝑗 ∥

. (5.37)

Combining (5.37) with (5.36) gives the second inequality of the lemma. □

Stability of singular values on polarized segments

We now present two statements that describe the stability and evolution of singular values of the
map ℓ 𝑧 on polarized segments of the central path.

Lemma 5.4.6 (Stability of singular values for multiplicative perturbation). Let 𝑦 ∈ R𝑛>0,𝑊 ⊆ R𝑛 a
subspace and let ℓ 𝑦

−1𝑊

𝑁
: R𝑁 → 𝜋𝐵(𝑦−1𝑊) and ℓ𝑊

𝑁
: R𝑁 → 𝜋𝐵(𝑊) be defined according to Definition 5.2.13.

Let 𝜎1 ≤ · · · ≤ 𝜎𝑁 and �̃�1 ≤ · · · ≤ �̃�𝑁 their respective singular values. Then, for all 𝑘 ∈ [𝑁], we have

1
∥𝑦−1

𝐵
∥∞∥𝑦𝑁 ∥∞

𝜎𝑘 ≤ �̃�𝑘 ≤ ∥𝑦𝐵∥∞∥𝑦−1
𝑁 ∥∞𝜎𝑘 . (5.38)

Proof. We denote ℓ B ℓ
𝑦−1𝑊

𝑁
and ℓ̃ B ℓ𝑊

𝑁
.

We prove the second inequality, the first inequality follows by replacing 𝑦 with 𝑦−1 and 𝜎 with �̃�.
Note that for any 𝑥 ∈ 𝜋𝑁 (𝑦−1𝑊), we have 𝑦𝑁𝑥 = (𝑦𝐿𝑦

−1𝑊

𝑁
(𝑥))𝑁 ∈ 𝜋𝑁 (𝑊) and (𝑦𝐿𝑦

−1𝑊

𝑁
(𝑥))𝐵 =

𝑦𝐵ℓ (𝑥) ∈ 𝜋𝐵(𝑊). By definition of ℓ̃ , we deduce that

∥̃ℓ (𝑦𝑁𝑥)∥ ≤ ∥𝑦𝐵ℓ (𝑥)∥ ≤ ∥𝑦𝐵∥∞∥ℓ (𝑥)∥ . (5.39)

Consider the singular value decomposition ℓ = UΣV⊤ such that the diagonal of Σ is non-decreasing.
For 𝑘 ∈ |𝑁 |, let 𝑉 (𝑘) = im((V⊤)≤𝑘) ⊆ 𝜋𝑁 (𝑦−1𝑊) be the column span of the first 𝑘 columns of V⊤.
This is the subspace corresponding to the smallest 𝑘 singular values of ℓ . Let further𝑉 (𝑘) B 𝑦𝑁𝑉

(𝑘)

be the rescaled subspace in 𝜋𝑁 (𝑊). Now, for any �̃� ∈ 𝑉 (𝑘), we have for 𝑣 B 𝑦−1
𝑁
�̃� ∈ 𝑉 (𝑘) that

∥ℓ (𝑣)∥ ≤ 𝜎𝑘 ∥𝑣∥ and so

∥̃ℓ (̃𝑣)∥ = ∥̃ℓ (𝑦𝑁𝑣)∥
(5.39)
≤ ∥𝑦𝐵∥∞∥ℓ (𝑣)∥ ≤ ∥𝑦𝐵∥∞𝜎𝑘 ∥𝑣∥ ≤ 𝜎𝑘 ∥𝑦𝐵∥∞∥𝑦−1

𝑁 ∥∞∥�̃�∥ . (5.40)
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Hence, by (5.31) we get

�̃�𝑘 ≤ max
�̃�∈𝑉 (𝑘)

∥̃ℓ (̃𝑣)∥
∥�̃�∥

(5.40)
≤ ∥𝑦𝐵∥∞∥𝑦−1

𝑁 ∥∞𝜎𝑘 . □

Lemma 5.4.7 (Stability of singular values on polarized segments). Let CP[𝜇1 , 𝜇0] be a 𝛾-polarized
segment of the central path with partition 𝐵∪· 𝑁 = [𝑛]. Let 𝑧, �̃� ∈ 𝒩(𝛽) for 𝛽 ∈ (0, 1/6), such that 𝜇 B 𝜇(𝑧)
and �̃� B 𝜇(̃𝑧) satisfy 𝜇0 ≥ 𝜇 ≥ �̃� ≥ 𝜇1. Then we have:

𝛾2

4𝑛2 ·
�̃�

𝜇
𝜎(𝑧) ≤ 𝜎(̃𝑧) ≤ 4𝑛2

𝛾2 ·
𝜇

�̃�
𝜎(𝑧). (5.41)

Proof. Let 𝑧 B (𝑥, 𝑠) and �̃� B (�̃� , �̃�). We denote 𝜉(𝑧) = 𝑥1/2𝑠1/2𝜇−1/2 and 𝜉(̃𝑧) = �̃�1/2̃𝑠1/2�̃�−1/2 by 𝜉

and �̃�, respectively. We want to apply Lemma 5.4.6 with 𝑦 = 𝑥𝜉−1 �̃�−1�̃�. By Proposition 5.2.10 we
have √

1 − 𝛽1 ≤ 𝜉, �̃� ≤
√

1 + 𝛽1 . (5.42)

With Proposition 5.2.5 and Corollary 5.3.3 we get

∥𝑦𝐵∥∞ = ∥𝑥𝐵 �̃�−1
𝐵 𝜉−1

𝐵 �̃�𝐵∥∞ ≤
(1 + 2𝛽)(1 + 𝛽)1/2

(1 − 𝛽)3/2

𝑥(𝜇)𝐵𝑥(�̃�)𝐵


∞
≤ 2𝑛

𝛾

∥𝑦−1
𝑁 ∥∞ = ∥ �̃�𝑁𝑥−1

𝑁 �̃�−1
𝑁 𝜉𝑁 ∥∞ ≤

(1 + 2𝛽)(1 + 𝛽)1/2

(1 − 𝛽)3/2

𝑥(�̃�)𝑁𝑥(𝜇)𝑁


∞
≤ 2𝑛𝜇

𝛾�̃�

(5.43)

and

∥𝑦−1
𝐵 ∥∞ = ∥𝑥−1

𝐵 �̃�𝐵𝜉𝐵�̃�
−1
𝐵 ∥∞ ≤

(1 + 2𝛽)(1 + 𝛽)1/2

(1 − 𝛽)3/2

𝑥(�̃�)𝐵𝑥(𝜇)𝐵


∞
≤ 2𝑛

𝛾

∥𝑦𝑁 ∥∞ = ∥ �̃�−1
𝑁 𝑥𝑁 �̃�𝑁𝜉

−1
𝑁 ∥∞ ≤

(1 + 2𝛽)(1 + 𝛽)1/2

(1 − 𝛽)3/2

𝑥(𝜇)𝑁𝑥(�̃�)𝑁


∞
≤

2𝑛𝜇
𝛾�̃�

.

(5.44)

using (1+2𝛽)(1+𝛽)1/2
(1−𝛽)3/2 ≤ 2 for 𝛽 ∈ (0, 1/6) and

 𝑥(𝜇)𝐵𝑥(�̃�)𝐵


∞
=

𝑥(𝜇)𝑖
𝑥(𝜇0)𝑖

𝑥(𝜇0)𝑖
𝑥(�̃�)𝑖 for the maximizing index 𝑖 (as well

as the analogous terms of the other inequalities).
Plugging these estimates into Lemma 5.4.6 yields the result. □

Simple properties of the subspace LLS step

Here and in the rest of the analysis, ∥ · ∥ denotes the usual ℓ2 → ℓ2 operator norm. By the choice of
𝑉 and𝑈 in the algorithm, and using the second inequality of Lemma 5.4.5 we obtain the following
bound.

Lemma 5.4.8.
ℓ 𝑧 ��𝑉, ℓ⊥𝑧 ��𝑈 ≤ 𝜏 .

A simple and useful bound on 𝛿𝑥
𝐵

and 𝛿𝑠
𝑁

is the following.

Lemma 5.4.9. We have
∥𝛿𝑉 ∥ , ∥𝛿𝑈 ∥ ≤

√
𝑛 ,

and
∥𝛿𝑥𝐵∥ ≤ 𝜏

√
𝑛, and ∥𝛿𝑠𝑁 ∥ ≤ 𝜏

√
𝑛 .

Proof. By definition, 𝛿𝑉 is the projection of some coordinates of 𝜉, and therefore ∥𝛿𝑉 ∥ ≤ ∥𝜉∥ =
√
𝑛

according to Proposition 5.2.10. Further, ∥𝛿𝑥
𝐵
∥ = ∥ℓ 𝑧(𝛿𝑉 )∥. Thus, Lemma 5.4.8 yields ∥𝛿𝑥

𝐵
∥ ≤

𝜏∥𝛿𝑉 ∥ ≤ 𝜏
√
𝑛. The analogous arguments give the bounds ∥𝛿𝑈 ∥ and ∥𝛿𝑠

𝑁
∥. □
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The empirical gradient and its projections

For a point 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽) such that 𝜇(𝑧) ∈ [𝜇1 , 𝜇0], the empirical gradient is the direction that
points directly to the endpoint of the polarized segment 𝑧cp(𝜇1), that is,

Δ𝑥emp B 𝑥cp(𝜇1) − 𝑥 , and Δ𝑠emp B 𝑠cp(𝜇1) − 𝑠 .

This would be a desirable direction to directly shoot down along the polarized segment, however,
it requires explicit knowledge of the point 𝑧cp(𝜇1). Nevertheless, a key idea of the analysis is to
measure the discrepancy between the subspace LLS direction and the empirical gradient. We will
analyze the quantities

𝜓𝑉 B ∥Π
𝑉
(𝜉𝑁 − �̂�−1

𝑁 𝑥
cp(𝜇1)𝑁 )∥ and 𝜓𝑈 B ∥Π

𝑈
(𝜉𝐵 − 𝑠−1

𝐵 𝑠
cp(𝜇1)𝐵)∥ .

These are the projections of a rescaling of the empirical gradient onto the respective “non-cheap”
subspaces. These quantities are crucial in proving Theorem 5.4.14. Lemma 5.4.11 shows that if
both 𝜓𝑉 and 𝜓𝑈 are small, then the partition associated to the affine scaling direction matches
the polarizing partition. Furthermore, if both are small then we make significant progress on the
central path (Theorem 5.4.13). Intuitively, in this case ‘most of’ Δ𝑥emp

𝑁
/�̂�𝑁 is in 𝑉 and ‘most of’

Δ𝑠
emp
𝐵
/𝑠𝐵 is in𝑈 . Since the subspace LLS step is optimized subject to the constraints Δ𝑥𝑁/�̂�𝑁 ∈ 𝑉 ,

Δ𝑠𝑁/𝑠𝑁 ∈ 𝑈 , we can move in this direction nearly as far as with the empirical gradient.
On the other hand, if one of 𝜓𝑉 and 𝜓𝑈 is relatively big, then the fact that the rescaled empirical

gradient has lifting costs that are bounded by 𝑛 shows that one of the non-cheap subspaces 𝑉 or𝑈
contains a direction that is not too expensive.

Partition identification

This section is concerned about the difference between the partition associated to the affine scaling
direction and the polarizing partition. We will show that if the residuals 𝜚𝑈

𝐵
and 𝜚𝑉

𝑁
are small

(recall their definition in (5.27)), then both partitions coincide (Lemma 5.4.10). This in turn can
be used to show that these two partitions coincide, if the norm of the projections of the empirical
gradient 𝜓𝑉 and 𝜓𝑈 are small (Lemma 5.4.11).

Lemma 5.4.10 (Identify partition). Let 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽), 𝛽 ∈ (0, 1/2], 𝑡 ∈ [0, 𝜏] and define
𝑉 B 𝑉𝑧,𝑁 (𝑡) and𝑈 B 𝑈𝑧,𝐵(𝑡). If ∥𝜚𝑈

𝐵
∥ + ∥𝜚𝑉

𝑁
∥ ≤ 1/16, then the associated partition (see Definition 5.4.4)

𝐵 =
{
𝑖 ∈ [𝑛] : |Δ𝑥a

𝑖
/𝑥𝑖 | < |Δ𝑠a

𝑖
/𝑠𝑖 |

}
, 𝑁 = [𝑛] \ 𝐵 agrees with the polarizing partition, that is 𝐵 = 𝐵,

𝑁 = 𝑁 .

Proof. Since �̂�−1Δ𝑥a , 𝛿𝑥 ∈ �̂�−1𝑊 and 𝑠−1Δ𝑠a , 𝛿𝑠 ∈ 𝑠−1𝑊⊥ are in orthogonal spaces, we have that

∥𝛿𝑥 − �̂�−1Δ𝑥a∥2 + ∥𝛿𝑠 − 𝑠−1Δ𝑠a∥2 = ∥𝛿𝑥 + 𝛿𝑠 − (�̂�−1Δ𝑥a + 𝑠−1Δ𝑠a)∥2 (5.15)
= ∥𝛿𝑥 + 𝛿𝑠 + 𝜉∥2 .

By the triangle inequality

∥𝛿𝑥 + 𝛿𝑠 + 𝜉∥ ≤ (∥𝛿𝑠𝐵 + 𝜉𝐵∥ + ∥𝛿𝑥𝐵∥) + (∥𝛿
𝑥
𝑁 + 𝜉𝑁 ∥ + ∥𝛿𝑠𝑁 ∥)

= ∥𝜚𝑈𝐵 ∥ + ∥𝜚
𝑉
𝑁 ∥ + ∥𝛿

𝑥
𝐵∥ + ∥𝛿

𝑠
𝑁 ∥ ≤

1
16 + 2

√
𝑛𝜏 =

1
16 +

1
8𝛽 ≤

1
8 ,
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where we used Lemma 5.4.9 to bound ∥𝛿𝑥
𝐵
∥ and ∥𝛿𝑠

𝑁
∥. Recall from Proposition 5.2.10 that

|�̂�𝑖/𝑥𝑖 |, |𝑠𝑖/𝑠𝑖 | ≤
√

1 + 𝛽 < 2 for each 𝑖 ∈ [𝑛]. Therefore, for 𝑖 ∈ 𝑁 , we have����Δ𝑠a
𝑖

𝑠𝑖

���� ≤ 2
����Δ𝑠a

𝑖

𝑠𝑖

���� ≤ 2
(
|𝛿𝑠𝑖 | +

1
8

)
≤ 1

4 + 2
√
𝑛𝜏 <

1
2 , (5.45)

and for 𝑖 ∈ 𝐵, we have ����Δ𝑥a
𝑖

𝑥𝑖

���� ≤ 2
����Δ𝑥a

𝑖

�̂�𝑖

���� ≤ 2
(
|𝛿𝑥𝑖 | +

1
8

)
≤ 1

4 + 2
√
𝑛𝜏 <

1
2 . (5.46)

Since Δ𝑥a/𝑥 + Δ𝑠a/𝑠 = −1, we must have max{|Δ𝑥a
𝑖
/𝑥𝑖 |, |Δ𝑠a

𝑖
/𝑠𝑖 |} ≥ 1/2, ∀𝑖 ∈ [𝑛]. Combining

with (5.45) and (5.46), we have that |Δ𝑥a
𝑖
/𝑥𝑖 | < |Δ𝑠a

𝑖
/𝑠𝑖 |, ∀𝑖 ∈ 𝐵, and |Δ𝑥a

𝑖
/𝑥𝑖 | > |Δ𝑠a

𝑖
/𝑠𝑖 |, ∀𝑖 ∈ 𝑁 , as

needed. □

Lemma 5.4.11 (Partition indentification via empirical gradient). Let 𝑡 ∈ [0, 𝜏] and define𝑉 B 𝑉𝑧,𝑁 (𝑡)
and𝑈 B 𝑈𝑧,𝐵(𝑡). We have

∥𝜚𝑈𝐵 ∥ + ∥𝜚
𝑉
𝑁 ∥ ≤ 𝜓𝑉 + 𝜓𝑈 + 4𝑛1.5𝛾−1𝜇1

𝜇
.

If

𝜓𝑉 + 𝜓𝑈 + 4𝑛1.5𝛾−1𝜇1

𝜇
≤ 1

16 ,

then the associated partition (𝐵, 𝑁) coincides with the polarizing partition (𝐵, 𝑁), that is 𝐵 = 𝐵, 𝑁 = 𝑁 .

Proof. The second part is immediate from the first part and Lemma 5.4.10. We have 𝜉𝑁 = 𝜚𝑉
𝑁
−𝛿𝑉 . By

definition, 𝛿𝑉 = −Π𝑉 (𝜉𝑁 ). Since𝑉 and𝑉 are orthogonal complements, it follows that 𝜚𝑉
𝑁
= Π

𝑉
(𝜉𝑁 ).

Hence,
𝜓𝑉 = ∥Π

𝑉
(𝜉𝑁 − �̂�−1

𝑁 𝑥
cp(𝜇1)𝑁 )∥ = ∥𝜚𝑉𝑁 −Π

𝑉
(�̂�−1
𝑁 𝑥

cp(𝜇1)𝑁 )∥

≥ ∥𝜚𝑉𝑁 ∥ − ∥ �̂�
−1
𝑁 𝑥

cp(𝜇1)𝑁 )∥ ≥ ∥𝜚𝑉𝑁 ∥ − 2𝑛1.5𝛾−1𝜇1

𝜇
.

(5.47)

Analogously 𝜉𝐵 = 𝜚𝑈
𝐵
= −𝛿𝑈 and so

𝜓𝑈 ≥ ∥𝜚𝑈𝐵 ∥ − 2𝑛1.5𝛾−1𝜇1

𝜇
. □

Large singular values vs empirical gradient

The following lemma helps us to upper bound either the smallest singular value or 𝜓 on either the
primal or dual side.

Lemma 5.4.12. For the polarizing partition 𝐵 ∪· 𝑁 = [𝑛] let 𝑌,𝑌 ⊆ R𝑁 be any subspaces such that
𝑌 ⊥ 𝑌,𝑌 ⊕ 𝑌 = 𝜋𝑁 (�̂�−1𝑊) and analogously let 𝑍, 𝑍 ⊆ R𝐵 such that 𝑍 ⊥ 𝑍, 𝑍 ⊕ 𝑍 = 𝜋𝐵(𝑠−1𝑊⊥). Let
𝜎𝑌 be the smallest singular value of ℓ 𝑧

��
𝑌

and analogously let 𝜎𝑍 be the smallest singular value of ℓ⊥𝑧
��
𝑍

. Then,

𝜓𝑌𝜎𝑌 ≤ 4𝑛 +
(
2𝜇1𝜇

−1𝛾−1 + 1
)
𝑛1.5∥ℓ 𝑧

��
𝑌
∥ ,

𝜓𝑍𝜎𝑍 ≤ 4𝑛 +
(
2𝜇1𝜇

−1𝛾−1 + 1
)
𝑛1.5∥ℓ 𝑧

��
𝑍
∥ .
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Proof. We only prove the first statement, since the second statement can be shown analogously.
From Lemma 5.2.4, we have

∥ℓ 𝑧(𝜉𝑁 − �̂�−1
𝑁 𝑥(𝜇1)𝑁 )∥ ≤ ∥𝜉𝐵 − �̂�−1

𝐵 𝑥(𝜇1)𝐵∥ ≤ ∥𝜉𝐵∥ + ∥ �̂�−1
𝐵 𝑥(𝜇1)𝐵∥

≤
√
𝑛 + (1 + 𝛽)∥𝑥−1(𝜇)𝐵𝑥(𝜇1)𝐵∥ ≤ 4𝑛 .

(5.48)

Since 𝜎𝑌 is the smallest singular value of ℓ 𝑧
��
𝑌

, we can bound

𝜓𝑌𝜎𝑌 ≤ ∥ℓ 𝑧(Π𝑌
(𝜉𝑁 − �̂�−1

𝑁 𝑥
cp(𝜇1)𝑁 ))∥

= ∥ℓ 𝑧(𝜉𝑁 − �̂�−1
𝑁 𝑥

cp(𝜇1)𝑁 ) − ℓ 𝑧(Π𝑌(𝜉𝑁 − �̂�−1
𝑁 𝑥

cp(𝜇1)𝑁 ))∥
≤ ∥ℓ 𝑧(𝜉𝑁 − �̂�−1

𝑁 𝑥
cp(𝜇1)𝑁 )∥ + ∥ℓ 𝑧(Π𝑌(𝜉𝑁 − �̂�−1

𝑁 𝑥
cp(𝜇1)𝑁 ))∥

(5.48)
≤ 4𝑛 + ∥ℓ 𝑧

��
𝑌
∥∥Π𝑌(𝜉𝑁 − �̂�−1

𝑁 𝑥
cp(𝜇1)𝑁 )∥

≤ 4𝑛 + ∥ℓ 𝑧
��
𝑌
∥
(
∥Π𝑌(𝜉𝑁 )∥ + ∥Π𝑌(�̂�−1

𝑁 𝑥
cp(𝜇1)𝑁 )∥

)
≤ 4𝑛 + ∥ℓ 𝑧

��
𝑌
∥
(√
𝑛 + ∥Π𝑌(�̂�−1

𝑁 𝑥
cp(𝜇1)𝑁 )∥

)
.

(5.49)

Where the last inequality used ∥Π𝑌(𝜉𝑁 )∥ ≤ ∥𝜉𝑁 ∥ ≤ ∥𝜉∥ =
√
𝑛. From Proposition 5.2.10 and

Corollary 5.3.3 we have that

∥ �̂�−1
𝑁 𝑥

cp(𝜇1)𝑁 ∥ ≤
√

1 + 𝛽∥𝑥(𝜇)−1
𝑁 𝑥

cp(𝜇1)𝑁 ∥ ≤
√
(1 + 𝛽)𝑛∥𝑥(𝜇)−1

𝑁 𝑥
cp(𝜇1)𝑁 ∥∞ ≤ 2𝑛1.5𝜇1𝜇

−1𝛾−1 .

(5.50)
The claim follows by substituting this in (5.49). □

5.4.2 Analysis

The main result of this section is Theorem 5.4.14, which shows that in case that the residuals are
small enough, then within a single step we either come within polynomial factors of the end of the
polarized segment, or the smallest singular value of the expensive subspace becomes polynomial.
Theorem 5.4.1 is then a simple consequence and will eventually be proven on Page 130.

We introduce the special index 𝜁(𝑧) ∈ [𝑛] as

𝜁(𝑧) B 1 +max
{
𝑖 : 𝜎(𝑧)𝑖 ≤

𝜏

𝑛1.5

}
. (5.51)

Then 𝜁(𝑧) − 1 corresponds to the number of non-zero singular values of ℓ 𝑧 (and ℓ⊥𝑧 ) that are not
larger than 𝜏

𝑛1.5 .

Theorem 5.4.13. Let CP[𝜇1 , 𝜇0] be 𝛾-polarized and let 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽) be an iterate with parameter
𝜇(𝑧) ∈ (𝜇1 , 𝜇0), and let 𝑧+ = (𝑥+ , 𝑠+) be the next iterate of IPM with subspace LLS run with subspaces 𝑉
and𝑈 . Let 𝑡 ∈ [0, 𝜏] and let 𝑌 B 𝑉𝑧,𝑁 (𝑡) and 𝑍 B 𝑈𝑧,𝐵(𝑡). If

𝜓𝑌 + 𝜓𝑍 + 4𝑛1.5𝛾−1𝜇1

𝜇
≤ 1

16 , (5.52)

then
𝜇(𝑧+) = 𝑂

(
𝑛4.5𝛽−1𝛾−1

(
𝜇1 + 𝜎(𝑧)−1

𝜁(𝑧)𝜇
))
.

Proof. By Lemma 5.4.11, ∥𝜚𝑍
𝐵
∥+∥𝜚𝑌

𝑁
∥ ≤ 1/16, and the associated partition agrees with the polarizing

partition: 𝐵 = 𝐵, 𝑁 = 𝑁 .
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From Proposition 5.2.10 we can bound

∥𝛿𝑥𝑁 ∥∞ = ∥𝜚𝑉𝑁 − 𝜉𝑁 ∥∞ ≤ ∥𝜚𝑉𝑁 ∥∞ + ∥𝜉∥∞ ≤
1

16 +
√

1 + 𝛽 ≤ 2 ,

∥𝛿𝑠𝐵∥∞ = ∥𝜚𝑈𝐵 − 𝜉𝐵∥∞ ≤ ∥𝜚𝑈𝐵 ∥∞ + ∥𝜉∥∞ ≤
1

16 +
√

1 + 𝛽 ≤ 2 .
(5.53)

Recall from Lemma 5.4.9 that

∥𝛿𝑥𝐵∥ ≤ 𝜏
√
𝑛 , and ∥𝛿𝑠𝑁 ∥ ≤ 𝜏

√
𝑛 .

Consequently,Δ𝑥ℓΔ𝑠ℓ𝜇

2

= ∥𝛿𝑥𝛿𝑠 ∥2 = ∥𝛿𝑥𝐵𝛿
𝑠
𝐵∥

2 + ∥𝛿𝑥𝑁𝛿
𝑠
𝑁 ∥

2 ≤ ∥𝛿𝑥𝐵∥
2∥𝛿𝑠𝐵∥

2 + ∥𝛿𝑥𝑁 ∥
2∥𝛿𝑠𝑁 ∥

2

≤ 4(∥𝛿𝑥𝐵∥
2 + ∥𝛿𝑥𝑁 ∥

2) ≤ 8𝑛𝜏2 .

(5.54)

Note that this bound gives us for (Δ𝑥ℓ ,Δ𝑠ℓ ) the assumptions of Lemma 5.2.12 as
√

8𝑛𝜏 ≤ 𝛽/4.
Further, note that (𝑥 + Δ𝑥ℓ )(𝑠 + Δ𝑠ℓ )𝜇

2

=

 (𝑥𝐵 + Δ𝑥ℓ𝐵)(𝑠𝐵 + Δ𝑠ℓ𝐵)𝜇

2

+
 (𝑥𝑁 + Δ𝑥ℓ𝑁 )(𝑠𝑁 + Δ𝑠ℓ𝑁 )𝜇

2

= ∥(𝜉𝐵 + 𝛿𝑥𝐵)(𝜉𝐵 + 𝛿𝑠𝐵)∥
2 + ∥(𝜉𝑁 + 𝛿𝑥𝑁 )(𝜉𝑁 + 𝛿𝑠𝑁 )∥

2

= ∥𝜚𝑉𝐵𝜚
𝑈
𝐵 ∥

2 + ∥𝜚𝑉𝑁𝜚
𝑈
𝑁 ∥

2

≤ ∥𝜚𝑉𝐵 ∥
2
∞∥𝜚𝑈𝐵 ∥

2 + ∥𝜚𝑉𝑁 ∥
2∥𝜚𝑈𝑁 ∥

2
∞

≤ 4
(
∥𝜚𝑈𝐵 ∥

2 + ∥𝜚𝑉𝑁 ∥
2
)

≤ 4
(
∥𝜚𝑈𝐵 ∥ + ∥𝜚

𝑉
𝑁 ∥

)2
,

(5.55)

where the penultimate inequality used that

∥𝜚𝑉𝐵 ∥∞ ≤ ∥𝜉𝐵∥∞ + ∥𝛿
𝑥
𝐵∥∞ ≤

√
1 + 𝛽 +

√
𝑛𝜏 ≤ 2 , (5.56)

due to Proposition 5.2.10 and Lemma 5.4.9. Analogously, ∥𝜚𝑈
𝑁
∥∞ ≤ 2. Together with Lemma 5.4.11,

we get  (𝑥 + Δ𝑥ℓ )(𝑠 + Δ𝑠ℓ )𝜇

 ≤ 2𝜓𝑉 + 2𝜓𝑈 + 8𝑛1.5𝛾−1𝜇1

𝜇
.

Lemma 5.2.12 guarantees a step-length

𝛼 = 1 − 4
𝛽

 (𝑥 + Δ𝑥ℓ )(𝑠 + Δ𝑠ℓ )𝜇

 (5.57)

such that 𝑧+ B (𝑥 + 𝛼Δ𝑥ℓ , 𝑠 + 𝛼Δ𝑠ℓ ) ∈ 𝒩(2𝛽) and

𝜇(𝑧+) ≤
(
1 + 3

2
𝛽
√
𝑛

)
(1 − 𝛼)𝜇 ≤ 8𝜇

𝛽

 (𝑥 + Δ𝑥ℓ )(𝑠 + Δ𝑠ℓ )𝜇


≤ 16

𝛽

(
4
√
𝑛𝜇1𝛾

−1 + 𝜓𝑉𝜇 + 𝜓𝑈𝜇
)
.

(5.58)
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Using that (𝐵𝑧 , 𝑁𝑧) = (𝐵, 𝑁) and therefore ℓ̃𝑧 = ℓ𝑧 , ℓ̃⊥𝑠 = ℓ⊥𝑠 , Lemma 5.4.8 implies ∥ℓ⊥𝑧
��
𝑈
∥ , ∥ℓ 𝑧

��
𝑉
∥ ≤

𝜏. Let 𝑝 B dim(𝑉), 𝑟 B dim(𝑈) and 𝑞 B dim(im(ℓ𝑧)) = dim(im(ℓ⊥𝑧 )). Note that by Lemma 5.4.5
we have

𝜎(𝑧)𝑞−𝑝+1 ≥ 𝜎𝑉 ≥ 1√
𝑛

∥ℓ 𝑧(V|𝑁 |−𝑝+1)∥
∥V|𝑁 |−𝑝+1∥

>
1√
𝑛

𝜏
𝑛

=
𝜏

𝑛1.5 , (5.59)

where the third inequality follows by definition of𝑉 . This in particular implies that 𝑞 − 𝑝 + 1 ≥ 𝜁(𝑧)
and so 𝜎(𝑧)𝑞−𝑝+1 ≥ 𝜎(𝑧)𝜁(𝑧). Further, we have by Lemma 5.4.5 that

𝜎𝑉 ≥ 1
𝑛1.5 𝜎(𝑧)𝑞−𝑝+1 . (5.60)

Analogously, we have that

𝜎(𝑧)𝑟−𝑝+1 ≥ 𝜎(𝑧)𝜁(𝑧) and 𝜎𝑈 ≥ 1
𝑛1.5 𝜎(𝑧)𝑟−𝑝+1 . (5.61)

Together with Lemma 5.4.12 with 𝑌 B 𝑉 , 𝑍 B 𝑈 , we have

𝜓𝑉𝜎(𝑧)𝜁(𝑧) ≤ 𝜓𝑉𝜎(𝑧)𝑞−𝑝+1
(5.60)
≤ 𝑛1.5𝜓𝑉𝜎𝑉 (𝑧) ≤ 𝑛1.5(4𝑛 +

(
2𝜇1𝜇

−1𝛾−1 + 1
)
𝑛1.5𝜏)

≤ 𝑛1.5(4𝑛 +
(
2𝛾−1 + 1

)
𝑛3𝜎(𝑧)𝜁(𝑧)) ,

(5.62)

where the last inequality follows by definition of the index 𝜁(𝑧). Analogously we get on the dual
side

𝜓𝑈𝜎(𝑧)𝜁(𝑧) ≤ 𝑛1.5(4𝑛 +
(
2𝛾−1 + 1

)
𝑛3𝜎(𝑧)𝜁(𝑧)) . (5.63)

Plugging these into (5.58), we get

𝜇(𝑧+) ≤ 256
𝛽𝛾

(√
𝑛𝜇1 + 𝑛4.5𝜇𝜎(𝑧)−1

𝜁(𝑧)

)
, (5.64)

which proves the theorem. □

With Theorem 5.4.13 at hand we can show Theorem 5.4.14, which shows that if the residuals are
not small, then this is easy to handle and we can nonetheless make a similar conclusion to the one
of Theorem 5.4.13. Theorem 5.4.14 shows that we have two alternatives after a single step in the
algorithm.

Let 𝜇 B 𝜇(𝑧) throughout.

Theorem 5.4.14. Let CP[𝜇1 , 𝜇0] be 𝛾-polarized with polarizing partition 𝐵 ∪· 𝑁 = [𝑛]. Then, given an
iterate 𝑧 = (𝑥, 𝑠) ∈ 𝒩(𝛽) with parameter 𝜇(𝑧) ∈ (𝜇1 , 𝜇0) in IPM with subspace LLS (Algorithm 5.1), the
next iterate 𝑧+ = (𝑥+ , 𝑠+) ∈ 𝒩(𝛽) satisfies one of the following properties:

(i) 𝜎(𝑧+)𝜁(𝑧) = 𝑂(𝑛6.5𝛽−1𝛾−2),

(ii) 𝜇(𝑧+) ≤ 𝑂(𝑛4.5𝛽−1𝛾−2𝜇1).

Proof of Theorem 5.4.14. Algorithm 5.1 runs the subspace LLS with partition 𝐵 ∪ 𝑁 = [𝑛]. Let
𝑉 B 𝑉𝑧,𝑁 (𝜏/𝑛) and𝑈 = 𝑈𝑧,𝐵(𝜏/𝑛) (defined in Definition 5.4.3). We distinguish two cases based on
whether the terms 𝜓𝑉 and 𝜓𝑈 are small.

Case I. 𝜓𝑉 + 𝜓𝑈 + 4𝑛1.5𝛾−1 𝜇1
𝜇 > 1

16 .
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Then, by Lemma 5.4.12 with 𝑌 B 𝑉𝑧,𝑁 (𝜏/𝑛) and 𝑍 B 𝑈𝑧,𝐵(𝜏/𝑛), we have that

2 ·
(
4𝑛 +

(
2𝜇1𝜇

−1𝛾−1 + 1
)
𝑛1.5(𝜏/𝑛)

)
𝜎(𝑧)−1

𝜁(𝑧) + 4𝑛1.5𝛾−1𝜇1

𝜇
≥ 1

16 . (5.65)

In particular, for the next iterate 𝑧+, we have 𝜇(𝑧+) ≤ 𝜇 = 𝑂(𝑛1.5𝛾−1(𝜎−1
𝜁(𝑧)𝜇 + 𝜇1)).

Case II. 𝜓𝑉 + 𝜓𝑈 + 4𝑛1.5𝛾−1 𝜇1
𝜇 ≤ 1

16 .

By Theorem 5.4.13 we have that 𝜇(𝑧+) = 𝑂
(
𝑛4.5𝛽−1𝛾−1

(
𝜇1 + 𝜎−1

𝜁(𝑧)𝜇
))

.

In either case, we have
𝜇(𝑧+) = 𝑂

(
𝑛4.5𝛽−1𝛾−1

(
𝜇1 + 𝜎−1

𝜁(𝑧)𝜇
))
. (5.66)

If 𝜇1 ≥ 𝜎−1
𝜁(𝑧)𝜇, then 𝜇(𝑧+) = 𝑂(𝑛4.5𝛽−1𝛾−1𝜇1), so we are in case (ii). Otherwise, 𝜇(𝑧+) =

𝑂(𝑛4.5𝛽−1𝛾−1𝜎−1
𝜁(𝑧)𝜇). By Lemma 5.4.7 we have that 𝜎(𝑧+) ≤ 4𝑛2𝛾−2𝜇(𝑧+)𝜇−1𝜎(𝑧). In particular,

𝜎(𝑧+)𝜁(𝑧) ≤ 4𝑛2𝛾−2𝜇(𝑧+)𝜇−1𝜎(𝑧)𝜁(𝑧) = 𝑂(𝑛6.5𝛽−1𝛾−2). (5.67)

Hence, we are in case (i). This proves the theorem. □

From Theorem 5.4.14 we can now derive the proof of the main theorem as follows.

Proof of Theorem 5.4.1. Consider any two consecutive iterates 𝑧 = (𝑥, 𝑠) and 𝑧+ = (𝑥+ , 𝑠+) in IPM
with subspace LLS. In case (ii) of Theorem 5.4.14, the end of the polarized segment will be reached
within 𝑂(𝛽−1√𝑛 log(𝑛/𝛾)) iterations, since the affine scaling step itself leads to an 1 − Ω(𝛽/

√
𝑛)

decrease in the normalized gap, and we always choose the better of the two steps.
In case (i) of Theorem 5.4.14, we have 𝜎(𝑧+)𝜁(𝑧) = 𝑂(𝑛5.5𝛽−1𝛾−1). Using Lemma 5.4.7, af-

ter 𝑂(𝛽−1√𝑛 log(𝑛/𝛾)) additional iterations, any subsequent iterate 𝑧++ = (𝑥++ , 𝑠++) satisfies
𝜎(𝑧++)𝜁(𝑧) < 𝜏/𝑛1.5. By definition of 𝜁(·) in (5.51), we have 𝜁(𝑧++) > 𝜁(𝑧) for all these iterates. Such
an event may occur at most 𝑛 times. □

5.5 The Max Central Path

In this section, we deal with the properties of the max central path that we introduced in Section 5.1.
Given 𝑔 ≥ 0, we denote by

𝒫 𝑔 B {𝑥 ∈ R𝑛 : A𝑥 = 𝑏 , 𝑥 ≥ 0 , ⟨𝑐, 𝑥⟩ ≤ 𝑣★ + 𝑔} ,
𝒟 𝑔 B {𝑠 ∈ R𝑚 : ∃𝑦 A⊤𝑦 + 𝑠 = 𝑐 , 𝑠 ≥ 0 , ⟨𝑏, 𝑦⟩ ≥ 𝑣★ − 𝑔}

the feasible sets of the linear programs in (5.4). They correspond to the sets of the primal and dual
feasible points (𝑥, 𝑠) ∈ 𝒫 × 𝒟 with objective value within 𝑔 from the optimum 𝑣★, respectively.

We recall that the duality gap of any pair (𝑥, (𝑦, 𝑠)) of primal-dual feasible points of LP fulfills
⟨𝑐, 𝑥⟩ − ⟨𝑏, 𝑦⟩ = ⟨𝑥, 𝑠⟩. In particular, we have ⟨𝑥, 𝑠★⟩ = ⟨𝑐, 𝑥⟩ − 𝑣★ and ⟨𝑥★, 𝑠⟩ = 𝑣★ − ⟨𝑏, 𝑦⟩. Thus,
the two sets 𝒫 𝑔 and𝒟 𝑔 are equivalently given by

𝒫 𝑔 = {𝑥 ∈ 𝒫 :
〈
𝑥, 𝑠★

〉
≤ 𝑔} , 𝒟 𝑔 = {𝑠 ∈ 𝒟 :

〈
𝑥★, 𝑠

〉
≤ 𝑔} .

These expressions are in fact independent of the choice of optimal solutions (𝑥★, 𝑠★). The following
claim is immediate by our assumption that 𝒫++ and𝒟++ are non-empty.
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Proposition 5.5.1. For all 𝑔 ≥ 0, the sets 𝒫 𝑔 and𝒟 𝑔 are bounded.

We denote by MCP ≔ { 𝑧𝔪(𝑔) : 𝑔 ≥ 0 } the whole max central path. The max central path point
𝑧𝔪(𝑔) = (𝑥𝔪(𝑔), 𝑠𝔪(𝑔)) is the entry-wise maximum of the set 𝒫 𝑔 × 𝒟 𝑔 .

While the points of the max central path are not feasible in general, the following theorem shows
that the max central path shares important similarities with the central path:

Theorem 5.5.2 (Centrality of the max central path). For all 𝑔 ≥ 0, we have that

𝑔 ≤ 𝑥𝔪𝑖 (𝑔)𝑠
𝔪
𝑖 (𝑔) ≤ 2𝑔 ∀𝑖 ∈ [𝑛] .

Proof. We first prove the upper bound. For 𝑖 ∈ [𝑛], let 𝑥(𝑖) ∈ arg max{𝑥𝑖 : 𝑥 ∈ 𝒫 𝑔} and 𝑠(𝑖) ∈
arg max{𝑠𝑖 : 𝑠 ∈ 𝒟 𝑔}. Note that 𝑥(𝑖) , 𝑠(𝑖) exist by Proposition 5.5.1. Then,

𝑥𝔪𝑖 (𝑔)𝑠
𝔪
𝑖 (𝑔) = 𝑥

(𝑖)
𝑖
𝑠
(𝑖)
𝑖
≤

〈
𝑥(𝑖) , 𝑠(𝑖)

〉
=

〈
𝑥(𝑖) , 𝑠★

〉
+

〈
𝑥★, 𝑠(𝑖)

〉
≤ 2𝑔 ,

where the last equality follows from Proposition 5.2.1. We now prove the lower bound. We assume
𝑔 > 0, since the statement is trivial otherwise.

Note that the dual program of max{ 𝑥𝑖 : 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0, ⟨𝑥, 𝑠★⟩ ≤ 𝑔 } can be expressed as

min
{
𝛼𝑔 +

〈
𝑢, 𝑥★

〉
: 𝛼𝑠★ + 𝑢 ≥ 𝑒 𝑖 , 𝑢 ∈𝑊⊥ , 𝛼 ≥ 0

}
,

using that ⟨𝑢, 𝑥★⟩ = ⟨𝑢, 𝑑⟩ since 𝑑 − 𝑥★ ∈𝑊 , 𝑢 ∈𝑊⊥. Similarly, the dual program of max{𝑠𝑖 : 𝑠 ∈
𝑊⊥ + 𝑐, 𝑠 ≥ 0, ⟨𝑠, 𝑥★⟩ ≤ 𝑔} can be expressed as

min
{
𝛽𝑔 +

〈
𝑣, 𝑠★

〉
: 𝛽𝑥★ + 𝑣 ≥ 𝑒 𝑖 , 𝑣 ∈𝑊, 𝛽 ≥ 0

}
.

Let us pick optimal (𝛼, 𝑢) and (𝛽, 𝑣) to these two programs. The product of the objective values is
thus equal to 𝑥𝔪

𝑖
(𝑔)𝑠𝔪

𝑖
(𝑔); the proof is complete by showing a lower bound 𝑔.

We first claim that 〈
𝑢, 𝑥★

〉
≥ 0 and

〈
𝑣, 𝑠★

〉
≥ 0 . (5.68)

By symmetry, it suffices to prove the first claim. For a contradiction, assume ⟨𝑢, 𝑥★⟩ < 0. Then,
there exists an index 𝑗 ∈ [𝑛] such that 𝑥★

𝑗
> 0 and 𝑢𝑗 < 0. By complementarity, 𝑠★

𝑗
= 0. This

contradicts 𝛼𝑠★
𝑗
+ 𝑢𝑗 ≥ 𝑒 𝑖𝑗 .

Next, note that the constraints in the two programs imply

1 =
〈
𝑒 𝑖 , 𝑒 𝑖

〉
≤

〈
𝛼𝑠★ + 𝑢, 𝛽𝑥★ + 𝑣

〉
= 𝛼

〈
𝑣, 𝑠★

〉
+ 𝛽

〈
𝑢, 𝑥★

〉
. (5.69)

Now, the product of the objective values can be written as

𝑥𝔪𝑖 (𝑔)𝑠
𝔪
𝑖 (𝑔) = (𝛼𝑔 +

〈
𝑢, 𝑥★

〉
)(𝛽𝑔 +

〈
𝑣, 𝑠★

〉
)

= 𝛼𝛽𝑔2 + 𝑔
(
𝛼
〈
𝑣, 𝑠★

〉
+ 𝛽

〈
𝑢, 𝑥★

〉)
+

〈
𝑢, 𝑥★

〉
·
〈
𝑣, 𝑠★

〉
≥ 𝑔 ,

using inequalities (5.68) and (5.69). This concludes the proof. □

Given the above, we have the following straightforward relation between the max central path
and central path.

Lemma 5.5.3. For 𝜇 > 0, we have that

𝑧𝔪(𝑛𝜇) ≥ 𝑧cp(𝜇) ≥ 𝑧𝔪(𝑛𝜇)
2𝑛 .
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Proof. Recall that 𝑧cp(𝜇) = (𝑥cp(𝜇), 𝑠cp(𝜇)) with ⟨𝑥cp(𝜇), 𝑠cp(𝜇)⟩ = ⟨𝑥cp(𝜇), 𝑠★⟩ + ⟨𝑥★, 𝑠cp(𝜇)⟩ = 𝑛𝜇

using Proposition 5.2.1. Therefore, 𝑥cp(𝜇) ∈ 𝒫𝑛𝜇 and 𝑠cp(𝜇) ∈ 𝒟𝑛𝜇. By definition of the max central
path, 𝑧cp(𝜇) = (𝑥cp(𝜇), 𝑠cp(𝜇)) ≤ (𝑥𝔪(𝑛𝜇), 𝑠𝔪(𝑛𝜇)) = 𝑧𝔪(𝑛𝜇). For the second inequality, note that

𝑥cp(𝜇) = 𝜇

𝑠cp(𝜇) ≥
𝜇

𝑠𝔪(𝑛𝜇) =
𝜇

𝑥𝔪(𝑛𝜇)𝑠𝔪(𝑛𝜇) 𝑥
𝔪(𝑛𝜇)

Thm. 5.5.2
≥ 𝜇

2𝑛𝜇1𝑥𝔪(𝑛𝜇) = 𝑥𝔪(𝑛𝜇)
2𝑛 .

By a symmetric argument, 𝑠cp(𝜇) ≥ 𝑠𝔪(𝑛𝜇)/2𝑛. □

5.5.1 The Shadow Vertex Simplex Rule

Given a pointed polyhedron 𝑃 ⊆ R𝑛 and two objectives 𝑐(1) , 𝑐(2) ∈ R𝑛 such that max𝑥∈𝑃
〈
𝑐(1) , 𝑥

〉
< ∞

and max𝑥∈𝑃
〈
𝑐(2) , 𝑥

〉
< ∞, we recall that the shadow vertex simplex rule consists in pivoting over

vertices of 𝑃 maximizing the objectives (1 − 𝜆)𝑐1 + 𝜆𝑐2 as 𝜆 goes from 0 to 1. More formally, a
sequence of vertices 𝑣(1) , . . . , 𝑣(𝑘) ∈ 𝑃 is a (𝑐(1) , 𝑐(2))-shadow vertex path on 𝑃 if

• [𝑣(𝑖) , 𝑣(𝑖+1)] is an edge of 𝑃, ∀𝑖 ∈ [𝑘 − 1],

•
〈
𝑐(2) , 𝑣(𝑖)

〉
<

〈
𝑐(2) , 𝑣(𝑖+1)〉, ∀𝑖 ∈ [𝑘 − 1], and

• there exists 0 = 𝜆0 < 𝜆1 ≤ · · · ≤ 𝜆𝑘−1 < 𝜆𝑘 = 1 such that ∀𝑖 ∈ [𝑘],
〈
𝑣(𝑖) , (1 − 𝛼)𝑐(1) + 𝛼𝑐(2)

〉
=

max𝑥∈𝑃
〈
𝑥, (1 − 𝛼)𝑐(1) + 𝛼𝑐(2)

〉
for all 𝛼 ∈ [𝜆𝑖−1 ,𝜆𝑖].

To analyze shadow vertex paths further, we define the two-dimensional projection

𝑃[𝑐(1) , 𝑐(2)] B
{ (〈

𝑐(1) , 𝑥
〉
,
〈
𝑐(2) , 𝑥

〉)
: 𝑥 ∈ 𝑃

}
=

(
𝑐(1) , 𝑐(2)

)⊤
· 𝑃 .

Under non-degeneracy assumptions (which are easily satisfied by infinitesimally perturbing the
constraints), there is a unique shadow vertex path with respect to 𝑐(1) and 𝑐(2). Non-degeneracy
implies that 𝜆0 < 𝜆1 < · · · < 𝜆𝑘 above, and thus the maximizing objective moves strictly closer to
𝑐(2) after each simplex step. In this case, the vertices of the shadow vertex simplex path project
under the map 𝑥 ↦→ (

〈
𝑐(1) , 𝑥

〉
,
〈
𝑐(2) , 𝑥

〉
) precisely to the subset of the vertices of the 2-dimensional

projection 𝑃[𝑐(1) , 𝑐(2)]maximizing some open interval of objectives (1−𝜆)𝑒1 +𝜆𝑒2, 𝜆 ∈ [0, 1], where
𝑒1 and 𝑒2 stand for the unit vectors of R2. As 𝑃[𝑐(1) , 𝑐(2)] is the shadow (projection) of 𝑃 onto the
plane spanned by 𝑐(1) , 𝑐(2), this justifies the name ‘shadow vertex simplex rule’. In the general
setting, the vertices of 𝑃[𝑐(1) , 𝑐(2)] maximizing an open interval of objectives in (1 − 𝜆)𝑒1 + 𝜆𝑒2,
𝜆 ∈ [0, 1] are precisely the projections of vertices 𝑣(𝑖), 𝑖 ∈ [𝑘], on the shadow path such that 𝜆𝑖−1 < 𝜆𝑖 .
The degenerate vertices 𝑣(𝑖), 𝑖 ∈ [𝑘], such that 𝜆𝑖−1 = 𝜆𝑖 , will in fact in general project into the
interior of edges of 𝑃[𝑐(1) , 𝑐(2)].

We define 𝑆𝑃(𝑐(1) , 𝑐(2)) as the number of vertices of 𝑃[𝑐(1) , 𝑐(2)]maximizing an open interval of
objectives in (1 − 𝜆)𝑒1 + 𝜆𝑒2, 𝜆 ∈ [0, 1]. By the preceding observations, we have that 𝑆𝑃(𝑐(1) , 𝑐(2)) is
a lower bound on the number of vertices of any (𝑐(1) , 𝑐(2))-shadow vertex path.

In the above, we restricted both starting and ending objectives 𝑐(1) , 𝑐(2) to have finite objective
value on 𝑃. It will be useful in the sequel to extend to the case where 𝑐(2) might be unbounded. In
this case, we define the shadow vertex path as above, with the only modification being that we
let 𝜆𝑘 B max{𝜆 ∈ [0, 1] : max𝑥∈𝑃

〈
𝑥, (1 − 𝜆)𝑐(1) + 𝜆𝑐(2)

〉
< ∞}, that is, the simplex path stops just

before reaching an unbounded ray for 𝑐(2). In this setting, note that 𝑆𝑃(𝑐(1) , 𝑐(2)) is still well-defined
and continues to be a lower bound on the number of vertices on any 𝑐(1) , 𝑐(2) shadow vertex path.
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The following lemma now gives the main relation between shadow vertex paths and the number
of linear segments of the max central path. Precisely, a segment

MCP[𝑔1 , 𝑔0] B {𝑧𝔪(𝑔) : 𝑔0 ≥ 𝑔 ≥ 𝑔1}

is linear if 𝑧𝔪((1 − 𝛼)𝑔0 + 𝛼𝑔1) = (1 − 𝛼)𝑧𝔪(𝑔0) + 𝛼𝑧𝔪(𝑔1), ∀𝛼 ∈ [0, 1].

Lemma 5.5.4 (Piecewise Linearity of MCP).

(i) ∀𝑖 ∈ [𝑛], 𝑔 ↦→ 𝑥𝔪
𝑖
(𝑔) is piecewise linear non-decreasing with 𝑆𝒫(−𝑠★, 𝑒(𝑖)) pieces.

(ii) ∀𝑖 ∈ [𝑛], 𝑔 ↦→ 𝑠𝔪
𝑖
(𝑔) is piecewise linear non-decreasing with 𝑆𝒟(−𝑥★, 𝑒(𝑖)) pieces.

(iii) 𝑔 ↦→ 𝑧𝔪(𝑔) is piecewise linear and entry-wise non-decreasing with at most

min

{
𝑛∑
𝑖=1

𝑆𝒫(−𝑠★, 𝑒 𝑖) + 𝑆𝒟(−𝑥★, 𝑒 𝑖),𝒱𝒫 +𝒱𝒟

}
pieces, where𝒱𝒫 and𝒱𝒟 denote the number of vertices of 𝒫 and𝒟, respectively.

Proof. Proof of (i) For 𝑖 ∈ [𝑛], let 𝑄𝑖 = 𝑃[𝑠★, 𝑒 𝑖]. We note that 𝑥𝔪
𝑖
(𝑔) = max{𝑣2 : (𝑣1 , 𝑣2) ∈ 𝑄𝑖 , 𝑣1 ≤

𝑔}. In particular, the map 𝑥𝔪
𝑖

is a non-decreasing concave function of 𝑔. Again by definition,
𝑆𝒫(−𝑠★, 𝑒 𝑖) equals the number of vertices of 𝑄𝑖 maximizing an open interval of objectives in
𝒪 B {−(1 − 𝜆)𝑒1 + 𝜆𝑒2 : 𝜆 ∈ [0, 1]} ⊆ R2.

Define �̄�𝑖(𝑔) B sup{𝑣2 : (𝑔, 𝑣2) ∈ 𝑄𝑖}, which is defined to equal −∞ if {(𝑔, 𝑣2) ∈ 𝑄𝑖} = ∅. By
Proposition 5.5.1, note that �̄�𝑖(𝑔) < ∞ for all 𝑔 ≥ 0. By convexity of 𝑄𝑖 , �̄�𝑖 is concave function on
R+. Let ℎ = sup{�̄�𝑖(𝑔) : 𝑔 ≥ 0}.

Assume ℎ = ∞. By concavity, �̄�𝑖 must be a strictly increasing function on R+. In particular,
�̄�𝑖(𝑔) = 𝑥𝔪

𝑖
(𝑔). Given this, we see that the linear pieces of 𝑥𝔪

𝑖
(𝑔) are in one to one correspondence

with the edges of 𝑄𝑖 on the upper convex hull whose projection onto the 𝑒1-axis have positive
length (i.e., excluding the potential edge {(0, 𝑣2) ∈ 𝑄𝑖}). Since 𝑄𝑖 ⊆ R2

+, every such edge can be
uniquely associated with its left endpoint (which is always a vertex of 𝑄𝑖). It is now easy to check
geometrically that the set of such endpoints exactly corresponds to the set of vertices that are
maximizers of the objectives in an open interval of 𝒪.

Assume ℎ < ∞. Let 𝑔ℎ B min{𝑔 ≥ 0 : 𝑥𝔪
𝑖
(𝑔) = ℎ}. It is direct to see that 𝑥𝔪

𝑖
(𝑔) = �̄�𝑖(𝑔) if 𝑔 ≤ 𝑔ℎ

and that 𝑥𝔪
𝑖
(𝑔) = ℎ for 𝑔 ≥ 𝑔ℎ . Furthermore, 𝑥𝔪

𝑖
(𝑔) is strictly increasing on [0, 𝑔ℎ]. From this, it is

easy to see geometrically that the number of linear pieces of 𝑥𝔪
𝑖

is one plus the number of edges
of 𝑄𝑖 on the upper convex hull lying in the band {(𝑣1 , 𝑣2) : 0 ≤ 𝑣1 ≤ 𝑔}, where the extra linear
segment corresponds to constant segment between 𝑔ℎ and∞. As in the previous case, these linear
segments can be uniquely identified with their left endpoints, which correspond to vertices of
𝑄𝑖 . Furthermore, it is easy to check that these correspond to vertices of 𝑄𝑖 maximizing an open
interval of objectives in 𝒪.

Proof of (ii). Same as (i), swapping the role of𝒟 and 𝑥★ for 𝒫 and 𝑠★.

Proof of (iii). Let 0 = 𝑔
𝑖 ,𝑝

1 < 𝑔
𝑖 ,𝑝

2 < · · · < 𝑔
1,𝑝
𝑘 𝑖 ,𝑝

denote the parameters corresponding to breakpoints
of linear segments of 𝑥𝔪

𝑖
, and similarly let 0 = 𝑔 𝑖 ,𝑑1 < 𝑔 𝑖 ,𝑑2 < · · · < 𝑔1,𝑑

𝑘 𝑖 ,𝑑
correspond to breakpoints

for 𝑠𝔪
𝑖

. Finally, let 0 = 𝑔1 < 𝑔2 < · · · < 𝑔𝑇 denote an ordering of the merged sequence of
breakpoints (suppressing duplicates) of each 𝑥𝔪

𝑖
, 𝑠𝔪
𝑖

, ∀𝑖 ∈ [𝑛]. Since 𝑥𝔪
𝑖
, 𝑠𝔪
𝑖

, ∀𝑖 ∈ [𝑛], is linear
on each interval [𝑔𝑖 , 𝑔𝑖+1], 𝑖 ∈ [𝑇 − 1], and on the interval [𝑔𝑇 ,∞), we get that 𝑧𝔪 is also linear
on these intervals. Furthermore, they are exactly the breakpoints of the linear segments of 𝑧𝔪,
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since 𝑧𝔪 is linear on an interval iff 𝑥𝔪
𝑖
, 𝑠𝔪
𝑖
, 𝑖 ∈ [𝑛], are linear on the interval. By associating

each linear segment with its left endpoint, we see that the number of linear segments of 𝑚 is
𝑇 ≤ ∑𝑛

𝑖=1 𝑘
𝑖 ,𝑝 + 𝑘 𝑖 ,𝑑 =

∑𝑛
𝑖=1 𝑆𝒫(−𝑠★, 𝑒 𝑖) + 𝑆𝒟(−𝑥★, 𝑒 𝑖). Furthermore, note that for each 𝑔𝑗 , 𝑗 ∈ [𝑇],

there exists 𝑖 ∈ [𝑛] such that either (𝑔𝑗 , 𝑥𝔪𝑖 (𝑔𝑗)) is a vertex of 𝒫[𝑠★, 𝑒 𝑖] or (𝑔𝑗 , 𝑠𝔪𝑖 (𝑔𝑗)) is a vertex of
𝒫[𝑥★, 𝑒 𝑖]. In particular, there exists either a vertex 𝑥 𝑗 of 𝒫 such that

〈
𝑠★, 𝑥 𝑗

〉
= 𝑔𝑗 or a vertex 𝑦 𝑗 of

𝒟 such that
〈
𝑥★, 𝑦𝑗

〉
= 𝑔𝑗 . This association between breakpoints and vertices is injective (since the

𝑔𝑗 are all distinct). Therefore, we also get the bound 𝑇 ≤ 𝒱𝒫 +𝒱𝒟 as needed. □

From the above discussion, note that Lemma 5.5.4 implies that the number of linear pieces of the
max-central path is at most the number of vertices on 2𝑛 shadow vertex paths on 𝒫 and𝒟.

5.5.2 Direct Proof of Polarization along Max Central Path Segments

In this subsection, we give a simple proof that the central path can be decomposed into 𝑇 polarized
segments, where 𝑇 is the number of linear segments of the max central path. The proof avoids
using the wide neighborhood and instead directly compares the central path with the max central
path. By virtue of being more direct, it also achieves a better polarization parameter. Since
the polarization parameter appears under a logarithm, this improvement does not change the
asymptotics of our algorithm.

Lemma 5.5.5. Let MCP[𝜇1 , 𝜇0] be a linear segment of the max-central path with 𝜇0 ≥ 𝜇1 ≥ 0. Then
CP[𝜇1/𝑛, 𝜇0/𝑛] is 1/(16𝑛)-polarized.

Proof. Let us fix 𝑖 ∈ [𝑛], and let 𝑢 =
𝑥𝔪
𝑖
(𝜇1)

𝑥𝔪
𝑖
(𝜇0) and 𝑣 =

𝑠𝔪
𝑖
(𝜇1)

𝑠𝔪
𝑖
(𝜇0) . Then for 𝛼 ∈ [0, 1],

(1 − 𝛼 + 𝛼𝑢)(1 − 𝛼 + 𝛼𝑣)
1 − 𝛼 + 𝛼𝑢𝑣

=
((1 − 𝛼)𝑥𝔪

𝑖
(𝜇0) + 𝛼𝑥𝔪

𝑖
(𝜇1))((1 − 𝛼)𝑠𝔪

𝑖
(𝜇0) + 𝛼𝑠𝔪

𝑖
(𝜇1))

(1 − 𝛼)𝑥𝔪
𝑖
(𝜇0)𝑠𝔪𝑖 (𝜇0) + 𝛼𝑥𝔪

𝑖
(𝜇1)𝑠𝔪𝑖 (𝜇1)

=
𝑥𝔪
𝑖
((1 − 𝛼)𝜇0 + 𝛼𝜇1)𝑠𝔪𝑖 ((1 − 𝛼)𝜇0 + 𝛼𝜇1)
(1 − 𝛼)𝑥𝔪

𝑖
(𝜇0)𝑠𝔪𝑖 (𝜇0) + 𝛼𝑥𝔪

𝑖
(𝜇1)𝑠𝔪𝑖 (𝜇1)

(by linearity)

≥ (1 − 𝛼)𝜇0 + 𝛼𝜇1

2((1 − 𝛼)𝜇0 + 𝛼𝜇1)
=

1
2 . (by Theorem 5.5.2)

Therefore Lemma 5.3.6 yields 𝑢 + 𝑣 ≥ 1
4 . Let 𝐵 B

{
𝑖 ∈ [𝑛] : 𝑥

𝔪
𝑖
(𝜇1)

𝑥𝔪
𝑖
(𝜇0) ≥

𝑠𝔪
𝑖
(𝜇1)

𝑠𝔪
𝑖
(𝜇0)

}
and 𝑁 B [𝑛] \ 𝐵. Thus,

𝑥𝔪
𝑖
(𝜇1)

𝑥𝔪
𝑖
(𝜇0) ≥ 1/8, ∀𝑖 ∈ 𝐵, and 𝑠𝔪

𝑖
(𝜇1)

𝑠𝔪
𝑖
(𝜇0) ≥ 1/8, ∀𝑖 ∈ 𝑁 .

We now show that CP[𝜇1/𝑛, 𝜇0/𝑛] is 𝛾 = 1
16𝑛 -polarized with respect to the partition 𝐵, 𝑁 as

above. For 𝜇 ∈ [𝜇1/𝑛, 𝜇0/𝑛] and 𝑖 ∈ 𝐵, we have that

𝑥
cp
𝑖
(𝜇)

𝑥
cp
𝑖
(𝜇0)

Lemma 5.5.3
≥

𝑥𝔪
𝑖
(𝑛𝜇)

2𝑛𝑥𝔪
𝑖
(𝜇0)

MCP monotonocity
≥

𝑥𝔪
𝑖
(𝜇1)

2𝑛𝑥𝔪
𝑖
(𝜇0)

𝑖∈𝐵
≥ 1

16𝑛 ,

as needed. The inequality 𝑠
cp
𝑖
(𝜇)

𝑠
cp
𝑖
(𝜇0)
≥ 1

16𝑛 , 𝑖 ∈ 𝑁 , 𝜇 ∈ [𝜇0/𝑛, 𝜇1/𝑛], follows by a symmetric
argument. □

5.5.3 Converting the Max Central Path into a Wide Neighborhood Path

While the max central path does not correspond to a feasible path inside 𝒫 ×𝒟, we now show that
it is in fact close to a piecewise linear path that lives inside the wide neighborhood of the central
path having the same number of breakpoints.
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𝑦1

𝑦2

Figure 5.2: The path Γ̄𝑑(𝑔) as defined in the proof of Theorem 5.5.6 for the system max −𝑦1 − 𝑦2 s.t. 𝐴⊤𝑦 + 𝑠 =

𝑐, 𝑠 ≥ 0, where and 𝐴 =

[
1 2 2.5 −5.5
−5 −1 4 2

]
, 𝑐 =

[
0 9 27 0

]⊤. Dashed lines correspond

to level sets at breakpoints.

Theorem 5.5.6. There exists a piecewise linear curve Γ : R+ →𝒩−∞(1 − 1
2𝑛 ) with at most as many linear

segments as 𝑔 ↦→ 𝑧𝔪(𝑔) satisfying 𝜇(Γ(𝑠)) = 𝑠, ∀𝑠 ≥ 0.

Proof. As in the proof of Lemma 5.5.4 part (3), let 0 = 𝑔1 < · · · < 𝑔𝑇 denote the breakpoints for
𝑔 ↦→ 𝑧𝔪(𝑔).

From here, pick 𝑥 𝑖 , 𝑗 ∈ 𝒫 𝑔𝑗 , 𝑠 𝑖 , 𝑗 ∈ 𝒟 𝑔𝑗 , 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇], such that 𝑥 𝑖 , 𝑗
𝑖

= 𝑥𝔪
𝑖
(𝑔𝑗), 𝑠 𝑖 , 𝑗𝑖 = 𝑠𝔪

𝑖
(𝑔𝑗),

and such that
〈
𝑥 𝑖 ,1 , 𝑠★

〉
≤ · · · ≤

〈
𝑥 𝑖 ,𝑇 , 𝑠★

〉
and

〈
𝑥★, 𝑠 𝑖 ,1

〉
≤ · · · ≤

〈
𝑥★, 𝑠 𝑖 ,𝑇

〉
. Further, for all 𝑖 ∈ [𝑛],

choose 𝑟 𝑖 ,𝑝 and 𝑟 𝑖 ,𝑑 in the recession cone of 𝒫 and 𝒟 respectively, such that
〈
𝑟 𝑖 ,𝑝 , 𝑠★

〉
∈ {0, 1},〈

𝑥★, 𝑟 𝑖 ,𝑑
〉
∈ {0, 1} and ∀𝑡 ≥ 0, 𝑥𝔪

𝑖
(𝑔𝑇 + 𝑡) = 𝑥 𝑖 ,𝑇

𝑖
+ 𝑡𝑟 𝑖 ,𝑝

𝑖
, 𝑠𝔪

𝑖
(𝑔𝑇 + 𝑡) = 𝑠 𝑖 ,𝑇

𝑖
+ 𝑡𝑟 𝑖 ,𝑑

𝑖
. Define Γ𝑖 ,𝑝(𝑔) =

𝑔𝑗+1−𝑔
𝑔𝑗+1−𝑔𝑗 𝑥

𝑖 , 𝑗 + 𝑔−𝑔𝑗
𝑔𝑗+1−𝑔𝑗 𝑥

𝑖 , 𝑗+1 if 𝑔𝑗 < 𝑔 ≤ 𝑔𝑗+1, 𝑗 ∈ [𝑇 −1] and Γ𝑖 ,𝑝(𝑔) = 𝑥 𝑖 ,𝑇 +(𝑔− 𝑔𝑇)𝑟 𝑖 ,𝑝 if 𝑔 > 𝑔𝑇 . Define
the dual counterpart Γ𝑖 ,𝑑 similarly. By construction, ∀𝑖 ∈ [𝑛], we have that Γ𝑖 ,𝑝 , Γ𝑖 ,𝑑 are piecewise
linear with breakpoints 0 < 𝑔1 < · · · < 𝑔𝑇 , and ∀𝑔 ≥ 0, Γ𝑖 ,𝑝(𝑔) ∈ 𝒫 𝑔 , Γ𝑖 ,𝑝(𝑔)𝑖 = 𝑥𝔪

𝑖
(𝑔), Γ𝑖 ,𝑑(𝑔) ∈ 𝒟 𝑔 ,

Γ𝑖 ,𝑑(𝑔)𝑖 = 𝑠𝔪
𝑖
(𝑔).

From here, define

Γ̄(𝑔) =
(
Γ̄𝑝(𝑔), Γ̄𝑑(𝑔)

)
B

(
1
𝑛

𝑛∑
𝑖=1

Γ𝑖 ,𝑝(𝑔), 1
𝑛

𝑛∑
𝑖=1

Γ𝑖 ,𝑑(𝑔)
)
.

We have that Γ̄(𝑔) ∈ 𝒫 𝑔 × 𝒟 𝑔 ,∀𝑔 ≥ 0. Therefore, ∀𝑖 ∈ [𝑛], by Proposition 5.2.1 we have

𝜇(Γ̄(𝑔)) = 1
𝑛

〈
Γ̄𝑝(𝑔), Γ̄𝑑(𝑔)

〉
=

1
𝑛

(〈
Γ̄𝑝(𝑔), 𝑠★

〉
+

〈
𝑥★, Γ̄𝑑(𝑔)

〉)
≤ 2𝑔

𝑛
.
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Furthermore, for 𝑖 ∈ [𝑛], we have

Γ̄𝑝(𝑔)𝑖 Γ̄𝑑(𝑔)𝑖 =
(

1
𝑛

𝑛∑
𝑖=1

Γ̄𝑖 ,𝑝(𝑔)𝑖

) (
1
𝑛

𝑛∑
𝑖=1

Γ̄𝑖 ,𝑑(𝑔)𝑖

)
≥ 1
𝑛2 Γ̄

𝑖 ,𝑝(𝑔)Γ̄𝑖 ,𝑑(𝑔) = 1
𝑛2 𝑥

𝔪
𝑖 (𝑔)𝑠

𝔪
𝑖 (𝑔) ≥

𝑔

𝑛2 ≥
𝜇(Γ̄(𝑔))

2𝑛 .

In particular, we have that Γ̄(𝑔) ∈ 𝒩−∞(1 − 1
2𝑛 ).

Note that by construction Γ̄ has at most 𝑇 linear segments, where 𝑇 is the number of linear
segments of the max central path. To construct Γ, we will simply reparametrize Γ̄ with respect to
𝜇(Γ̄(𝑔)). By Proposition 5.2.2, 𝜇(Γ̄(𝑔)) is linear on linear segments of Γ̄, so it suffices to show that
𝜇(Γ̄(𝑔)) is a strictly increasing in 𝑔. Again, by Proposition 5.2.1, we have that

𝜇(Γ̄(𝑔)) = 1
𝑛2

(
𝑛∑
𝑖=1

〈
Γ̄𝑖 ,𝑝(𝑔), 𝑠★

〉
+

〈
𝑥★, Γ̄𝑖 ,𝑑(𝑔)

〉)
,

which is non-decreasing in 𝑔, since each term is non-decreasing by construction. Thus, it suffices
to show that one of

〈
Γ̄1,𝑝(𝑔), 𝑠★

〉
,
〈
𝑥★, Γ̄1,𝑑(𝑔)

〉
is increasing. Since 𝑥𝔪1 (𝑔)𝑠

𝔪
1 (𝑔) ≥ 𝑔 at least one

of 𝑥𝔪1 or 𝑠𝔪1 must be unbounded. Assume without loss of generality that 𝑥𝔪1 is unbounded. By
concavity of 𝑥𝔪1 , 𝑥𝔪1 is strictly increasing. In particular Γ̄1,𝑝(𝑔) ∈ 𝒫 𝑔 and Γ̄1,𝑝(𝑔)𝑖 = 𝑥𝔪

𝑖
(𝑔) implies

that
〈
Γ̄1,𝑝(𝑔), 𝑠★

〉
= 𝑔, which is increasing in 𝑔. This proves the lemma. □

5.A Missing Proofs

Proof of Proposition 5.2.1. Since 𝑥 − 𝑥′ ∈𝑊 and 𝑠 − 𝑠′ ∈𝑊⊥, we have that

0 = ⟨𝑥 − 𝑥′, 𝑠 − 𝑠′⟩ ⇔ ⟨𝑥, 𝑠⟩ + ⟨𝑥′, 𝑠′⟩ = ⟨𝑥, 𝑠′⟩ + ⟨𝑥′, 𝑠⟩. □

Proof of Proposition 5.2.2. Using that
∑𝑘
𝑖=1 𝜆𝑖 = 1 and the orthogonality of 𝑥(𝑖) − 𝑑 ∈𝑊 and 𝑠(𝑖) − 𝑑 ∈

𝑊⊥ for all 𝑖 ∈ [𝑘]we first get〈
𝑘∑
𝑖=1

𝜆𝑖𝑥
(𝑖) ,

𝑘∑
𝑗=1

𝜆𝑖𝑠
(𝑖)

〉
=

〈
𝑘∑
𝑖=1

𝜆𝑖(𝑥(𝑖) − 𝑑) + 𝑑,
𝑘∑
𝑗=1

𝜆𝑖(𝑠(𝑖) − 𝑐) + 𝑐
〉

= ⟨𝑐, 𝑑⟩ +
𝑘∑
𝑖=1

𝜆𝑖
(〈
𝑥(𝑖) − 𝑑, 𝑐

〉
+

〈
𝑑, 𝑠(𝑖) − 𝑐

〉)
=

𝑘∑
𝑖=1

𝜆𝑖
(
⟨𝑑, 𝑐⟩ +

〈
𝑥(𝑖) − 𝑑, 𝑐

〉
+

〈
𝑑, 𝑠(𝑖) − 𝑐

〉)
=

𝑘∑
𝑖=1

𝜆𝑖
〈
𝑥(𝑖) , 𝑠(𝑖)

〉
.

Division by 𝑛 yields the respective normalized duality gap. □

Proof of Proposition 5.2.6. By definition of𝒩(𝛽) we have for all 𝑖 ∈ [𝑛] that | 𝑥𝑖 𝑠𝑖𝜇 − 1| ≤ ∥ 𝑥𝑠𝜇 − 1∥ ≤ 𝛽

and so (1 − 𝛽)𝜇 ≤ 𝑥𝑖𝑠𝑖 ≤ (1 + 𝛽)𝜇. □
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Proof of Lemma 5.2.14. Note first that by construction, the solution set of 𝐿𝑊
𝐼
(𝑥) is non-empty.

Furthermore, the minimal norm solution exists and is unique by strict convexity of the square
Euclidean norm. Thus, 𝑤 = 𝐿𝑊

𝐼
(𝑥) is well-defined.

We now show that 𝑤 = 𝐿𝑊
𝐼
(𝑥) is a solution to the linear system. We have that 𝑤 ∈ 𝑊 and

𝑤𝐼 = 𝜋𝜋𝐼 (𝑊)(𝑥) = 𝑥−𝜋𝜋𝐼 (𝑊)⊥(𝑥) ∈ 𝜋𝐼(𝑊)⊥+𝑥. It remains to show that𝑤𝐽 ∈ 𝜋𝐽(𝑊⊥) = 𝜋𝐽((𝑊∩R𝑛𝐽 )⊥).
Take any 𝑧 ∈ R𝑛

𝐽
∩𝑊 with ∥𝑧∥2 = 1. It suffices to show that ⟨𝑤, 𝑧⟩ =

〈
𝑤𝐽 , 𝑧𝐽

〉
= 0. Noting that

𝑤 + 𝛽𝑧 ∈ 𝑊 and (𝑤 + 𝛽𝑧)𝐼 = 𝑤𝐼 = 𝜋𝜋𝐼 (𝑊)(𝑥), by the definition of 𝑤 = 𝐿𝑊
𝐼
(𝑥), we must have that

∥𝑤∥2 ≤ min𝛽∈R ∥𝑤 + 𝛽𝑧∥2 = ∥𝑤∥2 − ⟨𝑧, 𝑤⟩2. In particular, ⟨𝑧, 𝑤⟩ = 0, as needed.
Now take any 𝑤 ∈𝑊 , 𝑤𝐽 ∈ 𝜋𝐽(𝑊⊥), 𝑤𝐼 ∈ 𝜋𝐼(𝑊)⊥ + 𝑥. We wish to show that 𝑤 = 𝐿𝑊

𝐼
(𝑥). Firstly,

by the above argument, this system always has a solution, namely 𝐿𝑊
𝐼
(𝑥). Secondly, note that 𝑧 ∈𝑊

implies that 𝑤𝐼 ∈ (𝜋𝐼(𝑊)⊥ + 𝑥) ∩ 𝜋𝐼(𝑊). By the uniqueness of the orthogonal decomposition, this
implies that 𝑧𝐼 = 𝜋𝜋𝐼 (𝑊)(𝑥). Thus, 𝑧 is in the solution set of the 𝐿𝑊

𝐼
(𝑥) program. It remains to

show that 𝑧 has minimum norm. Letting 𝑤′ ∈𝑊 \ {𝑤} satisfy 𝑤′
𝐼
= 𝜋𝜋𝐼 (𝑊)(𝑥), we must show that

∥𝑤′∥2 > ∥𝑤∥2. Noting that 𝑧 = 𝑤′ − 𝑤 ∈𝑊 ∩R𝑛
𝐽
\ {0} and recalling that 𝑤 ∈ (𝑊 ∩R𝑛

𝐽
)⊥, we have

that ∥𝑤 + 𝑧∥2 = ∥𝑤∥2 + 2⟨𝑧, 𝑤⟩ + ∥𝑧∥2 = ∥𝑤∥2 + ∥𝑧∥2 > ∥𝑤∥2. Thus, 𝑤 = 𝐿𝑊
𝐼
(𝑥) as needed.

Given the above, we see that the solution to the linear system always exists and is unique (since
𝐿𝑊
𝐼
(𝑥) is well-defined). Secondly, since 𝐿𝑊

𝐼
(𝑥) is the unique solution to a linear system of equations

depending linearly on 𝑥, we have that 𝐿𝑊
𝐼

is a linear map. □

Proof of Lemma 5.2.15. To prove the statement, it suffices to show that for all 𝑥 ∈ R𝐼 that

𝐿𝑊𝐼 (𝑥) = (Π𝜋𝐼 (𝑊)(𝑥), ℓ𝑊𝐼 (𝑥)) = (Π𝜋𝐼 (𝑊)(𝑥),−ℓ𝑊
⊥∗

𝐽 (𝑥)).

Letting 𝑧 = (Π𝜋𝐼 (𝑊)(𝑥),−ℓ𝑊
⊥∗

𝐽
(𝑥)), by Lemma 5.2.14, it suffices to show that

1. 𝑧 ∈𝑊 ,

2. 𝑧𝐼 ∈ 𝜋𝐼(𝑊)⊥ + 𝑥,

3. 𝑧𝐽 ∈ 𝜋𝐽(𝑊⊥).

Property (2) follows directly from 𝑧𝐼 = Π𝜋𝐼 (𝑊)(𝑥) = 𝑥 −Π(𝜋𝐼 (𝑊))⊥(𝑥). To show (1), it suffices to
show that ⟨𝑣, 𝑧⟩ = 0, ∀𝑣 ∈𝑊⊥. For 𝑣 ∈𝑊⊥, we see that

⟨𝑧, 𝑣⟩ =
〈
Π𝜋𝐼 (𝑊)(𝑥), 𝑣𝐼

〉
−

〈
ℓ𝑊

⊥∗
𝐽 (𝑥), 𝑣𝐽

〉
=

〈
Π𝜋𝐼 (𝑊)(𝑥), 𝑣𝐼

〉
−

〈
𝑥, ℓ𝑊

⊥
𝐽 (𝑣𝐽)

〉
=

〈
Π𝜋𝐼 (𝑊)(𝑥), 𝑣𝐼

〉
−

〈
Π𝜋𝐼 (𝑊)(𝑥), ℓ𝑊

⊥
𝐽 (𝑣𝐽)

〉 (
since ℓ𝑊⊥𝐽 (𝑣𝐽) ∈ 𝜋𝐼(𝑊)

)
=

〈
Π𝜋𝐼 (𝑊)(𝑥), 𝑣𝐼 − ℓ𝑊

⊥
𝐽 (𝑣𝐽)

〉
=

〈
𝐿𝑊𝐼 (𝑥), (𝑣𝐼 − ℓ

𝑊⊥
𝐽 (𝑣𝐽), 0𝐽)

〉
=

〈
𝐿𝑊𝐼 (𝑥), 𝑣 − 𝐿

𝑊⊥
𝐽 (𝑣𝐽)

〉 (
since 𝑣𝐽 ∈ 𝜋𝐽(𝑊⊥)

)
= 0,

where the last equality follows since 𝐿𝑊
𝐼
(𝑥) ∈𝑊 and 𝑣 − 𝐿𝑊⊥

𝐽
(𝑣 𝑗) ∈𝑊⊥.

To show (3), we must show that ⟨𝑧, 𝑤⟩ = 0, ∀𝑤 ∈ 𝑊 ∩R𝑛
𝐽
. For 𝑤 ∈ 𝑊 ∩R𝑛

𝐽
, we first claim that

𝐿𝑊
⊥

𝐽
(𝑤𝐽) = 0𝑛 . By Lemma 5.2.14, this follows since 0 a solution to the linear system

𝑥𝐽 ∈ 𝜋𝐽(𝑊⊥)⊥ = 𝜋𝐽(𝑊 ∩R𝑛𝐽 ) = 𝜋𝐽(𝑊 ∩R𝑛𝐽 ) + 𝑤𝐽 , 𝑥 ∈𝑊⊥ , 𝑥𝐼 ∈𝑊𝐼 . (5.70)

From the claim, we must have ℓ𝑊⊥
𝐽
(𝑤𝐽) = (𝐿𝑊

⊥
𝐽
(𝑤𝐽))𝐼 = 0𝐼 . Therefore,

⟨𝑧, 𝑤⟩ = −
〈
ℓ𝑊

⊥∗
𝐽 (𝑥), 𝑤𝐽

〉
= −

〈
𝑥, ℓ𝑊

⊥
𝐽 (𝑤𝐽)

〉
= −⟨𝑥, 0𝐼⟩ = 0.
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Thus, ℓ𝑊
𝐼

= −ℓ𝑊 ∗
𝐽

as needed. The equality of singular values follows from the fact that adjoints
always have the same non-zero singular values. □

Proof of Lemma 5.3.7. By Proposition 5.2.1, we have

∥𝑥(𝜇1)/𝑥(𝜇0)∥1 + ∥𝑠(𝜇1)/𝑠(𝜇0)∥1 =
1
𝜇0
(⟨𝑥(𝜇1), 𝑠(𝜇0)⟩ + ⟨𝑥(𝜇0), 𝑠(𝜇1)⟩)

=
1
𝜇0
(⟨𝑥(𝜇0), 𝑠(𝜇0)⟩ + ⟨𝑥(𝜇1), 𝑠(𝜇1)⟩) =

(
1 + 𝜇1

𝜇0

)
𝑛. (5.71)

Let 𝐵 ∪· 𝑁 = [𝑛] be the polarization partition. Now assume that 𝛾 ≥ 1. We will show then that
𝛾 = 1 and that CP[𝜇1 , 𝜇0] is linear.

Then for 𝑖 ∈ 𝐵, we see that

𝑥𝑖(𝜇1)
𝑥𝑖(𝜇0)

+ 𝑠𝑖(𝜇1)
𝑠𝑖(𝜇0)

=
𝑥𝑖(𝜇1)
𝑥𝑖(𝜇0)

+ 𝜇1

𝜇0

𝑥𝑖(𝜇0)
𝑥𝑖(𝜇1)

≥ min
𝛽≥𝛾

(
𝛽 + 1

𝛽

𝜇1

𝜇0

)
= 𝛾 + 1

𝛾

𝜇1

𝜇0
, (5.72)

where the last inequality uses 𝛾 ≥ 1, 𝜇1/𝜇0 ≤ 1, and that the function 𝛽→ 𝛽 + 1
𝛽
𝜇1
𝜇0

is increasing for

𝛽 ≥
√

𝜇1
𝜇0

.

Swapping the role of 𝑥 and 𝑠, we also get 𝑥𝑖 (𝜇1)
𝑥𝑖 (𝜇0) +

𝑠𝑖 (𝜇1)
𝑠𝑖 (𝜇0) ≥ 𝛾+ 𝜇1

𝜇0
/𝛾, ∀𝑖 ∈ 𝑁 . Combining with (5.71),

we get that

𝑛

(
𝛾 + 𝜇0

𝜇1𝛾

)
≤ ∥𝑥(𝜇1)/𝑥(𝜇0)∥1 + ∥𝑠(𝜇1)/𝑠(𝜇0)∥1 = 𝑛

(
1 + 𝜇0

𝜇1

)
.

For 𝛾 ≥ 1, this inequality can only hold if 𝛾 = 1. If 𝛾 = 1, then all the inequalities in Equation (5.72)
and their analogs for 𝑖 ∈ 𝑁 must hold at equality. In particular, we get that 𝑥𝑖(𝜇1) = 𝑥𝑖(𝜇0), 𝑖 ∈ 𝐵,
and 𝑠𝑖(𝜇1) = 𝑠𝑖(𝜇0), 𝑖 ∈ 𝑁 .

We now use this to show that CP[𝜇1 , 𝜇0] is linear. Define

𝜇𝛼 B (1 − 𝛼)𝜇0 + 𝛼𝜇1 and 𝑧(𝛼) = (𝑥(𝛼) , 𝑠(𝛼)) B (1 − 𝛼)𝑧(𝜇0) + 𝛼𝑧(𝜇1) for 𝛼 ∈ [0, 1] .

To prove linearity, it suffices to show that 𝑧(𝜇𝛼) = 𝑧𝛼. To see this, note that for 𝑖 ∈ 𝐵, we have
𝑥
(𝛼)
𝑖

= (1 − 𝛼)𝑥𝑖(𝜇0) + 𝛼𝑥𝑖(𝜇1) = (1 − 𝛼)𝑥𝑖(𝜇0) + 𝛼𝑥𝑖(𝜇0) = 𝑥𝑖(𝜇0) and 𝑠𝑖 (𝜇1)
𝑠𝑖 (𝜇0) =

𝜇1
𝜇0

. That implies

𝑥
(𝛼)
𝑖
𝑠
(𝛼)
𝑖

= 𝑥𝑖(𝜇0)
(
(1 − 𝛼)𝑠𝑖(𝜇0) + 𝛼

𝜇1

𝜇0
𝑠𝑖(𝜇0)

)
= 𝑥𝑖(𝜇0)𝑠𝑖(𝜇0)

(
(1 − 𝛼) + 𝛼

𝜇1

𝜇0

)
= 𝜇𝛼 .

By a symmetric argument, 𝑥(𝛼)
𝑖
𝑠
(𝛼)
𝑖

= 𝜇𝛼 ,∀𝑖 ∈ 𝑁 . Since 𝑧(𝛼) ∈ 𝒫 × 𝒟 and 𝑥(𝛼)𝑠(𝛼) = 𝜇𝛼1, we must
have 𝑧(𝛼) = 𝑧(𝜇𝛼) as needed.

Now assume that CP[𝜇1 , 𝜇0] is linear, that is, that 𝑧(𝜇𝛼) = 𝑧𝛼, ∀𝛼 ∈ [0, 1]. We must show that
CP[𝜇1 , 𝜇0] is 1-polarized. For 𝑖 ∈ [𝑛], 𝛼 ∈ [0, 1], we have that

((1 − 𝛼)𝑥(0)
𝑖
+ 𝛼𝑥(1)

𝑖
)((1 − 𝛼)𝑠(0)

𝑖
+ 𝛼𝑠(1)

𝑖
)

(1 − 𝛼)𝑥(0)
𝑖
𝑠
(0)
𝑖
+ 𝛼𝑥(1)

𝑖
𝑠
(1)
𝑖

=
𝑥
(𝛼)
𝑖
𝑠
(𝛼)
𝑖

𝜇𝛼
=
𝑥(𝜇𝛼)𝑠(𝜇𝛼)

𝜇𝛼
= 1.

Thus, by Lemma 5.3.6 applied to 𝑥
(1)
𝑖

𝑥
(0)
𝑖

, 𝑠
(1)
𝑖

𝑠
(0)
𝑖

and 𝛾 = 1, using that 𝑥
(1)
𝑖

𝑥
(0)
𝑖

𝑠
(1)
𝑖

𝑠
(0)
𝑖

=
𝜇1
𝜇0

, we get that

𝑥
(1)
𝑖

𝑥
(0)
𝑖

+
𝑠
(1)
𝑖

𝑠
(0)
𝑖

≥
(
1 +

√
𝜇1

𝜇0

)2

− 2
√

𝜇1

𝜇0
= 1 +

𝜇1

𝜇0
.
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Since this holds for all 𝑖 ∈ [𝑛], by the same argument as above, the inequality above must hold at

equality for all 𝑖 ∈ [𝑛]. In particular, for each 𝑖 ∈ [𝑛], we must have either (1) 𝑥
(1)
𝑖

𝑥
(0)
𝑖

= 1 and 𝑠
(1)
𝑖

𝑠
(0)
𝑖

=
𝜇1
𝜇0

or (2) 𝑥
(1)
𝑖

𝑥
(0)
𝑖

=
𝜇1
𝜇0

and 𝑠
(1)
𝑖

𝑠
(0)
𝑖

= 1 (note that 𝜇1
𝜇0

< 1 implies that these cases are disjoint). Let 𝐵 ⊆ [𝑛]
denote the indices satisfying case (1) and 𝑁 = [𝑛] \ 𝐵 be the indices satisfying case (2). It is now
direct to verify 𝐵, 𝑁 yield a 1-polarized partition for CP[𝜇1 , 𝜇0], as needed. □

Proof of Proposition 5.5.1. We restrict to the proof of the boundedness of 𝒫 𝑔 , since the proof is
analogous for 𝒟 𝑔 . Let 𝑠◦ ∈ 𝒟++ be a strictly feasible point of the dual, and 𝑥 ∈ 𝒫 𝑔 . By
Proposition 5.2.1, we have 〈

𝑥, 𝑠★
〉
+

〈
𝑥★, 𝑠◦

〉
= ⟨𝑥, 𝑠◦⟩ +

〈
𝑥★, 𝑠★

〉
.

Since ⟨𝑥★, 𝑠★⟩ = 0, we deduce that ⟨𝑥, 𝑠◦⟩ ≤ 𝑔 + ⟨𝑥★, 𝑠◦⟩. As 𝑠◦ > 0, this implies that 𝑥𝑖 ≤
(𝑔 + ⟨𝑥★, 𝑠◦⟩)/𝑠◦

𝑖
for all 𝑖 ∈ [𝑛]. □
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6 Curvature Bounds

In this chapter we study the notion of curvature that was introduced by Sonnevend,
Stoer and Zhao [SSZ91]. It is a natural notion of complexity of IPM and as such can
provide lower and upper bound of reasonable path-following methods. The curvature
is a purely geometric notion, independent of implementations of IPM. We will present
two main results. The first is an exponential bound on the total curvature, the methods
used and the proof resembling closely the proof of the exponential curvature bound
in Chapter 5. As a second result we sharpen the total curvature bound provided
by [MT08] in terms of the scaling-invariant condition measure �̄�∗. We believe that
curvature bounds are of independent interest as they give explicit information about
the geometry of a polytope which in IPM is used only implicitly.

The content of this chapter are preliminary results, which are not published yet.

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.1.1 Curvature integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 A simplex path bound on the total curvature . . . . . . . . . . . . . . . . . . . . . . 141
6.2.1 Curvature on polarized segments . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Bounding the curvature with circuit imbalances . . . . . . . . . . . . . . . . . . . . 149

6.1 Introduction

Recall the LP formulation in primal-dual form

min ⟨𝑐, 𝑥⟩
A𝑥 = 𝑏

𝑥 ≥ 0 ,

max ⟨𝑦, 𝑏⟩
A⊤𝑦 + 𝑠 = 𝑐

𝑠 ≥ 0 ,

(LP)

where A ∈ R𝑚×𝑛 , rank(A) = 𝑚 ≤ 𝑛, 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 are given in the input, and 𝑥, 𝑠 ∈ R𝑛 , 𝑦 ∈ R𝑚
are the variables. We consider the program in 𝑥 to be the primal problem and the program in (𝑦, 𝑠)
to be the dual problem.
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6 CURVATURE BOUNDS 6.2 A simplex path bound on the total curvature

If both the primal and dual problems in (LP) are strictly feasible, the central path for (LP) is the
curve { (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇) : 𝜇 > 0 } defined by

𝑥(𝜇)𝑖𝑠(𝜇)𝑖 = 𝜇, ∀𝑖 ∈ [𝑛]
A𝑥(𝜇) = 𝑏, 𝑥(𝜇) > 0,

A⊤𝑦(𝜇) + 𝑠(𝜇) = 𝑐, 𝑠(𝜇) > 0,

(CP)

which converges to complementary optimal primal and dual solutions (𝑥∗ , 𝑦∗ , 𝑠∗) as 𝜇→ 0, recalling
that the optimality gap at time 𝜇 is exactly ⟨𝑥(𝜇), 𝑠(𝜇)⟩ = 𝑛𝜇. We thus refer to 𝜇 as the normalized
dualized gap.

6.1.1 Curvature integral

The curvature of the central path introduced by [SSZ91] is defined as follows:

Υ(𝜈) ≔
√
∥𝜈 ¤𝑥(𝜈)¤𝑠(𝜈)∥ (6.1)

where ¤𝑥(𝜇) = d𝑥(𝜇)
d𝜇 , ¤𝑠(𝜇) = 𝑑𝑠(𝜇)

𝑑𝜇 . The total curvature of a segment from 𝜇0 to 𝜇1, 𝜇1 ≤ 𝜇0 of (LP) is
defined as

ℐ(𝜇1 , 𝜇0) ≔
∫ 𝜇0

𝜇1

Υ(𝜈)
𝜈

d𝜈 =

∫ 𝜇0

𝜇1

√ ¤𝑥(𝜈)¤𝑠(𝜈)𝑥(𝜈)𝑠(𝜈)

 d𝜈 . (6.2)

The total path curvature of the central path is defined as ℐ(0,∞).
The curvature has following basic properties.

Lemma 6.1.1 ([MT08, Lemmma 2.1]). The following statements hold:

1. Υ(𝜈) ≤
√
𝑛/2 for all 𝜈 > 0;

2. If Υ(𝜈0) = 0 for some 𝜈0 > 0 then Υ(𝜈) = 0 for every 𝜈 > 0.

6.2 A simplex path bound on the total curvature

In this section we prove Corollary 6.2.3, which is the curvature equivalent of Proposition 5.2.9 (ii).
It states that the curvature integral from Υ(𝜇)2𝜇 to 𝜇 is bounded by 𝑂(

√
𝑛) if Υ(𝜇) ≤ 1. Similarly,

Proposition 5.2.9 (ii) states that a single AS step is able to decrease the duality gap by a term
proportional to ∥Δ𝑥aΔ𝑠a∥/𝜇 if this term is ≤ 1. Note that these two terms coincide if (𝑥, 𝑠) is
perfectly centered. Let us begin by a few properties of the central path and its derivatives.

¤𝑥(𝜇)𝑖𝑠(𝜇)𝑖 + 𝑥(𝜇)𝑖 ¤𝑠(𝜇)𝑖 = 1, ∀𝑖 ∈ [𝑛]
A ¤𝑥(𝜇) = 0,

A⊤ ¤𝑦(𝜇) + ¤𝑠(𝜇) = 0,

(CP-gradient)

by differentiating by 𝜇 in (CP).
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6 CURVATURE BOUNDS 6.2 A simplex path bound on the total curvature

Let𝑊(𝜇) ≔ 𝑥(𝜇)−1𝑊 . The equations in (CP-gradient) can equivalently be written as

¤𝑥(𝜇)
𝑥(𝜇) +

¤𝑠(𝜇)
𝑠(𝜇) =

1
𝜇

1

¤𝑥(𝜇)
𝑥(𝜇) ∈𝑊(𝜇),

¤𝑠(𝜇)
𝑠(𝜇) ∈𝑊(𝜇)

⊥ ,

(6.3)

Given 𝜇 and subset 𝑆 ⊆ [𝑛]we write

�̂�(𝜇, 𝑆) ≔ arg min
𝑥∈𝜋𝑆(𝑊)+𝑑𝑆

 𝑥

𝑥(𝜇)𝑆

 , and 𝑠(𝜇, 𝑆) ≔ arg min
𝑠∈𝜋𝑆(𝑊⊥)+𝑐𝑆

 𝑠

𝑠(𝜇)𝑆

 (6.4)

Note that |�̂�(𝜇, 𝑆)| ≤
√
|𝑆 |𝑥(𝜇)𝑆, where | · | is taken coordinate-wise.

We define for 𝑆 ⊆ [𝑛]

Rx(𝜇, 𝑆) = �̂�(𝜇, 𝑆)
𝑥(𝜇)𝑆

, and Rs(𝜇, 𝑆) = 𝑠(𝜇, 𝑆)
𝑠(𝜇)𝑆

(6.5)

and in slight abuse of notation Rx(𝜇) = Rx(𝜇, [𝑛]). This corresponds to the notation Rx used in the
previous chapters.

Note that Rx(𝜇) ∈𝑊(𝜇)⊥ and Rs(𝜇) ∈𝑊(𝜇). In fact,

Rx(𝜇) = Π𝑊(𝜇)⊥(1) , Rs(𝜇) = Π𝑊(𝜇)(1) (6.6)

So, in particular Rx(𝜇) + Rs(𝜇) = 1 and we can match

Rx(𝜇) = 𝜇
¤𝑠(𝜇)
𝑠(𝜇) , Rs(𝜇) = 𝜇

¤𝑥(𝜇)
𝑥(𝜇) (6.7)

Note that we further have

Υ(𝜇)2 = ∥𝜇 ¤𝑥(𝜇)¤𝑠(𝜇)∥ = ∥Rx(𝜇)Rs(𝜇)∥ ≤
√
𝑛

√
∥Rx(𝜇)𝑁 ∥2 + ∥Rs(𝜇)𝐵∥2 (6.8)

for any partition 𝐵 ∪· 𝑁 = [𝑛].

Lemma 6.2.1 (Curvature bound). If 16Υ(𝜇0)2 ≤ 1, then for all 𝜇 ∈ [16Υ(𝜇0)2𝜇0 , 𝜇0] we have Υ(𝜇) ≤
√

2
√

𝜇0
𝜇 Υ(𝜇0).

Proof. For a matrix M ∈ R𝑛×𝑚 , weights 𝑤 ∈ R𝑛>0 and direction ℎ ∈ R𝑛 , let Π(WA) be the projection
onto im(WA). Here W ≔ diag(𝑤). Then

dΠ(WA)
d𝑤 [ℎ] = HW−1Π(WA) +Π(WA)HW−1 − 2Π(WA)HW−1Π(WA). (6.9)
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Applied to Rx and using the notation X(𝜇) ≔ diag(𝑥(𝜇)), ¤X(𝜇) ≔ diag( ¤𝑥(𝜇))we obtain

¤Rx(𝜇) = dRx(𝜇)
d𝜇 =

dΠ𝑊(𝜇)⊥

d(𝑥(𝜇)−1)

[
d𝑥(𝜇)−1

d𝜇

]
(1)

= −
dΠ𝑊(𝜇)⊥

d(𝑥(𝜇)−1)

[ ¤𝑥(𝜇)
𝑥(𝜇)2

]
(1)

=

[ ¤X(𝜇)
X(𝜇)2 X(𝜇)Π𝑊(𝜇)⊥ +Π𝑊(𝜇)⊥

¤X(𝜇)
X(𝜇)2 X(𝜇) − 2Π𝑊(𝜇)⊥

¤X(𝜇)
X(𝜇)2 X(𝜇)Π𝑊(𝜇)⊥

]
(1)

=
¤X(𝜇)
X(𝜇)Rx(𝜇) + 0 − 2𝜇−1Π𝑊(𝜇)⊥

(
Rx(𝜇)Rs(𝜇)

)
= 𝜇−1(I − 2Π𝑊(𝜇)⊥)[Rx(𝜇)Rs(𝜇)] .

(6.10)

Analogously one can show that

¤Rs(𝜇) = 𝜇−1(I − 2Π𝑊(𝜇))[Rx(𝜇)Rs(𝜇)] . (6.11)

Let us further define 𝜚(𝜇) ≔ Rx(𝜇)Rs(𝜇). Noting that I − 2Π𝑊(𝜇)⊥ = −(I − 2Π𝑊(𝜇))we get

d
d𝜇 ∥𝜚(𝜇)∥

2
2 = 2

〈
𝜚(𝜇), d

d𝜇𝜚(𝜇)
〉

= 2
〈
𝜚(𝜇), ¤Rx(𝜇)Rs(𝜇) + Rx(𝜇) ¤Rs(𝜇)

〉
=

2
𝜇

〈
𝜚(𝜇), (I − 2Π𝑊(𝜇)⊥)[𝜚(𝜇)]Rs(𝜇) + (I − 2Π𝑊(𝜇))[𝜚(𝜇)]Rx(𝜇)

〉
=

2
𝜇

〈
𝜚(𝜇), (I − 2Π𝑊(𝜇))[𝜚(𝜇)](Rx(𝜇) − Rs(𝜇)

〉
≥ − 2

𝜇
∥𝜚(𝜇)∥22∥Rx(𝜇) − Rs(𝜇)∥∞ .

Note that
∥Rx(𝜇) − Rs(𝜇)∥2∞ = ∥Rx(𝜇)2 + Rs(𝜇)2 − 2𝜚(𝜇)∥2∞

= ∥Rx(𝜇)(1 − Rs(𝜇)) + Rs(𝜇)(1 − Rx(𝜇)) − 2𝜚(𝜇)∥2∞
= ∥1 − 4𝜚(𝜇)∥2∞
≤ (1 + 4∥𝜚(𝜇)∥2)2 .

(6.12)

Hence, with Υ(𝜇) =
√
∥𝜚(𝜇)∥2 we have

d
d𝜇Υ(𝜇)

4 ≥ − 2
𝜇
Υ(𝜇)4

(
1 + 4Υ(𝜇)2

)
, (6.13)

and so
¤Υ(𝜇) = 1

4Υ(𝜇)3
d

d𝜇Υ(𝜇)
4 ≥ − 1

2𝜇Υ(𝜇)
(
1 + 4Υ(𝜇)2

)
. (6.14)

To get good bounds on the evolvement of Υ let us consider following more general differential
equation. For 𝑎 ∈ R

¤𝛾𝑎(𝜇) = −
1

2𝜇𝛾𝑎(𝜇)(1 + 𝑎𝛾𝑎(𝜇)2) (6.15)

with condition 𝛾𝑎(𝜇0) = Υ(𝜇0) has the closed form solution

𝛾𝑎(𝜇) =
((
Υ(𝜇0)−2 + 𝑎

) 𝜇

𝜇0
− 𝑎

)−1/2
. (6.16)
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For 𝑎 = 4 we have Υ(𝜇0)2 ≤ 1/(4𝑎). Then for 𝜇 ≥ 4𝑎Υ(𝜇0)2𝜇0 we have that(
1 −

𝜇

𝜇0

)
𝑎 ≤ 1

2Υ(𝜇0)−2 𝜇

𝜇0
, (6.17)

and so

𝛾𝑎(𝜇) =
((
Υ(𝜇0)−2 + 𝑎

) 𝜇

𝜇0
− 𝑎

)−1/2

=

(
Υ(𝜇0)−2 𝜇

𝜇0
+

(
𝜇

𝜇0
− 1

)
𝑎

)−1/2

≤
(
Υ(𝜇0)−2 𝜇

𝜇0
− 1

2Υ(𝜇0)−2 𝜇

𝜇0

)−1/2

=
√

2Υ(𝜇0)
√

𝜇0

𝜇

=
√

2𝛾0(𝜇),

(6.18)

which proves the lemma. □

Lemma 6.2.2. For all 𝜇0 ∈ R+ with 16Υ(𝜇0)2 ≤ 1 we have

ℐ
(
16Υ(𝜇0)2𝜇0 , 𝜇0

)
= 𝑂(1). (6.19)

Proof. Using Lemma 6.2.1 we get

ℐ
(
16Υ(𝜇0)2𝜇0 , 𝜇0

)
=

∫ 𝜇0

Υ(4·4𝜇0)2𝜇0

Υ(𝜇)
𝜇

𝑑𝜇

≤
∫ 𝜇0

4·4Υ(𝜇0)2𝜇0

𝛾𝑎(𝜇)
𝜇

𝑑𝜇

≤
√

2Υ(𝜇0)
∫ 𝜇0

4·4Υ(𝜇0)2𝜇0

𝜇1/2
0

𝜇3/2 𝑑𝜇

=
1
2
√

2Υ(𝜇0)𝜇1/2
0

(
(4 · 4Υ(𝜇0)2𝜇0)−1/2 − 𝜇−1/2

0
)

= 2−1/2 · (2−2 − Υ(𝜇0))
= 𝑂(1),

which proves the lemma. □

From here it is straightforward to prove the main result of this section.

Corollary 6.2.3. For all 𝜇 ∈ R+ with Υ(𝜇) ≤ 1 we have ℐ(Υ(𝜇)2𝜇, 𝜇) = 𝑂(
√
𝑛).

Proof. Using Lemma 6.2.2 and the bound Υ(𝜇) ≤
√
𝑛 we have

ℐ
(
Υ(𝜇0)2𝜇0 , 𝜇0

)
=

∫ 𝜇0

Υ(𝜇0)2𝜇0

Υ(𝜇)
𝜇

𝑑𝜇

=

∫ 4·4Υ(𝜇0)2𝜇0

Υ(𝜇0)2𝜇0

Υ(𝜇)
𝜇

𝑑𝜇 +
∫ 𝜇0

4·4Υ(𝜇0)2𝜇0

Υ(𝜇)
𝜇

𝑑𝜇

≤
√
𝑛

∫ 4·4Υ(𝜇0)2𝜇0

Υ(𝜇0)2𝜇0

1
𝜇
𝑑𝜇 + 𝑂(1)

= 𝑂(
√
𝑛) □
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6.2.1 Curvature on polarized segments

The main result of this section is a total curvature analogue of Theorem 5.1.2.

Theorem 6.2.4. We have that

ℐ(0,∞) = 𝑂

(
𝑛1.5 log 𝑛 min

{
𝑛∑
𝑖=1

𝑆𝒫(−𝑠★, 𝑒 𝑖) + 𝑆𝒟(−𝑥★, 𝑒 𝑖),𝒱𝒫 +𝒱𝒟

})
,

where𝒱𝒫 ,𝒱𝒫 , 𝑆𝒫 and 𝑆𝒟 are as in Chapter 5.

The proof is similarly to the proof strategy of the previous chapter based on showing that
polarized segments have small curvature. To this end, consider a 𝛾-polarized segment CP[𝜇1 , 𝜇0]
of the central path with polarizing partition 𝐵 ∪· 𝑁 = [𝑛]. We are going to prove the following
theorem, of which Theorem 6.2.4 is a trivial consequence.

Theorem 6.2.5. For a 𝛾-polarized segment CP[𝜇1 , 𝜇0] we have that

ℐ(𝜇1 , 𝜇0) = 𝑂
(
𝑛1.5poly(log 𝛾−1)

)
. (6.20)

Let us first introduce some basic notation and show basic results.
The important property we will use in the following is that for every 𝜉 ∈ R𝑆, 𝑆 ⊆ [𝑛] such that

𝜉 ∈ 𝜋𝑆(𝑊)we have 〈
𝜉

𝑥(𝜇)𝑆
,
�̂�(𝜇, 𝑆)
𝑥(𝜇)𝑆

〉
= 0. (6.21)

Let us denote ℓ𝜇 ≔ ℓ
𝑥(𝜇)−1𝑊

𝑁
, where the latter notation is the same as in the previous chapter

defined in Definition 5.2.13. We can show following bound on the projected residuals in terms of
subspace-restriction of ℓ𝜇.

Lemma 6.2.6 (SLLS-proximity). For any subspace 𝑉 ⊆ 𝜋𝑁
(
𝑊(𝜇)

)
we have

∥Π𝑉 (Rx(𝜇)𝑁 )∥ =
Π𝑉

(
�̂�(𝜇, [𝑛])𝑁
𝑥(𝜇)𝑁

) ≤ √𝑛∥ℓ𝜇��𝑉 ∥ . (6.22)

Proof. We haveΠ𝑉

(
�̂�([𝑛], 𝜇)𝑁 − �̂�(𝑁, 𝜇)

𝑥(𝜇)𝑁

)2
=

〈
Π𝑉

(
�̂�([𝑛], 𝜇)𝑁 − �̂�(𝑁, 𝜇)

𝑥(𝜇)𝑁

)
,Π𝑉

(
�̂�([𝑛], 𝜇)𝑁 − �̂�(𝑁, 𝜇)

𝑥(𝜇)𝑁

)〉
=

〈
Π𝑉

(
�̂�([𝑛], 𝜇)𝑁 − �̂�(𝑁, 𝜇)

𝑥(𝜇)𝑁

)
,
�̂�([𝑛], 𝜇)𝑁 − �̂�(𝑁, 𝜇)

𝑥(𝜇)𝑁

〉
= −

〈
𝐿(𝜇, 𝑁)

[
Π𝑉

(
�̂�([𝑛], 𝜇)𝑁 − �̂�(𝑁, 𝜇)

𝑥(𝜇)𝑁

)]
𝐵

,
�̂�([𝑛], 𝜇)𝐵
𝑥(𝜇)𝐵

〉
≤ ℓ (𝜇, 𝑁 , 𝑉)

Π𝑉

(
�̂�([𝑛], 𝜇)𝑁 − �̂�(𝑁, 𝜇)

𝑥(𝜇)𝑁

) �̂�([𝑛], 𝜇)𝐵𝑥(𝜇)𝐵


≤
√
𝑛ℓ (𝜇, 𝑁 , 𝑉)

Π𝑉

(
�̂�([𝑛], 𝜇)𝑁 − �̂�(𝑁, 𝜇)

𝑥(𝜇)𝑁

)

(6.23)

Division on both sides and noting that �̂�(𝜇,𝑁)
𝑥(𝜇) ⊥ 𝜋𝑁

(
𝑊(𝜇)

)
⊇ 𝑉 gives the result. □

Let us now consider the usual orthogonal decompositions𝑉(𝜇) ⊥ 𝑉(𝜇),𝑉(𝜇)⊕𝑉(𝜇) = 𝜋𝑁 (𝑊(𝜇))
and 𝑈(𝜇) ⊥ 𝑈(𝜇), 𝑈(𝜇) ⊕ 𝑈(𝜇) = 𝜋𝐵(𝑊(𝜇)⊥) into cheap primal/dual and expensive primal/dual
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subspaces. We choose 𝑉(𝜇) as the subspace spanned by the kernel of ℓ𝜇 as well as the smallest 𝑘
non-zero singular vectors of ℓ𝜇 for some 𝑘 ∈ [𝑛]. Analogously choose𝑈(𝜇). Recall the duality of
these non-zero singular vectors of ℓ𝜇 and ℓ⊥𝜇 .

We proceed by upper bounding the curvature Υ(𝜇) by finding bound on Rx(𝜇)𝑁 and Rs(𝜇)𝐵 in
light of (6.8).

The curvature at a parameter 𝜇 can be upper bounded by

Υ(𝜇)2
√
𝑛

=
1√
𝑛
∥Rx(𝜇)Rs(𝜇)∥ ≤ ∥Rx(𝜇)𝑁 ∥ + ∥Rs(𝜇)𝐵∥ . (6.24)

We can further upper bound

∥Rx(𝜇)𝑁 ∥ ≤
𝑥(𝜇1)𝑁
𝑥(𝜇)𝑁

 + Rx(𝜇)𝑁 −
𝑥(𝜇1)𝑁
𝑥(𝜇)𝑁


=

𝑥(𝜇1)𝑁
𝑥(𝜇)𝑁

 + Π𝑉

(
Rx(𝜇)𝑁 −

𝑥(𝜇1)𝑁
𝑥(𝜇)𝑁

) + Π
𝑉

(
Rx(𝜇)𝑁 −

𝑥(𝜇1)𝑁
𝑥(𝜇)𝑁

)
≤ 2

𝑥(𝜇1)𝑁
𝑥(𝜇)𝑁

 + ∥Π𝑉 (Rx(𝜇)𝑁 )∥ +
Π

𝑉(𝜇)(Rx(𝜇)𝑁 − 1𝑁 )
 + Π

𝑉(𝜇)

(
1𝑁 −

𝑥(𝜇1)𝑁
𝑥(𝜇)𝑁

) .
(6.25)

Note that the last term corresponds to the empirical gradient from the previous chapter. In abuse
of notation we write 𝜎𝑖(𝜇) ≔ 𝜎𝑖((𝑥(𝜇), 𝑠(𝜇))). Let us now further bound the terms on the right.
With Lemma 6.2.6 we have that

∥Π𝑉 (Rx(𝜇)𝑁 )∥ =
Π𝑉

(
�̂�(𝜇, [𝑛])𝑁
𝑥(𝜇)𝑁

) ≤ √𝑛ℓ (𝜇, 𝑁 , 𝑉) = √𝑛𝜎𝑘(𝜇) . (6.26)

Let 𝑤 ∈𝑊(𝜇) be any vector. Note that(
Π𝑉(𝜇)(𝑤𝑁 ), ℓ𝜇

(
Π𝑉(𝜇)(𝑤𝑁 )

) )
∈𝑊(𝜇)

and so(
Π
𝑉(𝜇)(𝑤𝑁 ), 𝑤𝐵 − ℓ𝜇

(
Π𝑉(𝜇)(𝑤𝑁 )

) )
=

(
𝑤𝑁 −Π𝑉(𝜇)(𝑤𝑁 ), 𝑤𝐵 − ℓ𝜇

(
Π𝑉(𝜇)(𝑤𝑁 )

) )
∈𝑊(𝜇) . (6.27)

Therefore, in particular

𝜎(𝜇)𝑘+1∥Π𝑉(𝜇)(𝑤𝑁 )∥ ≤
ℓ𝜇(Π𝑉(𝜇)(𝑤𝑁 ))

 ≤ 𝑤𝐵 − ℓ𝜇 (Π𝑉(𝜇)(𝑤𝑁 )
)

≤ ∥𝑤𝐵∥ + 𝜎(𝜇)𝑘 ∥Π𝑉(𝜇)(𝑤𝑁 )∥
≤ ∥𝑤𝐵∥ + 𝜎(𝜇)𝑘 ∥𝑤𝑁 ∥ .

(6.28)

Applying the above with 𝑤 = Rx(𝜇) − 1 ∈𝑊(𝜇) and noting that ∥𝑅𝑥(𝜇) − 1 ∈𝑊(𝜇)∥ ≤
√
𝑛 we get

𝜎(𝜇)𝑘+1∥Π𝑉(𝜇)(Rx(𝜇)𝑁 − 1𝑁 )∥ ≤
√
𝑛(1 + 𝜎(𝜇)𝑘). (6.29)

Applying it with 𝑤 = 𝑥(𝜇1)/𝑥(𝜇) − 1 and noting that with Lemma 5.2.4 we have𝑥(𝜇1)
𝑥(𝜇) − 1

 ≤ 𝑥(𝜇1)
𝑥(𝜇)


1
+
√
𝑛 ≤ 2𝑛 +

√
𝑛 ≤ 3𝑛 , (6.30)
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and so
𝜎(𝜇)𝑘+1∥Π𝑉(𝜇)(𝑥(𝜇1)𝑁 − 1𝑁 )∥ ≤ 3𝑛(1 + 𝜎(𝜇)𝑘) . (6.31)

Plugging (6.26), (6.29) and (6.31) into (6.25), we get

∥Rx(𝜇)𝑁 ∥ ≤ 2
𝑥(𝜇1)𝑁
𝑥(𝜇)𝑁

 + √𝑛𝜎(𝜇)𝑘 + √𝑛(1 + 𝜎(𝜇)𝑘)𝜎(𝜇)−1
𝑘+1 + 3𝑛(1 + 𝜎(𝜇)𝑘)𝜎(𝜇)−1

𝑘+1

≤ 2
𝑥(𝜇1)𝑁
𝑥(𝜇)𝑁

 + √𝑛𝜎(𝜇)𝑘 + 4𝑛(1 + 𝜎(𝜇)𝑘)𝜎(𝜇)−1
𝑘+1 .

(6.32)

With analogous computation on the dual side we get

∥Rs(𝜇)𝐵∥ ≤ 2
 𝑠(𝜇1)𝐵
𝑠(𝜇)𝐵

 + √𝑛𝜎(𝜇)𝑘 + 4𝑛(1 + 𝜎(𝜇)𝑘)𝜎(𝜇)−1
𝑘+1 . (6.33)

If we combine these two bounds with the stability of the singular values from the previous
chapter, we are able to bound the curvature until a new singular value becomes small. Let
�̃� ≔ max

{
𝑝𝜇1 , 𝑝𝜎(𝜇0)−1

𝑘+1𝜇0
}
, where 𝑝 = poly(𝛾−1 , 𝑛) that we are going to choose later. For every

𝜇 ∈ [�̃�, 𝜇0]we have by Corollary 5.3.3 that

𝑥(𝜇)𝑁 ≥
𝜇

𝑛𝜇0
𝑥(𝜇0)𝑁 , 𝑠(𝜇)𝐵 ≥

𝜇

𝑛𝜇0
𝑠(𝜇0)𝐵 and

𝑥(𝜇1)𝑁 ≤
𝜇1

𝛾𝜇0
𝑥(𝜇0)𝑁 , 𝑠(𝜇1)𝐵 ≤

𝜇1

𝛾𝜇0
𝑠(𝜇0)𝐵

(6.34)

Further, we have by Lemma 5.4.7 that

𝜎(𝜇)𝑘 ≤ 𝜎(𝜇0)𝑘
4𝑛2𝜇

𝛾2𝜇0
, 𝜎(𝜇)𝑘+1 ≥ 𝜎(𝜇0)𝑘+1

𝛾2𝜇

4𝑛2𝜇0
. (6.35)

With these inequalities, we are ready to prove the main theorem of the section.

Proof of Theorem 6.2.5. Let us now choose

𝑘 ≔ max
{
𝑖 : 𝜎(𝜇0)𝑖 ≤

𝛾2

4𝑛2

}
. (6.36)
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By the above, we therefore have 𝜎(𝜇)𝑘 ≤ 1 for all 𝜇 ∈ [�̃�, 𝜇0]. We can now bound

ℐ(�̃�, 𝜇0) =
∫ 𝜇0

�̃�

Υ(𝜈)
𝜈

d𝜈 =
(6.2.1)
≤ 𝑛1/4

∫ 𝜇0

�̃�

√
∥Rx(𝜈)𝑁 ∥ + ∥Rs(𝜈)𝐵∥

𝜈
d𝜈

≤ 2
∫ 𝜇0

𝑝𝜇1

1
𝜈

√ 𝑠(𝜇1)𝐵
𝑠(𝜈)𝐵

 + 𝑥(𝜇1)𝑁
𝑥(𝜈)𝑁

 d𝜈 + 2𝑛1/4
∫ 𝜇0

𝑝𝜇1

√
𝜎(𝜈)𝑘
𝜈

d𝜈

+ 8𝑛1/2
∫ 𝜇0

𝑝𝜎(𝜇0)−1
𝑘+1𝜇0

1√
𝜎(𝜈)𝑘+1𝜈

d𝜈

≤ 4𝑛1/4
∫ 𝜇0

𝑝𝜇1

1
𝜈

√
𝑛𝜇1

𝛾𝜈
d𝜈 + 2𝑛1/4

∫ 𝜇0

𝑝𝜇1

1
𝜈

√
𝜎(𝜇0)𝑘

4𝑛2𝜈

𝛾2𝜇0
d𝜈

+ 8𝑛1/2
∫ 𝜇0

𝑝𝜎(𝜇0)−1
𝑘+1𝜇0

1
𝜈

√
4𝑛2𝜇0

𝛾2𝜈𝜎(𝜇0)𝑘+1
d𝜈

= 8𝑛3/4𝛾−1/2√𝜇1[−𝜈−1/2]𝜇0
𝑝𝜇1 + 8𝑛5/4

√
𝜎(𝜇0)𝑘𝛾−1𝜇−1/2

0 [
√
𝜈]𝜇0
𝑝𝜇1

+ 32𝑛3/2𝜎(𝜇0)−1/2
𝑘+1 𝛾−1𝜇1/2

0 [−𝜈
−1/2]𝜇0

𝑝𝜎(𝜇0)−1
𝑘+1𝜇0

≤ 8𝑛3/4𝛾−1/2𝑝−1/2 + 8𝑛5/4
√
𝜎(𝜇0)𝑘𝛾−1 + 32𝑛3/2𝛾−1𝑝−1/2

= 𝑂

(
𝑛3/4𝛾−1/2𝑝−1/2 + 𝑛5/4

√
𝜎(𝜇0)𝑘𝛾−1 + 𝑛3/2𝑝−1/2

√
𝜎(𝜇0)𝑘𝛾−1

)
.

This bound can be used to further bound

ℐ(𝑝−1�̃�, 𝜇0) = ℐ(𝑝−1�̃�, �̃�) + ℐ(�̃�, 𝜇0)

≤
√
𝑛 log(𝑝) + 𝑂

(
𝑛3/4𝛾−1/2𝑝−1/2 + 𝑛5/4

√
𝜎(𝜇0)𝑘𝛾−1 + 𝑛3/2𝑝−1/2

√
𝜎(𝜇0)𝑘𝛾−1

)
,

(6.37)

where the inequality used Lemma 6.1.1. Choosing 𝑝 ≥ 𝑛3/2𝛾 we therefore get

ℐ(𝑝−1�̃�, 𝜇0) = 𝑂
(√
𝑛 log(𝛾−1 + 𝑛) + 1

)
= 𝑂

(√
𝑛 log(𝛾−1 + 𝑛)

)
. (6.38)

We can now make a case distinction. If 𝜇1 ≥ 𝜎(𝜇0)−1
𝑘+1𝜇0, then 𝜇1 = 𝑝−1�̃� and so

ℐ(𝜇1 , 𝜇0) = ℐ(𝑝−1 , �̃�, 𝜇0) = 𝑂(
√
𝑛 log(𝛾−1 + 𝑛)) . (6.39)

Otherwise, 𝜎(𝜇0)−1
𝑘+1𝜇0 = 𝑝−1𝜇0 and then

ℐ(𝜎(𝜇0)−1
𝑘+1𝜇0 , 𝜇0) = ℐ

(
𝑝−1 , �̃�, 𝜇0

)
= 𝑂

(√
𝑛 log(𝛾−1 + 𝑛)

)
. (6.40)

But now note that again the stability of singular values Lemma 5.4.7, we have for 𝑞 ≔ 𝛾2

16𝑛4 .

𝜎
(
𝑞𝜎(𝜇0)−1

𝑘+1𝜇0

)
𝑘+1
≤ 𝜎(𝜇0)𝑘+1

4𝑛2𝑞𝜎(𝜇0)−1
𝑘+1𝜇0

𝜇0
= 𝑞4𝑛2 =

𝛾2

4𝑛2 , (6.41)
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and so when we choose the next 𝑘 as in (6.36), we would increase the index by at least one. Such
an increase can only happen 𝑛 times. It remains to prove that the curvature corresponding to
𝑞𝜎(𝜇0)−1

𝑘+1𝜇0 is small. But this can be done with the standard bound

ℐ(𝑞𝜎(𝜇0)−1
𝑘+1𝜇0 , 𝜇0) = ℐ(𝑞𝜎(𝜇0)−1

𝑘+1𝜇0 , 𝜎(𝜇0)−1
𝑘+1𝜇0) + ℐ(𝜎(𝜇0)−1

𝑘+1𝜇0), 𝜇0)
≤
√
𝑛 log(𝑞) + 𝑂(

√
𝑛 log(𝛾−1 + 𝑛))

= 𝑂
(√
𝑛 log(𝛾−1 + 𝑛)

)
,

(6.42)

which proves the theorem. □

6.3 Bounding the curvature with circuit imbalances

The relationship between the total curvature and the iteration complexity of the Mizuno-Todd-
Ye (MTY) algorithm has been extensively studied in [MT08]. One of their main results is following
theorem.

Theorem 6.3.1 ([MT08]). Let 𝛽 ∈ (0, 1/2]. For given 𝑤0 ∈ 𝒩(𝛽) and 0 < 𝜈 𝑓 < 𝜇(𝑤0), denote by
#(𝑤0 , 𝜈 𝑓 , 𝛽) the number of iterations of the MTY Predictor-Corrector algorithm with 𝛽 ∈ (0, 1/2)] needed to
reduce the duality gap from 𝜈𝑖 ≔ 𝜇(𝑤0) to 𝜈 𝑓 . Then,

lim
𝛽→0

ℐ(𝜈 𝑓 , 𝜈𝑖)/
√
𝛽

#(𝑤0 , 𝜈 𝑓 , 𝛽)
= 1 . (6.43)

Another central theorem in [MT08] is that the curvature can be bounded in terms 𝜅 (and �̄�). As
the curvature is scaling-invariant this yields the same bound for 𝜅∗ (and �̄�∗). Their main result is

Theorem 6.3.2 ([MT08]). For LP, the total curvature of the standard central path ℐ(0,∞) is bounded by

ℐ(0,∞) = 𝑂(𝑛3.5 log(�̄�∗A + 𝑛)) . (6.44)

The proof of their result relies on two ingredients. First, to show that the worst case analysis for
affine scaling steps recovers a total curvature bound of 𝑂(

√
𝑛 log(𝜇0/𝜇1)) to reduce the centrality

parameter from 𝜇0 to 𝜇1. The other ingredient is showing that the total curvature along a segment
traversed within a single LLS step is bounded by a constant. We recover this result for the special
case of only two layers.

The VY algorithm shows that 𝑂(𝑛3.5 log(�̄�A + 𝑛)) affine scaling steps with worst-case-analysis
and 𝑂(𝑛2) LLS steps suffice to find an optimal solution to LP via path-following. For the affine
scaling steps we note that it requires 𝑂(𝛽−1√𝑛) AS iterations to decrease the duality gap by a factor
of 2. And so with Lemma 6.1.1

ℐ(𝜇/2, 𝜇) =
∫ 𝜇

𝜇/2

Υ(𝜈)
𝜈

d𝜈 ≤
√
𝑛

∫ 𝜇

𝜇/2

1
𝜈

d𝜈 =
√
𝑛 ln(2) = 𝑂(

√
𝑛) . (6.45)

In particular, for 𝑂(𝑛3.5 log(�̄�A + 𝑛)) AS steps we get that the total curvature of the segments
traversed in these steps is 𝑂(𝑛3.5 log(�̄�A + 𝑛)).

To bound the curvature of LLS steps we require the theory from the previous section. Recall the
acceleration on cheap subspaces in the proof of Theorem 6.2.5. As for LLS steps with partition
𝐵 ∪· 𝑁 we have that 𝑉(𝜇) = 𝜋𝑁 (𝑊), the proof gives us immediately that the curvature for an LLS
step is bounded by 𝑂(1).
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In Chapter 4 we have seen an improvement over the [VY96] bound and presented an algorithm
with 𝑂(𝑛2) LLS steps but only �̃�(𝑛2.5 log �̄�∗A)many AS steps. With the reasoning in this chapter
this immediately yields the following theorem.

Theorem 6.3.3. We have that
ℐ(0,∞) = 𝑂(𝑛2.5 log �̄�∗A) . (6.46)
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7 Revisiting Tardos’s Framework for
Linear Programming:

Faster Exact Solutions using Approximate
Solvers

In breakthrough work, Tardos [Tar86] gave a proximity based framework for solving
linear programming (LP) in time depending only on the constraint matrix in the
bit complexity model. In Tardos’s framework, one reduces solving the LP min⟨𝑐, 𝑥⟩,
A𝑥 = 𝑏, 𝑥 ≥ 0, A ∈ Z𝑚×𝑛 , to solving 𝑂(𝑛𝑚) LPs in A having small integer coefficient
objectives and right-hand sides using any exact LP algorithm. This gives rise to an
LP algorithm in time poly(𝑛, 𝑚 logΔA), where ΔA is the largest subdeterminant of A.
A significant extension to the real model of computation was given by Vavasis and
Ye (Math. Prog. ’96), giving a specialized interior point method that runs in time
poly(𝑛, 𝑚, log �̄�A), depending on Stewart’s �̄�A, a well-studied condition number.

In this work, we extend Tardos’s original framework to obtain such a running time
dependence. In particular, we replace the exact LP solves with approximate ones,
enabling us to directly leverage the tremendous recent algorithmic progress for
approximate linear programming. More precisely, we show that the fundamental
“accuracy” needed to exactly solve any LP in A is inverse polynomial in 𝑛 and log �̄�A.
Plugging in the recent algorithm of van den Brand [Bra20], our method computes
an optimal primal and dual solution using 𝑂(𝑚𝑛𝜔+1 log(�̄�A)) arithmetic operations,
outperforming the specialized interior point method of Vavasis and Ye and its recent
improvement by Dadush et al [DHNV20]. By applying the preprocessing algorithm of
the latter paper, the dependence can also be reduced from �̄�A to �̄�∗A, the minimum
value of �̄�AD attainable via column rescalings. Our framework is applicable to achieve
the poly(𝑛, 𝑚, log �̄�∗A) bound using essentially any weakly polynomial LP algorithm,
such as the ellipsoid method.

At a technical level, our framework combines approximate LP solutions to compute
exact ones, making use of constructive proximity theorems—which bound the distance
between solutions of “nearby” LPs—to keep the required accuracy low.

This chapter is based on joint work with Daniel Dadush and László A. Végh [DNV20].
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7.1 Introduction

In this chapter, we consider the task of computing exact primal and dual solutions for linear
programs (LP) in standard form System 1.1.

Here, A ∈ R𝑚×𝑛 , rk(A) = 𝑚 ≤ 𝑛, 𝑑 ∈ R𝑛 , 𝑐 ∈ R𝑛 are given in the input, and 𝑥, 𝑠 ∈ R𝑛 , 𝑦 ∈ R𝑚
are the variables. Standard formulations of linear programs often feature a vector 𝑏 ∈ R𝑚 instead
of the vector 𝑑 ∈ R𝑛 . Such standard formulations can be obtained by setting 𝑏 = A𝑑. On the other
hand, our formulation can be obtained from such a standard formulation by solving a linear system
of the form A𝑑 = 𝑏 to obtain 𝑑.

Informally, the goal is to find an algorithm that uses poly(𝑛) basic arithmetic operations (e.g.,
addition, multiplication, etc.), where each such operation must be performed on numbers of size
polynomial in the instance encoding length. While no such algorithm is known, the search for a
strongly polynomial LP algorithm has spurred tremendous algorithmic advances for many classical
combinatorial problems.

As mentioned in the introduction, strongly polynomial algorithms have indeed been found for
important combinatorial classes of linear programs. Examples include feasibility for two variable
per inequality systems [Meg83], minimum-cost circulations [GT89; Orl93; Tar85], generalized flow
maximization, [OV20; Vég17], and discounted Markov Decision Processes [Ye05; Ye11].

To generalize these results to larger problem classes, a natural attempt is to seek abstract
frameworks that capture known algorithms. In this vein, a recurring principle in strongly
polynomial algorithm design is that “good enough” approximate solutions can be used to glean
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combinatorial information about exact optimal ones. Such information is used to reduce the
underlying instance in a way that preserves all optimal solutions.

This was in fact the key idea in Tardos’s seminal paper on minimum-cost circulations [Tar85]:
solving a problem instance with a suitable rounded cost function reveals an arc that cannot be tight
in any dual optimal solution; consequently, we can fix the flow value to 0. As another example, in
submodular function minimization any sufficiently small norm point in the base polytope can be
used to infer relations in a ring-family containing all minimizers [DVZ18; IFF01].

At a higher level, it can be useful to view strongly polynomial algorithms as reductions from an
exact optimization problem to a suitable approximate version of itself. To achieve fast strongly
polynomial algorithms using these principles, important considerations are the complexity of the
individual approximate solves, e.g., the degree of accuracy required, and the total required number
of them.

Tardos’s Framework for Linear Programming Generalizing the above idea from minimum-cost
flows to general linear programming, Tardos [Tar86] provided such a framework for solving
any standard form primal-dual LP with integer constraint matrix A ∈ Z𝑚×𝑛 using a number of
operations depending only on 𝑛 and the logarithm of ΔA, the maximum absolute value of the
determinant of any square submatrix of A. This algorithm is strongly polynomial for minimum-cost
flow, noting that digraph incidence matrices are totally unimodular, and therefore ΔA = 1. At a
high level, Tardos’s framework reduces getting exact LP solutions to getting exact solutions for
“nearby LPs” with simpler coefficient structure, heavily relying on LP proximity theorems (e.g.,
see [CGST86; Hof52]). More precisely, Tardos reduces computing exact primal-dual solutions
to max ⟨𝑐, 𝑥⟩,A𝑥 = 𝑏, 𝑥 ≥ 0 to computing exact primal-dual solutions to 𝑂(𝑛𝑚) LPs in A with
“rounded” objectives 𝑐′ and right hand sides 𝑏′ having integer coefficients of size 𝑂(𝑛2ΔA). In
particular, after 𝑂(𝑛) such LP solves, one can determine a coefficient 𝑥𝑖 in the support of some
optimal solution, allowing to delete the 𝑥𝑖 ≥ 0 constraint. Due to their small coefficients, the LPs in
the reduction can be solved using any weakly polynomial algorithm. We note that the fundamental
property enabling the polynomial solvability of these rounded LPs is that the minimum non-zero
slack of their basic solutions, i.e., min{ 𝑥𝑖 : 𝑥𝑖 > 0 }, is lower bounded by 1/(𝑛𝑂(1)Δ) by Cramer’s
rule.

Achieving �̄�A dependence While Tardos’s framework is powerful, it inherently relies on the
determinant bound ΔA. This is only applicable for integer constraint matrices; one can obtain
bounds for rational constraint matrices via multiplying by the least common denominator of the
entries, but this leads to weak bounds that are highly volatile under small changes in the entries. A
significant strengthening of [Tar86] was given by Vavasis and Ye [VY96]. They gave an interior
point method (IPM) in the real model of computation based on layered least squares (LLS) steps
that outputs exact primal-dual solutions in 𝑂(𝑛3.5 log(�̄�A + 𝑛)) iterations. Improved iteration
bounds were later given for certain special cases, in particular, 𝑂(

√
𝑛 log(�̄�A + 𝑛)) for homogeneous

conic feasibility [VY95] and 𝑂(𝑛2.5 log(�̄�A + 𝑛)) for LP feasibility [Ye06]. In a conceptual advance,
Vavasis and Ye’s result showed that the polynomial solvability of LP does not require any minimum
non-zero slack assumption.

The condition measure replacing ΔA is Stewart’s �̄�A [Ste89], which for integer matrices satisfies
�̄�A ≤ 𝑛ΔA. In contrast with ΔA that relies on the entry numerics, �̄�A is a geometric measure that
depends only on the kernel of A; Formally, letting 𝑊 ≔ ker(A) and 𝜋𝐼(𝑊) = { 𝑥𝐼 : 𝑥 ∈𝑊 }, one
may define �̄�A ≔ �̄�𝑊 as the minimum number 𝑀 ≥ 1 such that for any ∅ ≠ 𝐼 ⊆ [𝑛] and 𝑧 ∈ 𝜋𝐼(𝑊),
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there exists 𝑦 ∈𝑊 with 𝑦𝐼 = 𝑧 and ∥𝑦∥ ≤ 𝑀∥𝑧∥. In words, it represents the cost of lifting partial
fixings of coordinates into the subspace𝑊 .

Recently, the authors and Huiberts [DHNV20], building on the work of Monteiro and Tsuchiya [MT03;
MT05], gave an improved LLS optimization algorithm and analysis requiring only𝑂(𝑛2.5 log 𝑛 log(�̄�∗A+
𝑛)) iterations, where �̄�∗A is the minimum �̄�A𝐷 over positive diagonal matrices 𝐷 > 0. The paper
[DHNV20] further gave a nearly optimal rescaling algorithm which runs in 𝑂(𝑚2𝑛2 + 𝑛3) time
and computes 𝐷 > 0 satisfying �̄�A𝐷 ≤ 𝑛(�̄�∗A)3. Thus, by suitable preprocessing, any algorithm
achieving �̄�A dependence can be converted into one with �̄�∗A dependence.

A key tool in [DHNV20] is to study the ‘circuit imbalance measure’ 𝜅A. This closely approximates
�̄�A, with log(�̄�A + 𝑛) = Θ(log(𝜅A + 𝑛)), and has very favourable combinatorial properties. Our
approach also relies on 𝜅A and 𝜅∗A, even though we state the results in terms of the better known
�̄�A and �̄�∗A.

Harnessing the progress in approximate solvers The complexity of fast approximate LP algo-
rithms has seen substantial improvements in recent years [Bra20; BTSS20; CLS19; JSWZ21; LS19;
LSZ19]. Taking the recent algorithm [Bra20], given a feasible LP min ⟨𝑐, 𝑥⟩,A𝑥 = 𝑏, 𝑥 ≥ 0, having
an optimal solution of ℓ2 norm at most 𝑅, for 𝜀 > 0 the approximate solver computes a point �̃� such
that A�̃� = 𝑏 satisfying

⟨𝑐, �̃�⟩ ≤ min
A𝑥=𝑏,𝑥≥0

⟨𝑐, 𝑥⟩ + 𝜀 · ∥𝑐∥2 · poly(𝜅A , 𝑛) and ∥ �̃�−∥2 ≤ 𝜀 · poly(𝜅A , 𝑛)∥A−1
𝐵 𝑏∥ , (APX-LP)

for any basis 𝐵 ∈ ℬ(A) in deterministic time 𝑂(𝑛𝜔 log(𝑛/𝜀)), where 𝜔 < 2.38 is the matrix
multiplication exponent.

Tardos’s framework requires an exact black box solver for systems with the same matrix A but
replacing 𝑏 and 𝑐 by small integer vectors. It is possible to use the approximate solver (APX-LP)
to obtain exact optimal solution for integer matrices for sufficiently small 𝜀. Assume A ∈ Z𝑚×𝑛 ,
𝑏 ∈ Z𝑚 , 𝑐 ∈ Z𝑛 and ∥𝑏∥∞ , ∥𝑐∥∞ ≤ 𝑛𝑂(1)Δ𝑡 , and let OPT denote the optimum value of (1.1). We may
call (1.1) in a suitable extended system with 𝜀 = 1/

(
𝑛𝑂(1)Δ𝑂(𝑡)A

)
, and use a Carathéodory reduction

to identify primal and dual optimal basic solutions. Integrality is used in multiple parts of such
a reduction: e.g., for establishing a bound 𝑅 = 𝑛𝑂(1)Δ𝑂(𝑡)A from Cramer’s rule, and for showing
that for any primal feasible solution 𝑥, ⟨𝑐, 𝑥⟩ < OPT implies ⟨𝑐, 𝑥⟩ < OPT − 𝜀∥𝑐∥2𝑅. For a matrix
A ∈ R𝑚×𝑛 , we cannot obtain an exact solver by applying the approximate solver for high enough
accuracy in terms of the condition numbers �̄�A or 𝜅A. This is the main reason why we cannot
work with explicitly rounded systems, but require a more flexible approach. Let us also note that
recovering an exact solution from the approximate solver comes at a high arithmetic cost that we
can save if using the approximate solution directly.

Fast algorithms with �̄�A dependence The layered least squares interior point methods discussed
above represent substantial advances in the strongly polynomial solvability of LP, yet it is highly
non-obvious how to combine these techniques with those of recent fast LP solvers. For example,
for the results of [BTSS20; LS19], one would have to develop analogues of LLS steps for weighted
versions of the logarithmic barrier. Furthermore, the proofs of exact convergence are intricate and
deeply tied to the properties of the central path, and may leave one wondering whether the �̄�A

solvability of LP is due to “IPM magic”. It would therefore be desirable to have an elementary
proof of the �̄�A solvability of LP.

Partial progress on this question was given by Ho and Tunçel [HT02], who generalized Tardos’s
framework in the real number model. Firstly, they showed that one can still round instances to have
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minimum non-zero slack 𝜏A > 0, depending only on A. Second, they showed that using a blackbox
approximate LP solver, these rounded instances can be solved poly(𝑛, log 𝜏A , log(ΔA/𝛿A)) time,
where 𝛿A is the absolute value of the minimum non-zero determinant of any square submatrix of
A. Here, they prove the relation �̄�A ≤ 𝑛ΔA/𝛿A and note that ΔA/𝛿A can be arbitrarily larger than
�̄�A. Lastly, they provide a different algorithm that removes the dependence on 𝜏A, assuming one
has access to the VY algorithm as a subroutine only on instances with 𝑏 ∈ {±1, 0}𝑚 , 𝑐 ∈ {0,±1}𝑛 .

7.1.1 Our Contributions

As our main contribution, we provide a substantially improved Tardos style framework for LP
which achieves both �̄�A dependence and relies only on approximate LP solves: we use the
output (APX-LP) of the approximate LP solvers in a black-box manner. Our main result using
the deterministic solver in [Bra20] is summarized below. The more precise technical statements
generalized to non-deterministic solvers are given as Theorem 7.5.2 for feasibility and Theorem 7.6.2
for optimization.

The system (7.14) is an extended system used for initialization.

Theorem 7.1.1 (Enhanced Tardos Framework for Feasibility). Assume we are given a feasibility LP
A𝑥 = 𝑏, 𝑥 ≥ 0 with data A ∈ R𝑚×𝑛 , rank(A) = 𝑚, and 𝑏 ∈ R𝑚 .

(i) If the primal program is feasible, then one can find a feasible solution 𝑥 using 𝑂(𝑚) approximate LP
solves (APX-LP) with accuracy 𝜀 = 1/(𝑛�̄�A)𝑂(1), on extended systems of the form (Init-LP), together
with additional 𝑂(𝑚𝑛𝜔) arithmetic operations. This gives a total complexity 𝑂(𝑚𝑛𝜔 log(�̄�A)) using
the solver of van den Brand [Bra20].

(ii) If the primal program is infeasible, then a Farkas certificate of infeasibility 𝑦 ∈ R𝑚 , satisfying A⊤𝑦 ≥ 0,
⟨𝑏, 𝑦⟩ < 0 can be found using the amount of computation as in (i), and 𝑂((𝑛𝑚2 + 𝑛𝜔) log log(�̄�A))
additional arithmetic operations.

Next, we state our result for optimization:

Theorem 7.1.2 (Enhanced Tardos Framework for Optimization). Assume we are given primal-dual (1.1)
with data A ∈ R𝑚×𝑛 , rank(A) = 𝑚, 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 .

(i) If both primal and dual programs are feasible, then one can obtain an optimal primal-dual pair (𝑥, 𝑦, 𝑠)
of solutions, using at most 𝑂(𝑛𝑚) approximate LP solves (APX-LP) as in Theorem 7.1.1(i), together
with an additional𝑂(𝑚𝑛𝜔+1) arithmetic operations. This gives a total complexity𝑂(𝑚𝑛𝜔+1 log(�̄�A))
using [Bra20].

(ii) If either of the primal or dual programs are infeasible, then we can obtain a Farkas certificate of
primal or dual infeasibility in the same running time as in (i), plus 𝑂(𝑛3𝑚2 log log(�̄�A)) additional
arithmetic operations.

This theorem yields the first LP algorithm achieving �̄�A dependence that is not based of the
analysis of the central path. At a high level, we achieve this by more deeply exploiting the power
of LP proximity theorems, which are already at the core of Tardos’s framework. In the rest of
this section, we explain some of the key ideas behind the above theorem and how it compares to
Tardos’s original algorithm as well as that of Vavasis and Ye.
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Overview of the approach Both Tardos’s and our approach use variants of Hoffman’s proximity
bounds, see Section 3.5. The fundamental difference is that while Tardos uses an exact solver where
the perturbed objective and right hand side vectors are fixed in advance before calling the solver,
we decide these perturbations “on the fly” as a function of the returned approximate solutions we
receive.

Let us illustrate Tardos’s and our approaches on the dual feasibility LP

A⊤𝑦 + 𝑠 = 𝑐, 𝑠 ≥ 0 . (𝐷)

The feasibility algorithm in [Tar85] proceeds as follows. Define 𝑏𝑖 =
∑𝑛
𝑖=1(ΔA + 1)𝑖−1𝑎𝑖 , where 𝑎𝑖 is

the 𝑖-th column vector of A, and consider the primal system

min ⟨𝑐, 𝑥⟩ s.t. A𝑥 = 𝑏 , 𝑥 ≥ 0 . (�̃�)

Note that by the choice of 𝑏, this system is always feasible. If it is unbounded, then we may
conclude infeasibility of (𝐷). The reason for the particular choice of 𝑏 is that whenever the system
is bounded, the dual of (�̃�) has a unique optimal solution; this can be shown by a determinant
argument. Consequently, for any optimal solution 𝑥∗ to (�̃�) and 𝑆∗ = supp(𝑥∗), the system 𝑎⊤

𝑖
𝑦 = 𝑐𝑖 ,

𝑖 ∈ 𝑆∗ yields a feasible solution to (𝐷). The exact LP solver will be applied to a series of rounded
problem instances of the form

min ⟨𝑐, 𝑥⟩ s.t. A𝑥 = 𝑏 , 𝑥 ≥ 0 , 𝑥𝑇 = 0 , (�̂�)

where 𝑐 ∈ Z𝑛 , ∥𝑐∥∞ ≤ 𝑛2ΔA, and 𝑇 ⊆ [𝑛] is a set of indices 𝑖 where we have already concluded that
𝑥∗
𝑖
= 0 in every optimal solution to (�̃�). This is initialized as 𝑇 = ∅, and every call to the LP solver

enables the addition of at least one new index; thus, we need 𝑂(𝑛) oracle calls to solve feasiblity.
According to the definition of 𝑏, this is an integer vector with ∥𝑏∥ = Θ(

√
𝑚Δ𝑛A). As explained above,

we can obtain an exact solution to (�̂�) by calling (APX-LP) for accuracy 𝜀 = 1/
(
𝑛𝑂(1)Δ̃𝑂(𝑛)A

)
.

To conclude that 𝑖 ∈ 𝑇 for some 𝑖 ∈ [𝑛], Tardos uses a proximity theorem that is a variant of
Lemma 3.5.5. It implies that if ∥𝑐 − 𝑐∥∞ is “small”, then (�̃�) has a dual optimal solution that is
“close” to the dual optimal solution obtained for (�̂�).

In contrast, our approach in Section 7.5 proceeds as follows. If 𝑐 ≥ 0, we simply return 𝑠 = 𝑐.
Otherwise, the norm of the negative coordinates ∥𝑐−∥1 will play a key role. We can strengthen (𝐷)
by adding a constraint of the form

∥𝑠 − 𝑐∥∞ ≤ 𝑝(𝜅A , 𝑛)∥𝑐−∥1 , (7.1)

where 𝜅A is the circuit imbalance measure; for integer matrices 𝜅A ≤ ΔA and 𝑝(𝜅A , 𝑛) = poly(𝜅A , 𝑛)
is some polynomial. A proximity result (Corollary 3.5.2) implies that whenever (𝐷) is feasible,
there is a feasible solution also satisfying (7.1).

We can use (APX-LP) directly to obtain a solution (�̃� , 𝑠) such that A⊤ �̃� + 𝑠 = 𝑐, ∥𝑠 − 𝑐∥∞ ≤
1
2 𝑝(𝜅A , 𝑛)∥𝑐−∥1, and ∥𝑠−∥∞ ≤ 𝜀∥𝑐−∥1 for 𝜀 = 1/𝑂(𝑛4𝜅4

A). Again, note that in addition to approxi-
mate feasiblity, we also require proximity of 𝑠 to 𝑐; we can obtain such a solution with this extra
property without an increase in the running time cost.

From here, we can identify a set 𝐾 of coordinates such that 𝑠𝑖 is large enough to conclude that
there exists a feasible solution 𝑠 to (𝐷) with 𝑠𝑖 > 0 for 𝑖 ∈ 𝐾; this is done similarly as in Tardos’s
approach.
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We project out all variables in 𝐾, meaning that we remove the inequalities 𝑎⊤
𝑖
𝑦 + 𝑠𝑖 = 𝑐𝑖 for 𝑖 ∈ 𝐾

from the system. We recurse on the smaller subsystem. From the recursive call, we obtain a feasible
solution 𝑦′ to (𝐷) in the smaller system that also satisfies (7.1). The proximity constraints enables
us to easily map back 𝑦′ to a feasible solution 𝑦 to (𝐷) by a simple ‘pullback’ operation.

As noted above, the very existence of an exact LP oracle heavily relies on the integrality
assumption of A. This integrality is also used to establish the relation between the optimal solutions
of (�̃�) and the solutions of (𝐷), using a determinant argument. In contrast, the proximity arguments
as in Lemma 3.5.5 and Corollary 3.5.2 do not rely on integrality; we can use here 𝜅A instead of ΔA.

Even for integer matrices and 𝜅A = Θ(ΔA), and using the same solver for (APX-LP), our algorithm
is faster by a factor Ω(𝑛2/𝑚). A key ingredient in the running time improvement is to strengthen
the system with (7.1). This allows us to use 𝜀 = 1/(𝑛𝑂(1)𝜅𝑂(1)A ); otherwise, we would need to require
a higher precision 𝜀 = 1/(𝑛𝑂(1)𝜅𝑂(𝑛)A ). This yields a factor 𝑛 improvement over [Tar85].

Another factor 𝑛/𝑚 improvement is obtained as follows. In the approach sketched above, if the
set of “large” coordinates 𝐾 is nonempty, we get a bound 𝑛 on the number of recursive calls. Using
a slightly more careful recursive setup, we can decrease the rank of the system at each iteration,
improving this bound to 𝑚.

Let us now turn to optimization. Our algorithm will be more similar to the one in [Tar85], and
for integer matrices with 𝜅A = Θ(ΔA) and 𝑚 = Ω(𝑛), the asymptotic running time bounds will be
the same.

We now outline Tardos’s approach. Given an optimization problem (1.1), we first check for both
primal and dual feasibility. If these are both feasible, then we go through ≤ 𝑚 main loops. In
each main loop, we use the same approach as above to solve (�̃�) with a perturbed 𝑏 ∈ Z𝑚 with
∥𝑏∥∞ ≤ 𝑛2ΔA. Using ≤ 𝑛 oracle calls, we obtain optimal primal and dual solutions (𝑥, 𝑦, 𝑠). Again,
proximity guarantees that if 𝑏 is “close” to 𝑏, then we can identify an index 𝑖 with a “large” 𝑥𝑖 > 0
where we can conclude 𝑠∗

𝑖
= 0 in every optimal solution. Equivalently, 𝑥𝑖 is in the support of some

optimal solution, and hence we may delete the constraint 𝑥𝑖 ≥ 0, and proceed to the next main
loop after projecting out the variable 𝑥𝑖 . We note that the bound 𝑛 on the inner loops is in reality
𝑛 − 𝑚, and this can be improved to 𝑚 by swapping the primal and dual sides.

In our approach in Section 7.6, the goal is to end up in the same place as Tardos at the end of the
main loop, where the difference will be how we get there. As mentioned above, in Tardos’s setting,
one already knows beforehand that the final objective and right hand side for which one will have
optimal primal-dual solutions will be 𝑏, a rounded version of 𝑏, and the original 𝑐. However, the
only important property is that at the end of the loop we end up with a primal-dual optimal pair for
the original objective 𝑐, and some right hand side 𝑏′ close enough to the original 𝑏. In particular, 𝑏′

need not be known at the beginning of the algorithm and can thus be chosen adaptively depending
on the outcome of the approximate LP solves.

For the above purpose, we utilize proximity theorems (see Section 3.5 for precise statements)
to allow us to stitch together the “large” coordinates of approximate dual solutions to achieve
feasibility. At the same time, we perform a similar complementary stitching of primal approximate
solutions, where we judiciously perturb “small” coordinates to 0, inducing a corresponding change
of right hand side, to enforce complementarity with the dual solution. Here proximity allows us to
control how much the solutions will change in future iterations, which is crucial to not destroying
the structure of the solutions built so far.

We also note that Grötschel, Lovász, and Schrĳver [GLS12, Theorem 6.6.3] give a different proof
for Tardos’s result using simultaneous Diophantine approximation (see also [FT87]). This shows
that LP can be solved by creating a single perturbed instance with integer 𝑏 and 𝑐 bounded in
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terms of the encoding length of A such that the set of optimal bases coincide in the two systems.
The perturbed instance can be solved in poly(𝑛, 𝑚, logΔA); we simply take an optimal basis and
compute the corresponding primal and dual optimal solutions for the original 𝑏 and 𝑐. However,
this reduction inherently relies on integrality arguments.

Comparison to layered least squares IPM methods To setup a comparison, we first recall that
standard log-barrier based IPMs follow the central path { (𝑥(𝜇), 𝑠(𝜇), 𝑦(𝜇)) : 𝜇 > 0 } defined by the
equations 𝑥𝑖(𝜇)𝑠𝑖(𝜇) = 𝜇, ∀𝑖 ∈ [𝑛], together with feasibility for (1.1). 𝜇 represents the normalized
duality gap and (𝑥𝜇 , 𝑦𝜇 , 𝑠𝜇) converges to optimal solutions as 𝜇→ 0. The number of calls to the
approximate LP solver above can be usefully compared to the number of so-called disjoint crossover
events on the central path used in the analysis of the Vavasis–Ye algorithm [VY96]. A crossover
event occurs for a pair of distinct indices (𝑖 , 𝑗) between the times 𝜇1 < 𝜇0, if 𝑥𝑖(𝜇0)�̄�𝑛A ≥ 𝑥 𝑗(𝜇0) and
for all times 𝜇′ < 𝜇1, 𝑥 𝑗(𝜇0) > 𝑥𝑖(𝜇0). In words, an (𝑖 , 𝑗) crossover happens between time 𝜇0 and
𝜇1 if the variables 𝑥𝑖 , 𝑥 𝑗 are “close” to being in the wrong order at time 𝜇0 and are in the correct
order at all times after 𝜇1. The Vavasis and Ye LLS step was in fact designed to ensure that a new
cross-over event occurs a “short time” after the step, i.e., sometime before 𝜇/�̄�𝑛A if the step ends
at 𝜇. From here, it is obvious that the number of distinct crossover events, i.e., on a new pair of
indices, is bounded by

(𝑛
2
)
.

The approximate LP solves in our algorithm have the effect of inducing similar crossover type
events, though this number is 𝑂(𝑚𝑛) instead of 𝑂(𝑛2). Precisely, after each LP solve, we are
able identify two non-empty disjoint subsets of variables 𝐼 , 𝐽 ⊆ [𝑛], such that at least one of the
variables 𝑥 𝑗 , 𝑗 ∈ 𝐽, will end up being substantially larger than all the variables 𝑥𝑖 , 𝑖 ∈ 𝐼 in the final
optimal solution. Lastly, the accuracy requirement of 𝜀 = 1/(𝑛�̄�A)𝑂(1) for each LP solve is in a sense
analogous to moving down the central path by that amount. We note that [DHNV20] gave an
improved analysis of the Vavasis and Ye algorithm, showing that on “average” one sees Ω(1/log 𝑛)
(slightly different) crossover events after (𝑛�̄�A)𝑂(1) time units, which is slightly worse than what
we achieve here per approximate LP solve.

Failure will be certified Our algorithm requires an estimate on the circuit imbalance parameter
𝜅A. This is a common assumption shared by most previous literature: Tardos’s algorithm uses
an estimate of ΔA; Vavasis and Ye require a bound on �̄�A. These parameters are hard to compute
[Kha95a; Tun99]. However, knowing these values is not required, and we can use the following
simple guessing procedure, attributed to J. Renegar in [VY96]. We start with a low guess on �̄�A (or
some other parameter), say 𝑀 = 2. If the algorithm fails to return the required solution, then we
conclude that the estimate was too low, and replace the guess 𝑀 by 𝑀2. Thus, we can still obtain a
dependence on log(�̄�A + 𝑛), without knowing the value.

A new aspect of our algorithm is that in case of a failure, we do not simply conclude that our
estimate was too low indirectly from the failure of the algorithm, but we also obtain an explicit
certificate. Namely, an elementary operation is to compute lifts mentioned previously: for the subset
𝑊 = ker(A), an index set 𝐼 ⊆ [𝑛], and a vector 𝑦 ∈ 𝜋𝐼(𝑊), we compute the minimum-norm vector
𝑧 ∈𝑊 such that 𝑧𝐼 = 𝑦. Our parameter 𝜅A satisfies ∥𝑧∥∞ ≤ 𝜅A∥𝑦∥1 (Proposition 3.3.7). Whenever
our algorithm fails due to underestimating 𝑀 < 𝜅A, this will be certified by an index set 𝐼 ⊆ [𝑛]
and a vector 𝑦 ∈ 𝜋𝐼(𝑊), and lift 𝑧 with ∥𝑧∥∞ > 𝑀∥𝑦∥1.
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7.1.2 Organization

In Section 7.2, we recall the subspace formulation of LP and review important properties of
the condition numbers �̄�A and its combinatorial cousin, the circuit imbalance measure 𝜅A. In
Section 3.5, we gave an overview of existing and presented new LP proximity results, based on
Hoffman type bounds. In Section 7.3, we present a constructive strongly polynomial time variant
of Hoffman’s proximity theorem, which will be useful for extracting Farkas infeasibility certificates
from approximate solutions. In Section 7.4, we review the current state of the art approximate LP
solvers and state our main theorems for extracting the solutions we need from these solvers in
both the feasibility and optimization context, Theorems 7.4.6 and 7.4.7 respectively. The proofs of
these theorems are deferred to Section 7.7, where we also describe the LP extended system we use
System 7.14. In Section 7.5, give the describe our framework for LP feasibility, and in Section 7.6
our framework for LP optimization.

7.2 Preliminaries

For a matrix A ∈ R𝑚×𝑛 , recall the condition number �̄� defined as

�̄�A ≔ sup
{A⊤

(
ADA⊤

)−1AD
 : 𝐷 ∈ 𝔇

}
= sup

{
∥A⊤𝑦∥
∥𝑝∥ : 𝑦 minimizes

D1/2(A⊤𝑦 − 𝑝)
 for some 0 ≠ 𝑝 ∈ R𝑛 and D ∈ 𝔇

}
.

(7.2)

It is important to note that �̄�A only depends on the subspace 𝑊 = ker(A). Hence, we can
also write �̄�𝑊 for a subspace𝑊 ⊆ R𝑛 , defined to be equal to �̄�A for some matrix 𝐴 ∈ R𝑘×𝑛 with
𝑊 = ker(A). We will use the notations �̄�A and �̄�𝑊 interchangeably. We studied several more
properties of �̄� in Chapter 3.

Recall the definition of the lifting map 𝐿𝑊
𝐼

: 𝜋𝐼(𝑊) →𝑊 by

𝐿𝑊𝐼 (𝑝) = arg min{ ∥𝑧∥ : 𝑧𝐼 = 𝑝, 𝑧 ∈𝑊 }.

The affine subspace condition number We will now introduce condition numbers related to �̄�.
They are going to be needed in the analysis of the optimization algorithm (Algorithm 7.2). For a
subspace𝑊 ⊆ [𝑛] and a vector 𝑑 ∈ R𝑛 we define

𝜒𝑊 (𝑑) ≔ max
{
∥𝑥𝐵1 − 𝑥𝐵2 ∥ : 𝑥𝐵𝑖 ∈𝑊 + 𝑑, ∃𝐵𝑖 ∈ ℬ𝑊 s.t. supp(𝑥𝐵𝑖 ) ⊆ 𝐵𝑖 for 𝑖 = 1, 2

}
(7.3)

Note that we have that

𝜒𝑊 (𝑑) ≤ max
{
∥𝑥𝐵1 ∥ + ∥𝑥𝐵2 ∥ : 𝑥𝐵𝑖 ∈𝑊 + 𝑑, ∃𝐵𝑖 ∈ ℬ𝑊 s.t. supp(𝑥𝐵𝑖 ) ⊆ 𝐵𝑖 for 𝑖 = 1, 2

}
≤ 2�̄�∥Π𝑊⊥(𝑑)∥ .

(7.4)

Proposition 7.2.1. Given a subspace 𝑊 ⊆ R𝑛 , a vector 𝑑 ∈ R𝑛 and coordinates 𝐼 ⊆ [𝑛] such that
supp(𝑑) ⊆ 𝐼. Then, we have 𝜒𝑊 (𝑑) ≥ 𝜒𝑊𝐼

(𝑑𝐼).

Proof. Any two bases 𝐵1 , 𝐵2 ∈ ℬ(𝑊𝐼)with corresponding basic solution 𝑥𝐵1 , 𝑥𝐵2 ∈𝑊𝐼 + 𝑑𝐼 can be
extended to a bases 𝐵1 , 𝐵2 ∈ ℬ(𝑊) with corresponding basic solutions 𝑥𝐵1 = (𝑥𝐵1 , 0[𝑛]\𝐼), 𝑥𝐵2 =

(𝑥𝐵2 , 0[𝑛]\𝐼) such that 𝑥𝐵1 , 𝑥𝐵2 ∈𝑊 + 𝑑. □
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Definition 7.2.2 (Robust lifts). Given a subspace𝑊 ⊆ R𝑛 , vector 𝑑 ∈ R𝑛 , 𝑑 ∉𝑊 and 𝜀 > 0, we define
the robust condition number

�̃�𝑊 (𝑑, 𝜀) ≔ sup
𝑥∈𝑊+𝑑

{ 𝜒𝑊 (�̃�) : ∥ �̃� − 𝑥∥ ≤ 𝜀 } . (7.5)

We have that �̃�𝑊 (𝑑, ·) is monotonically increasing in the second argument and �̃�𝑊 (𝑑, 0) = 𝜒𝑊 (𝑑).

Proposition 7.2.3 (Robust lifts under trivial subspaces). Given a subspace 𝑊 ⊆ R𝑛 , vector 𝑑 ∈ R𝑛 ,
𝜀 > 0 and some 𝐼 ⊊ [𝑛] such that 𝜋𝐼(𝑊) = {0}, then for 𝐽 ≔ [𝑛] \ 𝐼 we have

�̃�𝑊 (𝑑, 𝜀) = �̃�𝜋𝐽 (𝑊)(𝑑𝐽 , 𝜀) . (7.6)

Proof. We have

�̃�𝑊 (𝑑, 𝜀) = sup
𝑥∈𝑊+𝑑

{ 𝜒𝑊 (�̃�) : ∥ �̃� − 𝑥∥ ≤ 𝜀 }

= sup
𝑥∈𝑊+𝑑

{
𝜒𝜋𝐽 (𝑊)(�̃�𝐽) : ∥ �̃� − 𝑥∥ ≤ 𝜀

}
= sup
𝑥𝐽∈𝜋𝐽 (𝑊)+𝑑𝐽

{
𝜒𝜋𝐽 (𝑊)(�̃�𝐽) : ∥ �̃�𝐽 − 𝑥𝐽 ∥ ≤ 𝜀

}
= �̃�𝜋𝐽 (𝑊)(𝑑𝐽 , 𝜀) . □

The estimate 𝑀 and lifting certificates The value of 𝜅𝑊 and �̄�A may not be known. In fact, these
are hard to approximate even within a factor 2poly(𝑚) [Tun99]. Throughout our algorithms, we
maintain a guess 𝑀 on the value of 𝜅𝑊 , initialized as 𝑀 = 1. At certain points in the algorithm, we
may find an index set 𝐼 ⊆ [𝑛] and a vector 𝑝 ∈ 𝜋𝐼(𝑊) such that ∥𝐿𝑊

𝐼
(𝑝)∥∞ > 𝑀∥𝑝∥1. In this case,

we conclude that 𝑀 < 𝜅 by Proposition 3.3.7. Such a pair (𝐼 , 𝑝) is called a lifting certificate of 𝑀 < 𝜅.
We can then restart the algorithm with an updated estimate 𝑀 ← max

{
2∥𝐿𝑊

𝐼
(𝑝)∥∞/∥𝑝∥1 , 𝑀2}.

We formally define the set of lifting certificates

Definition 7.2.4 (Lifting certificates). For a subspace𝑊 ⊆ R𝑛 and a number 𝑀 ≥ 1 we define the set of
lifting certificates ℭ(𝑊,𝑀) as

ℭ(𝑊,𝑀) ≔
{
(𝐼 , 𝑝) ∈ 2[𝑛] ×R𝑛 : 𝑝 ∈ 𝜋𝐼(𝑊), ∥𝐿𝑊𝐼 (𝑝)∥∞ > 𝑀∥𝑝∥1

}
. (7.7)

Definition 7.2.5 (Farkas certificates). For a subspace𝑊 ⊆ R𝑛 and a vector 𝑑 ∈ R𝑛 we define the set of
Farkas certificates 𝔉(𝑊, 𝑑) as

𝔉(𝑊) ≔
{
𝑣 ∈𝑊⊥ : 𝑣 ≥ 0, ⟨𝑣, 𝑑⟩ < 0

}
. (7.8)

Note, that 𝐿𝑃(A, 𝑑, ·) is primally feasible if and only if 𝔉(ker(A), 𝑑) = ∅.

Remark 7.2.6. During the algorithm, we project out variable sets 𝐽 ⊂ [𝑛] and work recursively with the
space𝑊 ′ ≔ 𝜋[𝑛]\𝐽(𝑊). A lifting certificate for𝑊 ′ is then a pair (𝐼 , 𝑝) with 𝐼 ⊂ [𝑛] \ 𝐽, 𝑝 ∈ R𝐼 , such that
∥𝐿𝑊′

𝐼
(𝑝)∥∞ > 𝑀∥𝑝∥1. While Proposition 3.2.17 already certifies that the guess 𝑀 is wrong for 𝑊 , it is

unsatisfactory that the obtained certificate holds for a different space. But it is easy to see that the certificate
still holds up to a factor of

√
𝑛 also for the original space 𝑊 : Let �̂� ∈ 𝑊 be an arbitrary vector such that

𝑝[𝑛]\𝐼 = 𝐿𝑊
′

𝐼
(𝑝). Then

√
𝑛∥𝐿𝑊𝐼 (𝑝)∥∞ ≥ ∥𝐿

𝑊
𝐼 (𝑝)∥ ≥ ∥[𝐿

𝑊
𝐼 (𝑝)][𝑛]\𝐽 ∥ ≥ ∥𝐿

𝑊′
𝐼 (𝑝)∥ ≥ ∥𝐿

𝑊′
𝐼 (𝑝)∥∞ > 𝑀∥𝑝∥1.
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In particular, the inequality above shows ∥𝐿𝑊
𝐼
(𝑝)∥ > 𝑀∥𝑝∥1 ≥ 𝑀∥𝑝∥, so (𝐼 , 𝑝) is a certificate for𝑊 in the

classical ℓ2-norm. For ease of presentation we disregard this detail in the remainder of the chapter.

Fact 7.2.7. Given a subset 𝐼 ⊆ [𝑛] and an instance of Primal(𝑊, 𝑑, ·). A certificate of primal feasibility 𝑦
of the subsystem Primal(𝜋𝑊 , 𝑑𝐼 , ·) extends canonically to a certificate of primal infeasibility (0[𝑛]\𝐼 , 𝑦) of
Primal(𝑊, 𝑑, ·). In particular,{

(0[𝑛]\𝐼 , 𝑧) : 𝑧 ∈ 𝔉(𝜋𝐼(𝑊), 𝑑, 𝑐)
}
⊆ 𝔉(𝑊, 𝑑, 𝑐). (7.9)

Optimal rescalings For every 𝐷 ∈ 𝔇, we can consider the condition numbers �̄�𝑊𝐷 = �̄�𝐴𝐷−1 and
𝜅𝑊𝐷 = 𝜅𝐴𝐷−1 . We let

�̄�∗𝑊 = �̄�∗A = inf{�̄�𝑊𝐷 : 𝐷 ∈ 𝔇}
𝜅∗𝑊 = 𝜅∗A = inf{𝜅𝑊𝐷 : 𝐷 ∈ 𝔇}

denote the best possible values of �̄� and 𝜅 that can be attained by rescaling the coordinates of𝑊 .
Recall that a near-optimal rescaling can be found in strongly polynomial time.

Theorem 7.2.8 ([DHNV20]). There is an 𝑂(𝑛2𝑚2 + 𝑛3) time algorithm that for any matrix A ∈ R𝑚×𝑛
and𝑊 = ker(A), computes a value 𝑡 such that

𝑡 ≤ �̄�𝑊 ≤ 𝑡(�̄�∗𝑊 )
2

and a 𝐷 ∈ 𝔇 such that
𝜅𝑊𝐷 ≤ (𝜅∗𝑊 )

3 and �̄�𝑊𝐷 ≤ 𝑛(�̄�∗𝑊 )
3 .

As a consequence, after using this preprocessing step, any algorithm that has running time
dependence on log(𝜅𝑊 + 𝑛) is turned into an algorithm with dependence on log(𝜅∗

𝑊
+ 𝑛). We note

however that for small values of log(𝜅𝑊 + 𝑛), this preprocessing may turn out to be a bottleneck
operation for our feasibility algorithm.

7.2.1 Treewidth

The following definitions are taken from [DLY21]. We simplify the notation as theirs handles
general block-structured matrices A. We essentially consider the special case where every block
has size 1.

Definition 7.2.9 (Dual Graph of a Matrix). The dual graph of matrix A ∈ R𝑚×𝑛 with is the undirected
graph 𝐺A = (𝑉, 𝐸) with 𝑉 = [𝑚], and {𝑖 , 𝑗} ∈ 𝐸 if and only if A𝑖 ,𝑟 ≠ 0 and A𝑗 ,𝑟 ≠ 0 for some 𝑟 ∈ [𝑛].

Definition 7.2.10 (Tree decomposition). A tree-decomposition of a graph 𝐺 is a pair (𝑋, 𝑇), where 𝑇 is
a tree, and 𝑋 : 𝑉(𝑇) → 2𝑉(𝐺) is a family of subsets of 𝑉(𝐺) called bags labelling the vertices of 𝑇, such that

1.
⋃
𝑡∈𝑉(𝑇) 𝑋(𝑡) = 𝑉(𝐺),

2. for each 𝑣 ∈ 𝑉(𝐺), the nodes 𝑡 ∈ 𝑉(𝑇) with 𝑣 ∈ 𝑋(𝑡) induce a connected subgraph of 𝑇, and

3. for each 𝑒 = {𝑢, 𝑣} ∈ 𝐸(𝐺), there exists a node 𝑡 ∈ 𝑉(𝑇) such that {𝑢, 𝑣} ⊆ 𝑋(𝑡).

The width of a tree-decomposition (𝑋, 𝑇) is defined to be max{ |𝑋(𝑡)| − 1 : 𝑡 ∈ 𝑇 }.

Definition 7.2.11 (Treewidth). The treewidth tw of 𝐺 is the minimum width over all tree-decompositions
of 𝐺. Intuitively, the treewidth of a graph captures how close the graph is to being a tree. We denote by tw(A)
the treewidth of the dual graph 𝐺A of A.
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7 BLACKBOX SOLVERS 7.3 Constructive proximity algorithms

7.3 Constructive proximity algorithms

System 7.1. Sign-Consistent-Circuit

Data: A pair (𝑊, 𝑦), where𝑊 ⊆ R𝑛 is a subspace, 𝑦 ∈𝑊 .

Task: Find a vector 𝑧 ∈𝑊 that is sign-consistent with 𝑦 and such that supp(𝑧) ∈ 𝒞(𝑊).

We let 𝒞𝒟(𝑊, 𝑦) denote the set of sign-consistent circuit decompositions of a vector 𝑦 in a
subspace𝑊 .

System 7.2. Sign-Consistent-Circuit-Decomposition

Data: A pair (𝑊, 𝑦), where𝑊 ⊆ R𝑛 is a subspace, 𝑦 ∈𝑊 .

Task: Find a sign-consistent circuit decomposition of 𝑦, i.e., an element in 𝒞𝒟(𝑊, 𝑦).

We begin this section with two basic lemmas.

Lemma 7.3.1. Sign-Consistent-Circuit can be implemented in time 𝑂(𝑛𝒯 (𝔏(A))) if 𝑊 = ker(A) or
𝑊 = im(A⊤).

Proof. A basis 𝐵 of A such that 𝐵 ∩ supp(𝑦) is maximized, can be found within 𝑛 linear system
solves with matrix A. Given a basis 𝐵 ∈ ℬ(A), one can solve the linear system A𝐵𝑥 = A𝑖 for
some 𝑖 ∈ supp(𝑦) \ 𝐵. Let 𝑥 be the solution. Then we can augment 𝑦 by a scalar multiple 𝛼 of 𝑥
such that the vector 𝑦′ ≔ 𝑦 − 𝛼𝑥 is sign-consistent with 𝑦 and has strictly smaller support than 𝑦,
i.e., supp(𝑦′) ⊊ supp(𝑦). Repeat this procedure with a new basis 𝐵′ of A which can be found by
pivoting within a single linear system solve until 𝑦′ is supported on a circuit, i.e., supp(𝑦′) ∈ 𝒞(𝑊).
This gives an overall 𝑂(𝑛) linear system solves. An analogous algorithm can be implemented for
im(A⊤). □

Lemma 7.3.2. There is an algorithm for System 7.2 that runs in time 𝑂(𝑛2𝒯 (𝔏(A))) if 𝑊 = ker(A) or
𝑊 = im(A⊤).

Proof. We repeatedly invoke a solver to System 7.1 to find a vector 𝑔 ∈𝑊 , supp(𝑔) ∈ 𝒞(𝑊) that is
sign-consistent with 𝑦 and set 𝑦′ ≔ 𝑦 − 𝛼𝑔, where 𝛼 is chosen such that 𝑦′ is sign-consistent with 𝑦
and has strictly smaller support than 𝑦. We invoke System 7.1 at most 𝑛 times. With Lemma 7.3.1
this gives a total of 𝑂(𝑛2) linear system solves. □

In this section, we give an algorithmic implementation of the Hoffman Proximity Theorem
(Theorem 3.5.1), assuming that a feasible solution is already given: we obtain another feasible
solution in strongly polynomial time that also satisfies the proximity bounds.

This can be derived from a ‘Carathéodory-type’ algorithm that we present in a more general
form, as it may be of independent interest. We present the algorithm in two stages, with a basic
subroutine in Lemma 7.3.3, and the main algorithm described in Lemma 7.3.4.
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7 BLACKBOX SOLVERS 7.3 Constructive proximity algorithms

System 7.3. Hoffman-proximity-1

Data: A tuple (A, 𝑦, 𝐽 , 𝑀)with A ∈ R𝑚×𝑛 , 𝑦 ∈ ker(A), 𝐽 ⊆ [𝑛], 𝑀 ≥ 1 and let𝑊 = ker(A).

Task: Find one of the following:

1. A vector 𝑧 ∈𝑊 , such that 𝑧 is sign-consistent with 𝑦, ∥𝑧 − 𝑦∥∞ ≤ 𝑀∥𝑦𝐽 ∥1, and 𝑧𝐽 = 0,

2. A pair (𝐼 , 𝑝) ∈ ℭ(𝑊,𝑀).

We denote algorithms that implement System 7.3 by 𝒽ker. Analogously, we denote the algorithms
for System 7.3, where ker(A) is replaced by im(A⊤) by 𝒽im.

We denote by 𝒯 (𝒽ker ,A) and 𝒯 (𝒽im ,A) the smallest of the runtimes over all algorithms that
implement 𝒽ker(A, ·) resp. 𝒽im(A, ·).

Lemma 7.3.3. System 7.3 can be implemented with 𝑂(𝑛) linear system solves. That is, 𝒯 (𝒽ker) =
𝑂(𝑛𝒯 (𝔏(A))) and 𝒯 (𝒽im) = 𝑂(𝑛𝒯 (𝔏(A))).

Proof. The proof shares similarities to the one in Lemma 7.3.1. Find a basis 𝐵 of A𝑛\𝐽 and solve
A𝐵𝑥 = A𝐽𝑦𝐽 . Then set 𝑦′ ≔ 𝑦 − 𝛼𝑥 where 𝛼 ≥ 0 is chosen maximal such that 𝑦′ is sign-consistent
with 𝑦. Repeat this procedure until 𝑦′

𝐽
= 0. The proximity bound follows automatically if we

havenot encountered a certificate in ℭ(𝑊,𝑀). An analogous argument works on the image of A⊤.
□

Lemma 7.3.4. There exists an implementation of System 7.4 that requires 𝑂(𝑛2) linear system solves. That
is 𝒯 (ℋker) = 𝑂(𝑛2𝒯 (𝔏(A))) and 𝒯 (ℋim) = 𝑂(𝑛2𝒯 (𝔏(A))).

Proof. Given an instance (𝑊, 𝑦, 𝐽 , 𝑀) of System 7.4 compute a sign-consistent circuit decomposition
of 𝑦 using Lemma 7.3.2 or conclude with an element in ℭ(𝑊,𝑀). Let the circuit decomposition
be 𝑦 =

∑𝑘
𝑖=1 𝛼𝑖 𝑔

𝑖 with 𝑘 ≤ 𝑛 and for all 𝑖 ∈ [𝑘], supp(𝑔 𝑖) ∈ 𝒞(𝑊), 𝛼𝑖 > 0. We let 𝑧0 ≔ 0 and
set iteratively 𝑧 𝑖 ≔ 𝑧 𝑖−1 + 𝛽𝑖 𝑔 𝑖 where 0 ≤ 𝛽𝑖 ≤ 𝛼𝑖 is chosen as the smallest value 𝛽 such that
∥(ℓ − 𝑧 𝑖−1 − 𝛽𝑔 𝑖)+∥ + ∥(𝑢 − 𝑧 𝑖−1 − 𝛽𝑔 𝑖)−∥ is minimized. Intuitively, this means that 𝛽 is raised as
long as it decreases the gap on a coordinate in supp(ℓ+) or a coordinate in supp(𝑢−). For 𝑧 ≔ 𝑧𝑘 it
is now easy to see that 𝑧 ∈𝑊, ℓ ≤ 𝑧 ≤ 𝑢 and ∥𝑧∥1 ≤ 𝑀∥ℓ+ + 𝑢−∥∞. □

The following two corollaries will make use of the assumption that 𝑛 − 𝑚 = Θ(𝑛).
System 7.4. Hoffman-proximity-2

Data: A tuple (𝑊, 𝑦, ℓ , 𝑢, 𝑀)with𝑊 ⊆ R𝑛 , 𝑦 ∈𝑊 , ℓ ∈ (R ∪ {−∞})𝑛 , 𝑢 ∈ (R ∪ {∞})𝑛 such
that ℓ ≤ 𝑦 ≤ 𝑢 and 𝑀 ≥ 1.

Task: Find one of the following:

1. A vector 𝑧 ∈𝑊 such that ℓ ≤ 𝑧 ≤ 𝑢 and ∥𝑧∥∞ ≤ 𝑀∥ℓ+ + 𝑢−∥1,

2. A pair (𝐼 , 𝑝) ∈ ℭ(𝑊,𝑀).

We denote algorithms that implement System 7.4 where𝑊 = ker(A) by ℋker. Analogously, we
denote the algorithms for System 7.4, where ker(A) is replaced by im(A⊤) by ℋim.

We denote by 𝒯 (𝒽ker ,A) and 𝒯 (𝒽im ,A) the smallest of the runtimes over all algorithms that
implement 𝒽ker(A, ·) resp. 𝒽im(A, ·).
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7 BLACKBOX SOLVERS 7.4 Black-box algorithms

Note that using fast matrix multiplication and techniques from Section 4.2 of [Bra] the time
complexity per pivot can be reduced to 𝑂(𝑛1.529) instead of a linear system solve, leading to
improved running times in settings, where no structure of A can be exploited in linear system
solves.

7.4 Black-box algorithms

7.4.1 Black-box exact linear algebra

System 7.5. Apx-Projection-Kernel

Data: A tuple (A, 𝑑, Γ, 𝐼), where A ∈ R𝑚×𝑛 ,𝑊 ≔ ker(A), 𝑑 ∈ R𝑛 , Γ ≥ 1 and 𝐼 ⊆ [𝑛].

find 𝑥 ∈ R𝑛

s.t. 𝑥 ∈𝑊 + 𝑑 (Primal subspace constraint), (7.10a)

∥𝑥𝐼 ∥ ≤ Γmin{ ∥𝑦𝐼 ∥ : 𝑦 ∈𝑊 + 𝑑 } (Apx. projection onto 𝐼) (7.10b)

System 7.6. Apx-Projection-Image

Data: A tuple (A, 𝑐, Γ, 𝐼), where A ∈ R𝑚×𝑛 ,𝑊 ≔ ker(A), 𝑐 ∈ R𝑛 , Γ ≥ 1 and 𝐼 ⊆ [𝑛].

find 𝑠 ∈ R𝑛

s.t. 𝑠 ∈𝑊⊥ + 𝑐 (Dual subspace constraint), (7.11a)

∥𝑠𝐼 ∥ ≤ Γmin
{
∥𝑦𝐼 ∥ : 𝑦 ∈𝑊⊥ + 𝑐

}
(Apx. projection onto 𝐼) (7.11b)

Definition 7.4.1. For a matrix A ∈ R𝑚×𝑛 we denote by 𝔓(A) the asymptotic running time to solve
System 7.5 and System 7.6 exactly, i.e., for Γ = 1, that is for data (A, 𝑑, 1, 𝐼) for any 𝑑 ∈ R𝑛 and 𝐼 ⊆ [𝑛].

Definition 7.4.2. For a matrix A ∈ R𝑚×𝑛 we denote by 𝔓≈(A, Γ) the asymptotic running time such that
System 7.5 and System 7.6 can be solved with Γ for any 𝑑 ∈ R𝑛 and 𝐼 ⊆ [𝑛].

Definition 7.4.3. For a matrix A ∈ R𝑚×𝑛 we denote by 𝔏(A) the running time to solve any linear system
of the form A𝑥 = 𝑏 and ADA⊤𝑥 = 𝑏, D ∈ 𝔇 for x exactly.

Note that for Definition 7.4.3 it would suffice to be able to solve ADA⊤𝑥 = 𝑏, as any solution 𝑥
automatically gives a solution 𝑦 to A𝑦 = 𝑏 via 𝑦 = DA⊤𝑥 with computational complexity nnz(A).

7.4.2 Black-box linear programming solvers

Our feasibility and optimization algorithms in Sections 7.5 and 7.6 use oracles that return ap-
proximate LP solutions. These can be implemented by using any weakly-polynomial algorithm
that returns approximately optimal approximately feasible solutions as in (APX-LP). We will use
the following result that summarizes recent developments on interior point methods. Whereas
the papers only formulate the main statements on primal solutions, they all use primal-dual
interior-point methods, and also find dual solutions with similar properties. We present the results
in such a primal-dual form.
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7 BLACKBOX SOLVERS 7.4 Black-box algorithms

Theorem 7.4.4 ([Bra+21; Bra20; DLY21; JSWZ21; LS19]). Blackbox-Approx-Solver (Oracle 7.3) with an
initial point around 𝜇0 and with precision 𝜀 can be implemented in time

(1) In 𝑂
(
(𝑚𝑛 + 𝑚2.5) log(𝜇0/𝜀)

)
expected running time [Bra+21].

(2) In 𝑂(𝑛𝜔 log(𝜇0/𝜀)) deterministic running time, assuming 𝜔 ≥ 13/6 [Bra20]. The same expected
running time is achievable assuming 𝜔 ≥ 2 + 1/18 [JSWZ21].

(3) In 𝑂
(
(nnz(A) + 𝑚2)

√
𝑚 log(𝜇0/𝜀)

)
expected running time [LS19], where nnz(A) denotes the

number of nonzero entries in A.

(4) In 𝑂(𝑛tw(A)2(𝜇0/𝜀)) expected running time, where tw(A) is the treewidth of matrix A [DLY21].

We use the notation Ψ(A) to denote the ‘cost per unit’ in these results. That is, we define
Ψ(A) as the smallest runtime such that Blackbox-Approx-Solver can be implemented in time
𝑂(Ψ(A) log(𝜇0/𝜀)). By Theorem 7.4.4 we have that

Ψ(A) ≤ min
{
𝑚𝑛 + 𝑚2.5 , 𝑛𝜔 ,

√
𝑚

(
nnz(A) + 𝑚2

)
, 𝑛tw(A)2

}
. (7.12)

We are going to make some mild assumptions regarding Ψ(A) under modifications to the matrix
A. This is important for the recursive calls to theblackbox LP solvers that are going to deploy as
well as for the initialisation system used in System 7.14.

Assumption 7.4.5. Given a matrix A ∈ R𝑚×𝑛 , then for any submatrices B ∈ R𝑝×𝑞 of A and C ∈ R𝑝×𝑟

and a vector 𝑣 ∈ R𝑞+𝑟 we have for

A ≔

[
−B A
𝑣⊤

]
(7.13)

that Ψ
(
A
)
= 𝑂(Ψ(A)). We further assume that Ψ(A) = Ω(nnz(A)).

The second part of Assumption 7.4.5 is very natural and is true in most cases nnz(A) is the time
to process a matrix. We require this assumption because we will repeatedly compute matrix-vector
products A𝑥 and A⊤𝑦, both procedure take nnz(A) time and should not dominate the time to solve
a linear system. On the other hand, this second assumption might not be true in an amortized sense,
were maybe many linear systems are solved with the matrix A such that through preprocessing a
basis or other structure of the matrix could be determined such that the amortized runtime per
linear system solve might drop below nnz(A). It could also be the case that the matrix is given
implicitly through a lot of structure, e.g., as a product of two matrices, both of which allow cheap
linear system solves; or the columns of A could correspond to some underlying combinatorial
structure. We want to exclude all these scenarios with the second part of Assumption 7.4.5.

We now state the main forms of feasibility and optimization oracles we use. In Section 7.7, we
derive these results from Theorem 7.4.4, by running the algorithms on an extended system. The
oracles used in Sections 7.5 and 7.6 can be implemented from Theorems 7.4.6 and 7.4.7.
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System 7.7. Apx-Feas

Data: A tuple (𝑊, 𝑑, 𝑀, 𝜀), where𝑊 ⊆ R𝑛 is a subspace, 𝑑 ∈ R𝑛 , guess 𝑀 ≥ 1, and 𝜀 > 0.

find 𝑥 ∈ R𝑛

s.t. 𝑥 ∈𝑊 + 𝑑 (Primal subspace constraint), (7.14a)

∥𝑥−∥ ≤ 𝜀∥𝑑∥ (Primal apx. feasibility), (7.14b)

∥𝑥∥ ≤ 𝐶f∥𝑑∥ (Primal norm bound) (7.14c)

where 𝐶f ≔ 𝑛1.5𝑀 = 𝑂(poly(𝑛, 𝑀)).

We want to remark that the choice of 𝐶f is somewhat optimized in that the exponent in 𝑛 and 𝑀
is as small as possible for the upcoming proofs in this section to work out. Nonetheless, any choice
of 𝐶f that is polynomial in 𝑛 and 𝑀 would be fine to get the desired runtimes for the blackbox
algorithms.

Theorem 7.4.6 (Proof on p. 182). There exists a pair of algorithms (Algorithm 7.4 and Algorithm 7.5) that
returns either of the following outcomes:

(F1) Near feasible primal-dual solutions (𝑥, 𝑠) such that

(F1.1) 𝑥 is feasible to Apx-Feas(𝑊, 𝑑, 𝑀, 𝜀), and

(F1.2) 𝑠 is feasible to Apx-Feas(𝑊⊥ , 𝑐, 𝑀, 𝜀).

(F2) A Farkas certificate of primal infeasibility: 𝑦 ∈ 𝔉(𝑊, 𝑑),

(F3) A Farkas certificate of dual infeasibility: 𝑦 ∈ 𝔉(𝑊⊥ , 𝑐),

(F4) A lifting certificate (𝐼 , 𝑝) ∈ ℭ(𝑊,𝑀).

The running time depends on the outcome and is presented in Table 7.1.

Outcome Running time

(F1) 𝑂
(
Ψ(A) log(𝑀𝜀−1)

)
(F2) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (𝒽𝑛×𝑚

im (A⊤))
(F3) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (𝒽𝑚×𝑛

ker (A))
(F4) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (𝒽𝑛×𝑚

im (A⊤)) + 𝒯 (𝒽𝑚×𝑛
ker (A))

Table 7.1: Running times to implement Theorem 7.4.6
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System 7.8. Apx-Opt

Data: A tuple (𝑊, 𝑑, 𝑐, 𝑀, 𝜀), where 𝑊 ⊆ R𝑛 is a subspace, 𝑑, 𝑐 ∈ R𝑛 , guess 𝑀 ≥ 1, and
𝜀 > 0.

find 𝑥, 𝑠 ∈ R𝑛

s.t. 𝑥 ∈𝑊 + 𝑑 (Primal subspace constraint), (7.15a)

𝑠 ∈𝑊⊥ + 𝑐 (Dual subspace constraint), (7.15b)

∥𝑥−∥ ≤ 𝜀∥𝑑∥ (Primal apx. feasibility), (7.15c)

∥𝑠−∥ ≤ 𝜀∥𝑐∥ (Dual apx. feasibility), (7.15d)

∥𝑥 ◦ 𝑠∥ ≤ 𝜀∥𝑐∥∥𝑑∥ (Approximate complementarity), (7.15e)

∥𝑥∥ ≤ 𝐶o∥𝑑∥ (Primal norm bound), (7.15f)

∥𝑠∥ ≤ 𝐶o∥𝑐∥ (Dual norm bound) (7.15g)

where 𝐶o ≔ 4𝑛3/2𝑀 = 𝑂(poly(𝑛, 𝑀)).

Theorem 7.4.7 (Proof on p. 185). Let an instance of a linear program of the form System 1.2 and 𝑀 ≥ 1,
𝜀 > 0 be given. There exists an algorithm (Algorithm 7.6) that returns either of the following outcomes:

(M1) A pair of primal and dual near-feasible and near-optimal solutions (𝑥, 𝑠) as solutions to System 7.8,
i.e., Apx-Opt(𝑊, 𝑑, 𝑐, 𝑀, 𝜀).

(M2) A Farkas certificate of primal infeasibility 𝑦 ∈ 𝔉(𝑊, 𝑑),

(M3) A Farkas certificate of dual infeasibility 𝑦 ∈ 𝔉(𝑊⊥ , 𝑐), or

(M4) A lifting certificate (𝐼 , 𝑝) ∈ ℭ(𝑊,𝑀).

The running time depends on the outcome and is as follows:

Outcome Running time

(M1) 𝑂
(
Ψ(A) log(𝑀𝜀−1)

)
(M2) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋ𝑛×𝑚

im (A⊤))
(M3) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋ𝑚×𝑛

ker (A))
(M4) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋ𝑛×𝑚

im (A⊤)) + 𝒯 (ℋ𝑚×𝑛
ker (A))

7.5 The feasibility algorithm

Given a matrix A ∈ R𝑚×𝑛 and 𝑑 ∈ R𝑛 , we let𝑊 = ker(A). In this section, we consider the feasibility
problem Primal 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0.

A key insight is to work with a stronger system, including a proximity constraint. According to
Corollary 3.5.2, whenever the problem 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0 is feasible and 𝜅𝑊 ≤ 𝑀, then System 7.9 is
also feasible. In fact, this would be true even with the stronger bound 𝑀 instead of 𝐶alg

pf ; we use
this weaker bound to leave sufficient slack for the recursive argument. Note that if 𝑑 ≥ 0, then the
only feasible solution is 𝑥 = 𝑑.
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System 7.9. Alg-Feas

Data: A tuple (𝑊, 𝑑, 𝑀), where𝑊 ⊆ R𝑛 is a subspace, 𝑑 ∈ R𝑛 , guess 𝑀 ≥ 1.

find 𝑥 ∈ R𝑛

s.t. 𝑥 ∈𝑊 + 𝑑 (Subspace constraint), (7.16a)

∥𝑥 − 𝑑∥ ≤ 𝐶alg
pf ∥𝑑

−∥ (Proximity constraint), (7.16b)

𝑥 ≥ 0 (Non-negativity) (7.16c)

where 𝐶alg
pf ≔ 8𝐶pf = 𝑂(poly(𝑛, 𝑀)).

We use a black-box approach assuming an oracle that returns an approximately feasible solution.
The oracle will give a solution to Prox-Feas and is implemented by Oracle 7.1. Outcome (i) gives an
approximately feasible solution with a bound on the negative components and a slightly stronger
proximity guarantee than in System 7.9. Outcome (ii) gives a Farkas certificate of infeasibility in
𝔉(𝑊, 𝑑), whereas outcome (iii) gives a lifting certificate of 𝑀 < 𝜅𝑊 , i.e, an element in ℭ(𝑊,𝑀).

System 7.10. Prox-Feas

Data: A tuple (𝑊, 𝑑, 𝑀, 𝜀), where𝑊 ⊆ R𝑛 is a subspace, 𝑑 ∈ R𝑛 , guess 𝑀 ≥ 1, and 𝜀 > 0.

find 𝑥 ∈ R𝑛

s.t. 𝑥 ∈𝑊 + 𝑑 (Subspace constraint), (Q1)

∥𝑥 − 𝑑∥ ≤ 𝐶pf∥𝑑−∥ (Proximity constraint), (Q2)

∥𝑥−∥ ≤ 𝜀∥𝑑−∥ (Apx. feasibility constraint) (Q3)

where 𝐶pf ≔ 8𝐶f𝑀𝑛3/2 = 𝑂(poly(𝑛, 𝑀)).

Oracle 7.1. Prox-Feas-Solver

Input: A tuple (𝑊, 𝑑, 𝑀, 𝜀), with a subspace 𝑊 ⊆ R𝑛 , 𝑑 ∈ R𝑛 , a guess 𝑀 ∈ R+ and
parameter 𝜀 > 0.

Output: One of the following outcomes:

(i) A solution 𝑥 to System 7.10, i.e., Prox-Feas(𝑊, 𝑑, 𝑀, 𝜀),

(ii) A Farkas certificate 𝑦 ∈ 𝔉(𝑊, 𝑑),

(iii) A subset 𝐼 ⊆ [𝑛] and a vector 𝑝 ∈ 𝜋𝐼(𝑊) such that (𝐼 , 𝑝) ∈ ℭ(𝜋𝐼(𝑊), 𝑀).

This oracle can be derived from Theorem 7.4.6, by finding an approximately feasible solution to
a modification of the system 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0. The derivation is given in Section 7.7.2; the running
time is stated as follows.
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Lemma 7.5.1 (Proof in Section 7.7). Given a matrix A ∈ R𝑚×𝑛 and vector 𝑑 ∈ R𝑛 . Let 𝑊 = ker(A),
and 𝑀 be an estimate on 𝜅𝑊 . Further, let 0 < 𝜀 < 1. There exists an implementation of Oracle 7.1 for data
(𝑊, 𝑑, 𝑀, 𝜀) with following outcome-dependent running times:

Outcome Running time

(i) 𝑂
(
Ψ(A) log(𝑀𝜀−1)

)
(ii), (iii) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋim(A⊤))

The algorithm is stated in Algorithm 7.1. It allows to solve Alg-Feas(𝑊, 𝑑, 𝑀) by combining an
approximate solution 𝑥 to Prox-Feas(𝑊, 𝑑′, 𝑀, 𝜀) for some 𝑑′ ∈ 𝑊 + 𝑑 with an exact solution to
Alg-Feas(𝜋𝐼(𝑊), 𝑑𝐼 , 𝑀) obtained recursively from a smaller system on a coordinate subset 𝐼 ⊆ [𝑛].

Recall that for a set 𝐾 ⊆ [𝑛], cl(𝐾) denotes the closure of 𝐾, i.e., the unique largest set 𝐶 ⊆ [𝑛]
such that 𝐶 ⊆ 𝐽 and rk(A𝐶) = rk(A𝐾)where ker(A) =𝑊 as usual.

We select a set 𝐾 of indices 𝑖 where 𝑥𝑖 is very large in the approximate solution 𝑥; for such indices,
proximity guarantees that there must be a feasible solution 𝑥∗ ∈ 𝑊 + 𝑑, 𝑥∗ ≥ 0 with 𝑥∗

𝑖
≫ 0. We

project out all these indices, along with all other indices 𝐽 ≔ cl(𝐾) \ 𝐾 in their closure, and recurse
on the remaining index set 𝐼 ≔ [𝑛] \ cl(𝐾) = [𝑛] \ (𝐾 ∪ 𝐽). We note that the purpose of the set 𝐽 is to
to reduce the dimension of the dual space in the recursive call.

The choice of the proximity bounds allow us to ‘stitch together’ the solution obtained on 𝜋𝐼(𝑊)
from the recursive call with the approximate solution 𝑥 to a feasible solution to the original system.
Roughly speaking, the amount of change required to cancel out all negative coordinates in 𝑥𝐼 is
small enough so that 𝑥 remains positive on 𝐾.

An important feature in the scheme is the choice of the vector 𝑑′ for the approximate system.
This will be either 𝑑′ = 𝑑 or 𝑑′ = Π𝑊⊥(𝑑); hence 𝑊 + 𝑑′ =𝑊 + 𝑑. However, this choice is crucial
due to the proximity bounds: System 7.9 features ∥𝑑−∥ as well as a bound on ∥𝑥 − 𝑑∥.

In particular, if ∥𝑑−∥ is ‘too big’, then we may end up with an empty index set 𝐾 and cannot
recurse. In this case, we swap to 𝑑′ = Π𝑊⊥(𝑑); otherwise, we keep 𝑑′ = 𝑑. We note that always
swapping to 𝑑′ = Π𝑊⊥(𝑑) does not work either: System 7.9 features the bound ∥𝑥 − 𝑑∥, and using
∥𝑥 −Π𝑊⊥(𝑑)∥ in the approximate system may move us too far from 𝑑. Fortunately, the bad cases
for these two choices turn out to be complementary.

We note that the distinguished role of Π𝑊⊥(𝑑) is due to the bound ∥𝑥∥ ≥ ∥Π𝑊⊥(𝑑)∥ for any
𝑥 ∈𝑊 + 𝑑.

The overall feasibility algorithm is given in Algorithm 7.1. The output can be (i) a feasible
solution to System 7.9; (ii) a Farkas certificate of infeasibility, or (iii) a lifting certificate of 𝑀 < 𝜅𝑊 .
The latter will always be of the form of an index set 𝐼 ⊆ [𝑛] and a vector 𝑝 ∈ 𝜋𝐼(𝑊) such that
∥𝐿𝑊

𝐼
(𝑝)∥∞ > 𝑀∥𝑝∥1. In this case, we can restart the entire algorithm, after updating 𝑀 to

max{∥𝐿𝑊
𝐼
(𝑝)∥∞/∥𝑝∥1 , 2𝑀2}.

The algorithm calls Oracle 7.1. For outputs (ii) and (iii), we return the Farkas certificate or the
lifting certificate for 𝑀 < 𝜅𝑊 . For output (i), we construct the sets 𝐼, 𝐽, and 𝐾 and recurse on 𝜋𝐼(𝑊).

We are now ready to state the central theorem of this section, which in particular proves
Theorem 7.1.1.

Theorem 7.5.2. Algorithm 7.1 is correct. The runtime depends on the outcome and is as follows:

Outcome Running time

Primal(𝑊, 𝑑) 𝑂
(
𝑚(Ψ(A) log(𝑀) + 𝒯 (𝔓(A)) + 𝒯 (cl(A)))

)
𝔉(𝑊, 𝑑) 𝑂

(
𝑚Ψ(A) log(𝑀) + 𝑚𝒯 (𝔓(A)) + 𝑚𝒯 (cl(A)) + 𝒯 (ℋim(A⊤))

)
ℭ(𝑊,𝑀) 𝑂

(
𝑚Ψ(A) log(𝑀) + 𝑚𝒯 (𝔓(A)) + 𝑚𝒯 (cl(A)) + 𝒯 (ℋim(A⊤))

)
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Algorithm 7.1: Feasibility-Algorithm

Input :A ∈ R𝑚×𝑛 ,𝑊 ⊆ R𝑛 subspace, 𝑑 ∈ R𝑛 , guess 𝑀 ≥ 1.
Output :An element in Alg-Feas(𝑊, 𝑑, 𝑀), 𝔉(𝑊, 𝑑) or ℭ(𝑊,𝑀).

1 if ∥𝑑−∥ ≥ max
{
∥Π𝑊⊥ (𝑑)∥ , ∥𝑑∥2𝐶pf

}
then

2 𝑑← Π𝑊⊥ (𝑑)
3 if 𝑑 ≥ 0 then
4 return 𝑑 ⊲ in Alg-Feas(𝑊, 𝑑, 𝑀)

5 T← 2
√
𝑛𝑀𝐶

alg
pf

6 𝜀← 1√
𝑛T

7 ♦ ← Prox-Feas-Solver(𝑊, 𝑑, 𝑀, 𝜀)
8 switch ♦ do
9 case (i) ♦ ∈ Prox-Feas(𝑊, 𝑑, 𝑀, 𝜀) do

10 go to 15
11 case (ii) ♦ ∈ 𝔉(𝜋𝐼 (𝑊), 𝑥𝐼 ) do
12 return Farkas certificate ♦
13 case (iii) ♦ ∈ ℭ(𝜋𝐼 (𝑊), 𝑀) do
14 return lifting certificate ♦
15 𝑥 ← ♦
16 𝐾 ← { 𝑖 ∈ [𝑛] : 𝑥𝑖 ≥ T∥𝑥−∥ }

17 𝐽 ← cl(𝐾) \ 𝐾
18 𝐼 ← [𝑛] \ (𝐽 ∪ 𝐾)
19 ♠ ← Feasibility-Algorithm(𝜋𝐼 (𝑊), 𝑥𝐼 , 𝑀)
20 switch ♠ do
21 case (i) ♠ ∈ Alg-Feas(𝜋𝐼 (𝑊), 𝑥𝐼 , 𝑀) do
22 𝑤 ← ♠
23 �̄� ← 𝐿𝑊

𝐼∪𝐽 (𝑤 − 𝑥𝐼 , 𝑥
−
𝐽
)

24 if ∥�̄�∥∞ ≤ 𝑀∥(𝑤 − 𝑥𝐼 , 𝑥−𝐽 )∥1 then
25 return 𝑥 + �̄� ⊲ in Alg-Feas(𝑊, 𝑑, 𝑀)
26 else
27 return (𝐼 ∪ 𝐽 , (𝑤 − 𝑥𝐼 , 𝑥−𝐽 )) ⊲ ∈ ℭ(𝑊,𝑀)

28 case (ii) ♠ ∈ 𝔉(𝜋𝐼 (𝑊), 𝑥𝐼 ) do
29 𝑦′← (♠, 0𝐽∪𝐾)
30 return 𝑦′ ⊲ in 𝔉(𝑊, 𝑑)
31 case (iii) ♠ ∈ ℭ(𝜋𝐼 (𝑊), 𝑀) do
32 return ♠ ⊲ in ℭ(𝑊,𝑀)

Proof. We first show that 𝑥′ is feasible to Alg-Feas(𝑊, 𝑑, 𝑀). Then, we verify that 𝐾 ≠ ∅.

Feasibility of 𝑥′: Let us first show that 𝑥′ is well-defined; this requires that (𝑤 − 𝑥𝐼 , 𝑥−𝐽 ) ∈ 𝜋𝐼∪𝐽(𝑊).
By definition, 𝑤 ∈ 𝜋𝐼(𝑊) + 𝑥𝐼 means that 𝑤 = �̂�𝐼 for some �̂� ∈ 𝑊 + 𝑥. We have that 𝑤 − 𝑥𝐼 =
(�̂�−𝑥)𝐼 ∈ 𝜋𝐼(𝑊). By the definition of 𝐽, (0𝐼 , 𝑧) ∈ 𝜋𝐼∪𝐽(𝑊) for any 𝑧 ∈ R𝐽 . Thus, (𝑤−𝑥𝐼 , 𝑧′) ∈ 𝜋𝐼∪𝐽(𝑊)
for any 𝑧′ ∈ R𝐽 .

The containment 𝑥′ ∈𝑊+𝑑 is immediate, since 𝐿𝑊
𝐼∪𝐽((𝑤−𝑥𝐼 , 𝑥

−
𝐽
)) ∈𝑊 , and𝑊+𝑥 =𝑊+𝑑. Hence,

we have (7.16a). For the rest of the proof, assume that ∥𝐿𝑊
𝐼∪𝐽((𝑤 − 𝑥𝐼 , 𝑥

−
𝐽
))∥∞ ≤ 𝑀∥(𝑤 − 𝑥𝐼 , 𝑥−𝐽 )∥1.

Let us verify the non-negativity constraint (7.16c) holds for 𝑥′ ≥ 0. By definition, if 𝑖 ∈ 𝐼, then the
corresponding coordinate of 𝐿𝑊

𝐼∪𝐽((𝑤 − 𝑥𝐼 , 𝑥
−
𝐽
)) equals 𝑤𝑖 − 𝑥𝑖 , and thus 𝑥′

𝑖
= 𝑤𝑖 ≥ 0. Analogously,

for 𝑗 ∈ 𝐽, the corresponding coordinate of 𝐿𝑊
𝐼∪𝐽((𝑤 − 𝑥𝐼 , 𝑥

−
𝐽
)) equals 𝑥−

𝑗
and so 𝑥′

𝑗
= 𝑥 𝑗 + 𝑥−𝑗 ≥ 0. For

𝑘 ∈ 𝐾, we have 𝑥′
𝑘
≥ 𝑥𝑘 − ∥𝐿𝑊𝐼∪𝐽((𝑤 − 𝑥𝐼 , 𝑥

−
𝐽
))∥∞. By definition of 𝐾, 𝑥𝑘 ≥ T∥𝑥−

𝐼∪𝐽 ∥. Then, 𝑥′
𝑘
≥ 0

follows as

∥𝐿𝑊𝐼∪𝐽
(
(𝑤 − 𝑥𝐼 , 𝑥−𝐽 )

)
∥∞ ≤ 𝑀∥(𝑤 − 𝑥𝐼 , 𝑥−𝐽 )∥1 ≤

√
𝑛𝑀∥(𝑤 − 𝑥𝐼 , 𝑥−𝐽 )∥ ≤

√
𝑛𝑀(𝐶alg

pf + 1)∥𝑥−𝐼∪𝐽 ∥

≤ T∥𝑥−𝐼∪𝐽 ∥
(7.18)

To complete the proof that 𝑥′ is feasible to Alg-Feas(𝑊, 𝑑, 𝑀), it remains to verify the proximity
bound (7.16b), i.e., ∥𝑥′ − 𝑑∥ ≤ 𝐶alg

pf ∥𝑑
−∥. First, we need an auxiliary claim.

Claim 7.5.2.1. ∥𝑥 − 𝑑∥ ≤ 4𝐶pf∥𝑑−∥ and ∥𝑥−∥ ≤ 𝜀∥𝑑−∥.
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Proof. If 𝑑′ = 𝑑, then from the feasibility of 𝑥 to Prox-Feas(𝑊, 𝑑′, 𝑀, 𝜀), we have ∥𝑥 − 𝑑∥ ≤ 𝐶pf∥𝑑−∥
and ∥𝑥−∥ ≤ 𝜀∥𝑑−∥. If 𝑑′ ≠ 𝑑, then 𝑑′ = Π𝑊⊥(𝑑), ∥𝑑−∥ > ∥Π𝑊⊥(𝑑)∥ and ∥𝑑−∥ > ∥𝑑∥

2𝐶pf
and so

∥𝑥 − 𝑑∥ ≤ ∥𝑥 −Π𝑊⊥(𝑑)∥ + ∥Π𝑊⊥(𝑑)∥ + ∥𝑑∥
≤ 𝐶pf∥Π𝑊⊥(𝑑)−∥ + ∥Π𝑊⊥(𝑑)∥ + 2𝐶pf∥𝑑−∥
≤ (𝐶pf + 1)∥Π𝑊⊥(𝑑)∥ + 2𝐶pf∥𝑑−∥
≤ (2𝐶pf + 2𝐶pf)∥𝑑−∥
≤ 4𝐶pf∥𝑑−∥ , and

∥𝑥−∥ ≤ 𝜀∥Π𝑊⊥(𝑑)−∥ ≤ 𝜀∥Π𝑊⊥(𝑑)∥ ≤ 𝜀∥𝑑−∥.

proving the claim. ■

Using Claim 7.5.2.1 as well as the bound in (7.18), we see that

∥𝑥′ − 𝑑∥ ≤ ∥𝑥 − 𝑑∥ + ∥𝑥′ − 𝑥∥ = ∥𝑥 − 𝑑∥ + ∥𝐿𝑊𝐼∪𝐽
(
(𝑤 − 𝑥𝐼 , 𝑥−𝐽 )

)
∥ ≤ 4𝐶pf∥𝑑−∥ +

√
𝑛T∥𝑥−𝐼∪𝐽 ∥

≤ (4𝐶pf +
√
𝑛T𝜀)∥𝑑−∥ ≤ 𝐶alg

pf ∥𝑑
−∥.

Recursion on smaller subset: We show that 𝐾 ≠ ∅. If 𝑑 = 𝑑′ then either ∥𝑑−∥ ≤ ∥Π𝑊⊥(𝑑)∥ or
∥𝑑−∥ ≤ ∥𝑑∥/(2𝐶pf). If ∥𝑑−∥ ≤ ∥Π𝑊⊥(𝑑)∥ then,

∥𝑥∥∞ ≥
∥𝑥∥√
𝑛
≥ ∥Π𝑊⊥(𝑑)∥√

𝑛
≥ ∥𝑑

−∥√
𝑛
≥ ∥𝑥

−∥
𝜀
√
𝑛
≥ T∥𝑥−∥ ,

and if ∥𝑑−∥ ≤ ∥𝑑∥
2𝐶pf

, then ∥𝑥 − 𝑑∥ ≤ 𝐶pf∥𝑑−∥ by the call to Prox-Feas(𝑊, 𝑑′, 𝑀) and so

∥𝑥∥ ≥ ∥𝑑∥ − ∥𝑥 − 𝑑∥ > 2𝐶pf∥𝑑−∥ − 𝐶pf∥𝑑−∥ = 𝐶pf∥𝑑−∥ ≥ 𝐶pf𝜀
−1∥𝑥−∥ ≥

√
𝑛T∥𝑥−∥ ,

and hence ∥𝑥∥∞ ≥ T∥𝑥−∥. The remaining case is 𝑑′ = Π𝑊⊥(𝑑). Then we have

∥𝑥∥∞ ≥
∥𝑥∥√
𝑛
≥ ∥Π𝑊⊥(𝑑)∥√

𝑛
≥ ∥𝑥

−∥
𝜀
√
𝑛
≥ T∥𝑥−∥ .

Infeasibility certificate: Assume our algorithm resulted in a certificate of primal feasibility of
𝐿𝑃(𝜋𝐼(𝑊), 𝑥𝐼). Then by Fact 7.2.7, this certificate can canonically be lifted to a certificate of primal
infeasibility of 𝐿𝑃(𝑊, 𝑑). □

7.6 The optimization algorithm

in this section, we show how LP can be solved using an approximate LP solver. We present an
algorithm that comprises an Inner (Algorithm 7.3)and an Outer Loop (Algorithm 7.2). The calls to
the approximate LP solver will happen inside the Inner Loop.

The outer loop gives an algorithmic implementation of Corollary 3.5.4. The subroutine Inner-
Loop(𝑊, 𝑑, 𝑐, 𝑀, 𝜀) returns a solution (𝑥, 𝑠), to System 7.11 for some 𝜀 = Θ(poly(𝑀, 𝑛)−1). Note
that Algorithm 7.3 in fact returns a solution to the stronger system Alg-Opt, but this is only required
for the recursive calls of Algorithm 7.3. Given (𝑥, 𝑠), we can now for 𝜀 small enough fix some
primal variables to 0 via Corollary 3.5.4. Note that the role of the primal and dual in Corollary 3.5.4
and System 7.11 is reversed.
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System 7.11. Primal-Feasible-Apx-Complementary

Data: A tuple (𝑊, 𝑑, 𝑐, 𝑀, 𝜀), where 𝑊 ⊆ R𝑛 is a subspace, 𝑐, 𝑑 ∈ R𝑛 , guess 𝑀 ≥ 1, and
𝜀 > 0.

find 𝑥, 𝑠 ∈ R𝑛

s.t. 𝑥 ∈𝑊 + 𝑑 (Primal subspace constraint), (7.19a)

𝑠 ∈𝑊⊥ + 𝑐 (Dual subspace constraint), (7.19b)

∥𝑠Λ(𝑠,𝑥)∥ ≤ 𝜀∥𝑐∥ (Complementarity), (7.19c)

𝑥 ≥ 0 (Primal non-negativity) (7.19d)

The subroutine InnerLoop will be described in Section 7.6.2; we now state the running time.

Lemma 7.6.1. Algorithm 7.3 (InnerLoop) is correct. The running time depends on the outcome and is as
follows:

Outcome Running time

Alg-Opt(𝑊, 𝑑, 𝑐, 𝑀, 𝜀sub) 𝑂
(
𝑚Ψ(A) log(𝑀𝜀sub

−1) + 𝑚𝒯 (𝔓(A))
)

𝔉(𝑊, 𝑑) 𝑂
(
𝑚Ψ(A) log(𝑀𝜀sub

−1) + 𝑚𝒯 (𝔓(A)) + 𝒯 (ℋ𝑛×𝑚
im (A⊤)

)
ℭ(𝑊,𝑀) 𝑂

(
𝑚Ψ(A) log(𝑀𝜀sub

−1) + 𝑚𝒯 (𝔓(A)) + 𝒯 (ℋ𝑚×𝑛
ker (A))

)
The overall algorithm described in Section 7.6.1 repeatedly calls InnerLoop to set primal and

dual variables to 0 according to Corollary 3.5.4, and recurses to lower dimensional subspaces. The
final optimal solutions are obtained via calling the feasibility algorithm on both primal and dual
side. Providing a certificate that 𝑀 < 𝜅𝑊 in case that the algorithm fails is non-trivial, but we will
show how it can be done efficiently.

7.6.1 The Outer Loop

Consider an instance of System 1.2 and an estimate 𝑀 on 𝜅𝑊 . We first use the feasibility algorithms
and check if the primal system 𝑥 ∈𝑊 + 𝑑, 𝑥 ≥ 0 and the dual system 𝑠 ∈𝑊⊥ + 𝑐, 𝑠 ≥ 0 are feasible.
The dual feasible vector is in particular important as the input of InnerLoop requires a feasible
dual vector. The overall algorithm is presented in Algorithm 7.2. We will maintain an index set
𝐵 ⊆ [𝑛], initialized as 𝐵 = [𝑛]. We gradually remove indices from 𝐵. A removed index 𝑖 has the
property that due to proximity results (Corollary 3.5.4) there exist optimal dual solutions 𝑠∗ such
that 𝑠∗

𝑖
> 0. By complementary slackness we therefore have 𝑥∗

𝑖
= 0 in all primal optimal solutions.

Hence, at any stage, assuming that 𝑀 ≥ 𝜅𝑊 we are guaranteed that there exists an optimal
primal solution 𝑥∗ with 𝑥∗[𝑛]\𝐵 = 0. At every iteration, we have the index set 𝐵 ⊆ [𝑛] of ‘undecided
indices’ and the corresponding subspace �̄� ⊆ R𝐵 that is �̄� =𝑊𝐵.

The algorithm terminates when 𝑐 is contained in �̄�⊥. The remaining indices 𝐵 are split up
between 𝐵 and 𝑁 based on whether they are in the support of the current primal feasible solution
�̃�. Finally, we obtain the primal and dual solutions by solving feasibility problems on the subsets 𝐵
and 𝑁 = [𝑛] \ 𝐵. If both are feasible, they form a complementary pair of primal and dual solutions,
and hence they are optimal. In case of a failure, we conclude that the underlying assumption
𝑀 ≥ 𝜅𝑊 was wrong and construct a certificate of this outcome.
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Algorithm 7.2: Optimization Algorithm

Input :An instance (𝑊, 𝑑, 𝑐) of LP and guess 𝑀 ≥ 1.
Output :Either solution (𝑥∗ , 𝑠∗) optimal for LP(𝑊, 𝑑, 𝑐), or a certificate in 𝔉(𝑊, 𝑑), 𝔉(𝑊⊥ , 𝑐) or

ℭ(𝑊,𝑀).

1 ♠ ← Feasibility-Algorithm(𝑊, 𝑑, 𝑀)
2 if ♠ ∉ Primal(𝑊, 𝑑) then
3 return ♠
4 ♦ ← Feasibility-Algorithm(𝑊⊥ , 𝑐, 𝑀)
5 if ♦ ∉ Dual(𝑊, 𝑐) then
6 return ♦
7 �̄�← ♠; 𝑐 ← ♦
8 �̄� ←𝑊 ; �̃� ← �̄� ; 𝑠 ← 𝑐

9 𝐵← [𝑛]
10 𝜀sub ← 1

2𝑛
−3𝑀−2

11 𝑡 ← 1
12 while 𝐵 ≠ ∅ and 𝑐 ∉ �̄�⊥ do
13 ♦ ← InnerLoop(�̄� , �̄�, 𝑐, 𝑀, 𝜀sub)
14 if ♦ ∉ Alg-Opt(�̄� , �̄�, 𝑐, 𝑀, 𝜀sub) then
15 return ♦ // ♦ is one of the certificates
16 else
17 (�̃� , 𝑠) ← ♦
18 if ∥𝑠Λ(𝑠,�̃�)∥ > 𝜀sub∥Π𝑊 (𝑐)∥ then
19 ⊲ In this case we find a certificate

that the guess was too small as the
norm of basic solutions is too large
on the support of 𝑠

20 𝐼 ← supp(ess(𝑠, 𝜀sub∥Π𝑊 (𝑐)∥))
21 𝐽 ← [𝑛] \ 𝐼
22 return (𝐽 , 𝑠𝐽 ) ⊲ ∈ ℭ(𝑊,𝑀)
23

24 𝐵(𝑡) ← 𝐵,𝑊 (𝑡) ←𝑊, 𝑠(𝑡) ← 𝑠 ⊲ Needed only
for analysis certificate generation

25 𝑡 ← 𝑡 + 1
26 𝐵← 𝐵 \ { 𝑖 ∈ 𝐼 : |𝑠𝑖 | = ∥𝑠∥∞ }
27 �̄� ← �̄�𝐵 , 𝑐 ← 𝑠𝐵 , �̄�← �̃�𝐵

28 𝐵← supp(�̃�)

29 𝑁 ← [𝑛] \ 𝐵
30 // Find primal feasible solution supported

on 𝐵

31 �̂�←
[
𝑑 − 𝐿𝑊

𝑁
(𝑑𝑁 )

]
𝐵

32 ♦ ← Feasibility-Algorithm(𝑊𝐵 , �̂�, 𝑀)
33 if ♦ ∉ Primal(𝑊𝐵 , �̂�) then
34 // ♦ is in ℭ(𝑊,𝑀) as primal infeasibility

would have been detected in the last
call to InnerLoop

35 return ♦
36 else
37 𝑥∗ ← (♦, 0𝑁 )
38 // Find dual feasible solution supported on

𝑁

39 𝑐 ←
[
𝑐 − 𝐿𝑊⊥

𝐵
(𝑐𝐵)

]
𝑁

40 ♦ ← Feasibility-Algorithm((𝑊⊥)𝑁 , 𝑐, 𝑀)
41 if ♦ ∈ Dual((𝑊⊥)𝑁 , 𝑐) then
42 𝑠∗ ← (0𝐵 , ♦)
43 return (𝑥∗ , 𝑠∗)
44 else if ♦ ∈ ℭ((𝑊⊥)𝑁 , 𝑀) then
45 return ♦
46 else
47 // this means ♦ ∈ 𝔉((𝑊⊥)𝑁 , 𝑐)
48 ♠ ← Feasibility-Algorithm(𝑊⊥ , 𝑐)
49 if ♠ ∉ Dual(𝑊⊥ , 𝑐) then
50 return ♠
51 else
52 𝑐 ← ♠
53 Use 𝑐 and the dual vectors 𝑠(1) , . . . , 𝑠(𝑡−1) to find a

certificate 𝑧 ∈ ℭ(𝑊,𝑀)
54 return 𝑧

Theorem 7.6.2. Algorithm 7.2 is correct. This means, for data (𝑊, 𝑑, 𝑐) it finds a primal-dual optimal
solution (𝑥∗ , 𝑠∗), a Farkas certificate in 𝔉(𝑊, 𝑑) or 𝔉(𝑊⊥ , 𝑐) or concludes that the guess 𝑀 was to small
and certifies this with an element in ℭ(𝑊,𝑀).

The running time depends on the outcome and is as follows:

Outcome Running time

optimal in LP(𝑊, 𝑑, 𝑐) 𝑂
(
𝑚𝑛(Ψ(A) log(𝑀) + 𝒯 (𝔓(A)) + 𝒯 (cl(A)))

)
𝔉(𝑊, 𝑑) 𝑂

(
𝑚Ψ(A) log(𝑀) + 𝑚𝒯 (𝔓(A)) + 𝑚𝒯 (cl(A)) + 𝒯 (ℋim(A⊤))

)
𝔉(𝑊⊥ , 𝑐) 𝑂

(
𝑛Ψ(A) log(𝑀) + 𝑛𝒯 (𝔓(A)) + 𝑛𝒯 (cl(A)) + 𝒯 (ℋker(A))

)
ℭ(𝑊,𝑀) 𝑂

(
𝑚𝑛Ψ(A) log(𝑀) + 𝑚𝑛𝒯 (𝔓(A)) + 𝑚𝑛𝒯 (cl(A)) + 𝒯 (ℋim(A⊤))

)
Proof. The main part of the poof is recognizing that the variables that are removed from 𝐵 in Line
26 belong to the set 𝑁 ∗ of variables for which 𝑥∗

𝑁∗ = 0 for all optimal solutions 𝑥∗ of LP(𝑊, 𝑑, 𝑐).
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Note that the guarantee of InnerLoop is that

∥𝑠Λ(𝑠,�̃�)∥ ≤ 𝑛𝜀sub�̃�𝑊⊥(𝑐, 𝑛𝜀sub𝜒𝑊⊥(𝑐)) ≤ 2𝑛𝜀sub�̄�𝑊⊥ ∥Π𝑊 (𝑐)∥ . (7.20)

In case that the if-condition in line 18 evaluates to true, we see via (7.20) that

𝜅𝑊
Thm. 3.3.8
≥ �̄�𝑊⊥

𝑛
≥

∥𝑠Λ(𝑠,�̃�)∥
2𝑛2𝜀sub∥Π𝑊 (𝑐)∥

>
2𝑛2𝑀𝜀sub∥Π𝑊 (𝑐)∥

2𝑛2𝜀sub∥Π𝑊 (𝑐)∥
= 𝑀 . (7.21)

We can certify this by the fact that all basic solutions on the last recursive call to InnerLoop have
large cost. This can be recovered by defining the set 𝐼 in line 20 and returning a corresponding
lifting certificate.

So, from on assume that the if condition in line 18 evaluated to false, i.e., ∥𝑠Λ(𝑠,�̃�)∥ <

2𝑛2𝑀𝜀sub∥𝑠∥. We then move on and remove elements from 𝐵 in line 26. In case that 𝑀 ≥ 𝜅𝑊 this
conclusion is correct and follows automatically by the proximity result Corollary 3.5.4 as

∥𝑠∥∞ ≥
1√
𝑛
∥𝑠∥ ≥ 1√

𝑛
∥Π𝑊 (𝑐)∥

(7.20)
>

1
2𝑛1.5𝜀sub�̄�𝑊⊥

∥𝑠Λ(𝑠,�̃�)∥
Thm. 3.3.8
≥ 1

2𝑛2.5𝜀sub𝜅𝑊
∥𝑠Λ(𝑠,�̃�)∥

≥ 𝑀
√
𝑛∥𝑠Λ(𝑠,�̃�)∥ ≥ 𝜅𝑊 ∥𝑠Λ(𝑠,�̃�)∥1 ,

(7.22)

and so the proximity result gives 𝑥∗
𝑖
= 0 for all 𝑖 such that 𝑠𝑖 = ∥𝑠∥∞.

However, in case that we underestimate 𝜅𝑊 , i.e., 𝑀 < 𝜅𝑊 , we might erroneously remove elements
from 𝐵 in line 26 and this may remain undetected until later, when we fail to construct a dual
feasible solution on 𝑁 .

But 𝑀 < 𝜅𝑊 might not be detected in the while-loop in line 12, but only much later, when we
detect infeasibility of the final dual system Dual((𝑊⊥)𝑁 , 𝑐).

We now sketch how a certificate of inℭ(𝑊,𝑀) can be found nonetheless, by using the constructive
proximity results in Section 7.3 in conjunction with the dual solutions 𝑠(1) , . . . , 𝑠(𝑡) returned by
the calls to InnerLoop as well as the terminal dual solution 𝑢(𝑡+1) ≔ 0𝐵. First, we find the unique
index 𝑖 ∈ [𝑡] such that the system 𝑠 ∈ 𝑊𝐵(𝑖) + 𝑐𝐵(𝑖) , 𝑠𝐵 = 0, 𝑠 ≥ 0 is infeasible and the system
𝑠 ∈𝑊𝐵(𝑖+1) + 𝑐𝐵(𝑖+1) , 𝑠𝐵 = 0, 𝑠 ≥ 0 is feasible. Such an 𝑖 must exist as the corresponding system for 𝐵
for 𝑖 = 𝑡 + 1 is feasible, while the system for 𝑖 = 0 is not. This property is monotone in the sense
that if the system corresponding to 𝑖 is feasible, so is the system for all 𝑗 ≥ 𝑖. Therefore, we are able
to find the index 𝑖 via binary search in log(𝑛) calls to the feasibility algorithm for the dual systems.

Let now 𝑠 be such a solution to the system corresponding to 𝑖 + 1. Note that the final primal
solution 𝑥 is supported on 𝐵, hence

〈
𝑥∗
𝐵(𝑖+1) , 𝑠

〉
= 0. Let us extend 𝑠 arbitrarily to an element

𝑠 ∈ 𝑊𝐵(𝑖) + 𝑐𝐵(𝑖) , i.e., 𝑠𝐵(𝑖+1) = 𝑠. Then, we still have
〈
𝑥∗
𝐵(𝑖)
, 𝑠

〉
= 0. We now apply the constructive

Hoffman proximity theorem ℋ to 𝑠 − 𝑠(𝑖), where we use appropriate lower and upper bounds such
that all the augmentations we perform on 𝑠(𝑖) are either increasing negative coordinates of 𝑠(𝑖) or are
improving the objective with respect to 𝑥(𝑖). We must have that this call to ℋ results in a certificate
in 𝒞(𝑊,𝑀). The alternative would be that the augmentation succeeded. But then, by choice of
the coordinates in 𝐵(𝑖) \ 𝐵(𝑖+1) we would have that the resulting vector 𝑠 would be non-negative on
𝐵(𝑖) \ 𝐵(𝑖+1), hence it would fulfill 𝑠 ≥ 0. Further, its objective value is no worse than the objective
value of 𝑠, hence ⟨𝑥∗ , 𝑠⟩ = 0 and so 𝑠𝐵 = 0. In particular, 𝑠 is feasible to 𝑠 ∈𝑊𝐵(𝑖) + 𝑐𝐵(𝑖) , 𝑠𝐵 = 0, 𝑠 ≥ 0.
This is a contradiction to the assumption that the system is infeasible. □

By proving Theorem 7.6.2, we also proved the special case Theorem 7.1.2.
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7.6.2 The Inner Loop

Proof of Lemma 7.6.1. The proof will be a generalization of the proof of Theorem 7.5.2. We assume
the case that the algorithm returned (𝑥′, 𝑠′) ∈ Alg-Opt(𝑊, 𝑑, 𝑐, 𝑀, 𝜀sub). The other scenarios are
handled as bad case scenarios in the analysis. We use the variable names in the algorithm and begin
by showing the primal proximity constraint (7.41d). For this, we first prove a proximity claim
regarding 𝑥.

Claim 7.6.2.1. ∥𝑥 − 𝑑∥ ≤ 4𝐶po∥𝑑Λ(𝑑,𝑐)∥ and ∥𝑥−∥ ≤ 𝜀∥𝑑Λ(𝑑,𝑐) |∥.

Proof. If �̄� = 𝑑, then from the feasibility of (𝑥, 𝑠) to Prox-Opt(𝑊, �̄�, 𝑐, 𝑐, 𝑀, 𝜀), we have ∥𝑥 − 𝑑∥ ≤
𝐶po∥𝑑Λ(𝑑,𝑐)∥ and ∥𝑥−∥ ≤ 𝜀∥𝑑Λ(𝑑,𝑐)∥, so we are done.

In the case �̄� ≠ 𝑑, we have �̄� = Π𝑊⊥(𝑑), ∥𝑑Λ(𝑑,𝑐)∥ > ∥Π𝑊⊥(𝑑)∥ and ∥𝑑Λ(𝑑,𝑐)∥ > ∥𝑑∥
2𝐶po

. So

∥𝑥 − 𝑑∥ ≤ ∥𝑥 −Π𝑊⊥(𝑑)∥ + ∥Π𝑊⊥(𝑑)∥ + ∥𝑑∥
≤ 𝐶po∥Π𝑊⊥(𝑑)∥ + ∥Π𝑊⊥(𝑑)∥ + 2𝐶po∥𝑑Λ(𝑑,𝑐)∥
≤ (𝐶po + 1)∥Π𝑊⊥(𝑑)∥ + 2𝐶po∥𝑑Λ(𝑑,𝑐)∥
≤ (2𝐶po + 2𝐶po)∥𝑑Λ(𝑑,𝑐)∥
≤ 4𝐶po∥𝑑Λ(𝑑,𝑐)∥ , and

∥𝑥−∥ ≤ 𝜀∥Π𝑊⊥(𝑑)−∥ ≤ 𝜀∥Π𝑊⊥(𝑑)∥ ≤ 𝜀∥𝑑Λ(𝑑,𝑐)∥ ,

proving the claim. ■

If �̄� = 𝑑, then ∥𝑥 ◦ 𝑠∥ ≤ 𝜀∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥ by (7.42c) in System 7.13. Else, �̄� = Π𝑊⊥(𝑑) and
Π𝑊⊥(𝑑) ≥ ∥𝑑Λ(𝑑,𝑐)∥, implying ∥𝑥 ◦ 𝑠∥ ≤ 𝜀∥Π𝑊⊥(𝑑)∥∥𝑐∥ ≤ ∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥ as well. Further, we have for
all 𝑗 ∈ supp(𝑠) that 𝑠 𝑗 ≥ 𝑛−1/2𝜀sub∥𝑐∥. Hence, for all 𝑗 ∈ supp(𝑠)we have

𝑥 𝑗 ≤
∥𝑥 ◦ 𝑠∥
𝑠 𝑗

≤ ∥𝑥 ◦ 𝑠∥
𝑠 𝑗

≤
√
𝑛𝜀∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥

𝜀sub∥𝑐∥
=

√
𝑛𝜀∥𝑑Λ(𝑑,𝑐)∥

𝜀sub
, (7.23)

and so with the equation above and Claim 7.6.2.1

∥𝑥Λ(𝑥,𝑠)∥ ≤ ∥𝑥−∥ + ∥𝑥supp(𝑠)∥
(7.23)
≤ 𝜀∥𝑑Λ(𝑑,𝑐)∥ +

𝑛𝜀
𝜀sub
∥𝑑Λ(𝑑,𝑐)∥ ≤

2𝜀𝑛
𝜀sub
∥𝑑Λ(𝑑,𝑐)∥ . (7.24)

We can assume that ∥𝑤∥∞ ≤ 𝑀∥(𝑣 − 𝑥𝐼 ,−𝑥𝐽 , 0𝐽\𝐽)∥1 as otherwise we would have concluded with a
certificate in ℭ(𝑊,𝑀) on Line 30.

Therefore, by assumption,

∥𝑤∥ ≤
√
𝑛
𝐿𝑊𝐼∪𝐽 (𝑣 − 𝑥𝐼 ,−𝑥𝐽 , 0𝐽\𝐽 )∞

≤ 𝑀
√
𝑛∥(𝑣 − 𝑥𝐼 ,−𝑥𝐽 , 0𝐽\𝐽)∥1

≤ 𝑀
√
𝑛
(
𝐶

alg
po ∥𝑥Λ(𝑥𝐼 ,𝑠𝐼 )∥1 + ∥𝑥Λ(𝑥𝐽 ,𝑠 𝐽 )∥1

)
≤ 𝑀
√
𝑛𝐶

alg
po ∥𝑥Λ(𝑥,𝑠)∥1

≤ 𝑀𝑛𝐶
alg
po ∥𝑥Λ(𝑥,𝑠)∥

(7.24)
≤

2𝜀𝑛2𝑀𝐶
alg
po

𝜀sub
∥𝑑Λ(𝑑,𝑐)∥ ,

(7.25)
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where we used the feasibility of (𝑣, 𝑢) to Alg-Opt(𝜋𝐼(𝑊), 𝑥𝐼 , 𝑠 𝐼 , 𝑀, 𝜀sub) and that 𝐽 ⊆ Λ(𝑥, 𝑠) by
definition. UsingClaim 7.6.2.1 and the inequlaity above we can deduce that

∥𝑥′ − 𝑑∥ ≤ ∥𝑥 − 𝑑∥ + ∥𝑥′ − 𝑥∥ (7.26)

≤ ∥𝑥 − 𝑑∥ + ∥𝑤∥ (7.27)
(7.25)
≤

(
4𝐶po +

2𝜀𝑛2𝑀

𝜀sub
𝐶

alg
po

)
∥𝑑Λ(𝑑,𝑐)∥ (7.28)

≤ 𝐶alg
po ∥𝑑Λ(𝑑,𝑐)∥ , (7.29)

showing (7.41d).

Recursion on smaller subset: We show that 𝐾 ≠ ∅. If �̄� = 𝑑 then either ∥𝑑Λ(𝑑,𝑐)∥ ≤ ∥Π𝑊⊥(𝑑)∥ or
∥𝑑Λ(𝑑,𝑐)∥ ≤ ∥𝑑∥/(2𝐶po). If ∥𝑑Λ(𝑑,𝑐)∥ ≤ ∥Π𝑊⊥(𝑑)∥ then,

∥𝑥∥∞ ≥
∥𝑥∥√
𝑛
≥ ∥Π𝑊⊥(𝑑)∥√

𝑛
≥
∥𝑑Λ(𝑑,𝑐)∥√

𝑛

(7.24)
≥ 𝜀sub

2𝜀𝑛1.5 ∥𝑥Λ(𝑥,𝑠)∥ ≥ T∥𝑥Λ(𝑥,𝑠)∥ ,

and if ∥𝑑Λ(𝑑,𝑐)∥ ≤ ∥𝑑∥
2𝐶po

, then ∥𝑥 − �̄�∥ ≤ 𝐶po∥𝑑Λ(𝑑,𝑐)∥ by feasibility to Prox-Opt(𝑊, �̄�, 𝑐, 𝑐, 𝑀, 𝜀) and
so

∥𝑥∥ ≥ ∥𝑑∥−∥𝑥−𝑑∥ ≥ 2𝐶po∥𝑑Λ(𝑑,𝑐)∥−𝐶po∥𝑑Λ(𝑑,𝑐)∥ = 𝐶po∥𝑑Λ(𝑑,𝑐)∥
(7.24)
≥ 𝐶po

𝜀sub
2𝜀𝑛 ∥𝑥Λ(𝑥,𝑠)∥ ≥

√
𝑛T∥𝑥Λ(𝑥,𝑠)∥ ,

and hence ∥𝑥∥∞ ≥ T∥𝑥−∥. The remaining case is �̄� = Π𝑊⊥(𝑑). Then we have ∥𝑥−∥ ≤ 𝜀∥Π𝑊⊥(𝑑)∥
and

𝑥 𝑗 ≤
∥𝑥 ◦ 𝑠∥
𝑠 𝑗

≤ ∥𝑥 ◦ 𝑠∥
𝑠 𝑗

≤
√
𝑛𝜀∥Π𝑊⊥(𝑑)∥∥𝑐∥

𝜀sub∥𝑐∥
=

√
𝑛𝜀∥Π𝑊⊥(𝑑)∥

𝜀sub
. (7.30)

and therefore

∥𝑥Λ(𝑥,𝑠)∥ ≤ ∥𝑥−∥ + ∥𝑥supp(𝑠)∥
(7.23)
≤ 𝜀∥Π𝑊⊥(𝑑)∥ +

𝑛𝜀
𝜀sub
∥Π𝑊⊥(𝑑)∥ ≤

2𝜀𝑛
𝜀sub
∥Π𝑊⊥(𝑑)∥ . (7.31)

and so
∥𝑥∥∞ ≥

∥𝑥∥√
𝑛
≥ ∥Π𝑊⊥(𝑑)∥√

𝑛
≥ 𝜀sub

2𝜀𝑛1.5 ∥𝑥Λ(𝑥,𝑠)∥ ≤ T∥𝑥Λ(𝑥,𝑠)∥ .

In all cases we therefore conclude that ∥𝑥∥∞ ≥ T∥𝑥−∥. Hence 𝐾 ≠ ∅ and |𝐼 | ≤ 𝑛 − 1.

We now show that 𝑥′ is well-defined. This requires that 𝑤 is well-defined, which in turn requires
that (𝑣 − 𝑥𝐼 ,−𝑥𝐽 , 0𝐽\𝐽) ∈ 𝜋𝐼∪𝐽(𝑊) (Line 28). By definition of 𝐽, we have that 𝜋𝐽(𝑊) = R𝐽 and
𝜋𝐼∪𝐽(𝑊) = 𝜋𝐼(𝑊) ×R𝐽 . As 𝑣 is the primal variable of the recursive call to Alg-Opt we have that
𝑣 ∈ 𝜋𝐼(𝑊) + 𝑥𝐼 and so 𝑣 − 𝑥𝐼 ∈ 𝜋𝐼(𝑊), implying (𝑣 − 𝑥𝐼 ,−𝑥𝐽 , 0𝐽\𝐽) ∈ 𝜋𝐼(𝑊) × R𝐽 = 𝜋𝐼∪𝐽(𝑊). The

containment 𝑥′ ∈𝑊 + 𝑑 is now immediate as 𝐿𝑊
𝐼∪𝐽

(
𝑣 − 𝑥𝐼 ,−𝑥𝐽 , 0𝐽\𝐽

)
∈𝑊 . Hence, we have (7.41a).

For the dual subspace constraint (7.41b) note that 𝑢 ∈ (𝑊⊥)𝐼 + 𝑠 𝐼 and so 𝑠′ = (𝑠 𝐽∪𝐾 , 𝑢) + 𝑠 − 𝑠 ∈
𝑊⊥ + 𝑠 + 𝑠 − 𝑠 =𝑊⊥ + 𝑠 =𝑊⊥ + 𝑐.

Let us verify the primal non-negativity constraint (7.41e). For 𝑖 ∈ 𝐼 we have 𝑥′
𝑖
= 𝑥𝑖 + (𝑣𝑖 − 𝑥𝑖) =

𝑣𝑖 ≥ 0. For 𝑗 ∈ 𝐽 we have 𝑥′
𝑗
= 𝑥 𝑗 − 𝑥 𝑗 = 0 and for 𝑗 ∈ 𝐽 \ 𝐽 we have 𝑥′

𝑗
= 𝑥 𝑗 ≥ 0. It remains

to show the non-negativity on 𝐾. By definition of 𝑣 and the constraint (7.41d) we have that
∥𝑣 − 𝑥𝐼 ∥ ≤ 𝐶alg

po ∥𝑥Λ(𝑥𝐼 ,𝑠𝐼 )∥.
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Hence, for 𝑖 ∈ 𝐾 we have 𝑥′
𝑖
≥ 𝑥𝑖 − ∥𝐿𝑊𝐼∪𝐽

(
(𝑣 − 𝑥𝐼 , 𝑥−𝐽 )

)
∥∞ ≥ (T −𝑀𝑛𝐶

alg
po )∥𝑥Λ(𝑥,𝑠)∥ = 0, proving

(7.41e).
We now show (7.41c). Note that 𝑠 ≥ 0 as ∥𝑠−∥∞ ≤ ∥𝑠−∥ ≤ 𝜀sub∥𝑐∥ and so 𝑠 𝑖 = 0 for all 𝑖 ∈ [𝑛]

with 𝑠𝑖 ≤ 0. Further note that 𝑥′
𝐽
= 0 and 𝑠𝐾∪(𝐽\𝐽) = 0 by construction. Hence,

∥𝑠Λ(𝑠′ ,𝑥′)∩(𝐾𝑈𝐽)∥ = 0 , (7.32)

Note that 𝜋𝐽
(
(𝑊⊥)𝐽∪𝐼

)
= {0} because 𝐽 = cl(𝐾) \ 𝐾, so we can apply Proposition 7.2.3.

Further, note that ∥𝑠 − 𝑠∥ ≤ 𝜀sub∥𝑐∥ ≤ 𝜀sub𝜒𝑊⊥(𝑐). And so

�̃�𝑊⊥(𝑐, 𝑛𝜀sub𝜒𝑊⊥(𝑐)) = �̃�𝑊⊥(𝑠, 𝑛𝜀sub𝜒𝑊⊥(𝑐))
≥ �̃�𝑊⊥(𝑠 − (𝑠 − 𝑠), 𝑛𝜀sub𝜒𝑊⊥(𝑐) − ∥𝑠 − 𝑠∥)
≥ �̃�𝑊⊥(𝑠, (𝑛 − 1)𝜀sub𝜒𝑊⊥(𝑐))
≥ �̃�(𝑊⊥)𝐼∪𝐽

(
𝑠 𝐼∪𝐽 , (𝑛 − 1)𝜀sub𝜒𝑊⊥(𝑐)

)
≥ �̃�(𝑊⊥)𝐼 (𝑠 𝐼 , (𝑛 − 1)𝜀sub𝜒𝑊⊥(𝑐)) ,

(7.33)

where the third inequality uses 𝑠𝐾 = 0 with Proposition 7.2.1 and the last inequality follows from
Proposition 7.2.3 where we use 𝜋𝐽

(
(𝑊⊥)𝐽∪𝐼

)
= {0}. Hence,

∥𝑠′
Λ(𝑠′ ,𝑥′)∥ ≤

(𝑢, 𝑠 𝐽∪𝐾 )Λ(𝑠′ ,𝑥′) + ∥𝑠 − 𝑠∥ (7.34)

≤ ∥𝑢Λ(𝑢,𝑥′)∩𝐼 ∥ + ∥𝑠Λ(𝑠′ ,𝑥′)∩(𝐾∪𝐽)∥ + ∥𝑠 − 𝑠∥ (7.35)

≤ ∥𝑢Λ(𝑢,𝑣)∥ + ∥𝑠Λ(𝑠′ ,𝑥′)∩(𝐾∪𝐽)∥ + ∥𝑠 − 𝑠∥ (7.36)

≤ |𝐼 |𝜀sub�̃�(𝑊⊥)𝐼 (𝑠𝐼 , |𝐼 |𝜀sub𝜒(𝑊⊥)𝐼 (𝑠𝐼)) + 0 + 𝜀sub𝜒𝑊⊥(𝑐) (7.37)

≤ |𝐼 |𝜀sub�̃�𝑊⊥(𝑐, 𝑛𝜀sub𝜒𝑊⊥(𝑐)) + 𝜀sub𝜒𝑊⊥(𝑐) (7.38)

≤ (|𝐼 | + 1)𝜀sub�̃�𝑊⊥(𝑐, 𝑛𝜀sub𝜒𝑊⊥(𝑐)) (7.39)

≤ 𝑛𝜀sub�̃�𝑊⊥(𝑐, 𝑛𝜀sub𝜒𝑊⊥(𝑐)) . (7.40)

Here, (7.37) follows from the feasibility of (𝑣, 𝑢) to the recursive system Alg-Opt(𝜋𝐼(𝑊), 𝑥𝐼 , 𝑠 𝐼 , 𝑀, 𝜀sub)
and (7.32). Further, (7.38) follows from (7.33). (7.39) follows from 𝜒𝑊⊥(𝑐) ≤ �̃�𝑊⊥(𝑐, 0).

Infeasibility certificate. Assume our algorithm resulted in a certificate of primal feasibility of
LP(𝜋𝐼(𝑊), 𝑥𝐼). Then by Fact 7.2.7, this certificate can canonically be lifted to a certificate of primal
infeasibility of LP(𝑊, 𝑑).

Running time. The runtime is dominated by the 𝑚 recursive calls to InnerLoop and the calls to
the Proximal-Opt-Oracle as well as the projection that we perform. Note that the lift in line 28 boils
down to another projection. Hence, the runtime claim follows. □
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Algorithm 7.3: InnerLoop

Input :𝑊 ⊆ R𝑛 , 𝑐 ∈ R𝑛+, 𝑑 ∈ R𝑛 , 𝑀 ≥ 1, error 𝜀sub > 0.
Output :A solution to Alg-Opt(𝑊, 𝑑, 𝑐, 𝑀, 𝜀sub), an element in 𝔉(𝑊, 𝑑) or an element in ℭ(𝑊,𝑀).

1 if (𝑑, 𝑐) ∈ Alg-Opt(𝑊, 𝑑, 𝑐, 𝑀) then
2 return (𝑑, 𝑐)

3 T← 𝑀𝑛𝐶
alg
po , 𝜀←

𝜀sub
𝑛3T

4 �̄�← 𝑑

5 if ∥𝑑Λ(𝑑,𝑐)∥ > max
{
∥Π𝑊⊥ (𝑑)∥ , ∥𝑑∥2𝐶po

}
then

6 �̄�← Π𝑊⊥ (�̄�)
7 𝑆← supp(𝑐)
8 𝑐 ← Π(𝑊𝑆×R[𝑛]\𝑆)(𝑐)
9 ♦ ← Proximal-Opt-Oracle(𝑊, �̄�, 𝑐, 𝑐, 𝑀, 𝜀)

10 switch ♦ do
11 case (i) ♦ ∈ Prox-Opt(𝑊, �̄�, 𝑐, 𝑐, 𝑀, 𝜀) do
12 go to 18
13 case (ii) ♦ ∈ 𝔉(𝑊, 𝑑) do
14 return ♦
15 // Note that (iii) can not occur as a

feasible dual is part of the input
16 case (iv) ♦ ∈ ℭ(𝑊,𝑀) do
17 return ♦

18 (𝑥, 𝑠) ← ♦
19 𝑠 ← ess

(
𝑠,

𝜀sub√
𝑛
∥𝑐∥

)

20 𝐾 ←
{
𝑖 ∈ [𝑛] : 𝑥𝑖 ≥ T∥𝑥Λ(𝑥,𝑠)∥

}
21 𝐽 ← cl(𝐾) \ 𝐾
22 𝐼 ← [𝑛] \ cl(𝐾)
23 ♠ ← InnerLoop(𝜋𝐼 (𝑊), 𝑥𝐼 , 𝑠𝐼 , 𝑀, 𝜀sub)
24 switch ♠ do
25 case ♠ ∈ Alg-Opt(𝜋𝐼 (𝑊), 𝑥𝐼 , 𝑠𝐼 , 𝑀) do
26 (𝑣, 𝑢) ← ♠
27 𝐽 ← Λ(𝑥, 𝑠) ∩ 𝐽
28 𝑤 ← 𝐿𝑊

𝐼∪𝐽 (𝑣 − 𝑥𝐼 ,−𝑥𝐽 , 0𝐽\𝐽 )
29 if ∥𝑤∥∞ > 𝑀∥(𝑣 − 𝑥𝐼 ,−𝑥𝐽 , 0𝐽\𝐽 )∥1 then
30 return generated certificate in ℭ(𝑊,𝑀)
31 𝑥′← 𝑥 + 𝑤
32 𝑠′←

(
𝑢, 𝑠 𝐽∪𝐾

)
+ 𝑠 − 𝑠

33 return (𝑥′, 𝑠′) // feasible to
Alg-Opt(𝑊, 𝑑, 𝑐, 𝑀)

34 case ♠ ∈ 𝔉(𝜋𝐼 (𝑊), 𝑥𝐼 ) do
35 return lifted certificate in 𝔉(𝑊, 𝑑) // using

Fact 7.2.7
36

37 case ♠ ∈ ℭ(𝜋𝐼 (𝑊), 𝑀) do
38 return lifted certficate in ℭ(𝑊,𝑀)

System 7.12. Alg-Opt

Data: A tuple (𝑊, 𝑑, 𝑐, 𝑀, 𝜀sub), where𝑊 ⊆ R𝑛 is a subspace, 𝑐, 𝑑 ∈ R𝑛 , 𝑐 ≥ 0, guess 𝑀 ≥ 1
and a dual error 𝜀sub.

find 𝑥, 𝑠 ∈ R𝑛

s.t. 𝑥 ∈𝑊 + 𝑑 (primal subspace constraint), (7.41a)

𝑠 ∈𝑊⊥ + 𝑐 (dual subspace constraint), (7.41b)

∥𝑠Λ(𝑠,𝑥)∥ ≤ 𝑛𝜀sub�̃�𝑊⊥ (𝑐, 𝑛𝜀sub𝜒𝑊⊥ (𝑐)) (apx. compl., dual feas.), (7.41c)

∥𝑥 − 𝑑∥ ≤ 𝐶alg
po ∥𝑑Λ(𝑑,𝑐)∥ (Primal proximity constraint), (7.41d)

𝑥 ≥ 0 (Primal Non-negativity) (7.41e)

where 𝐶alg
po ≔ 8𝐶po = poly(𝑀, 𝑛).

Note that the factor 𝑛 shows up on the right-hand-side of Equation (7.41c) because we need to
provide some slack for the recursive calls to work where the number of variables is smaller of 𝑛.
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System 7.13. Prox-Opt

Data: A tuple (𝑊, 𝑑, 𝑐, 𝑐, 𝑀, 𝜀), where 𝑊 ⊆ R𝑛 is a subspace, 𝑐, 𝑐, 𝑑 ∈ R𝑛 , 𝑐 ≥ 0, guess
𝑀 ≥ 1, and 𝜀 > 0 s.t. 𝑐 − 𝑐 ∈𝑊⊥ and supp(𝑐) ⊆ supp(𝑐).

find 𝑥, 𝑠 ∈ R𝑛

s.t. 𝑥 ∈𝑊 + 𝑑 (Primal Subspace constraint), (7.42a)

𝑠 ∈𝑊⊥ + 𝑐 (Dual Subspace constraint), (7.42b)

∥𝑥 ◦ 𝑠∥ ≤ 𝜀∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥ (Apx. complementarity), (7.42c)

∥𝑥 − 𝑑∥ ≤ 𝐶po∥𝑑Λ(𝑑,𝑐)∥ (Primal proximity), (7.42d)

∥𝑥−∥ ≤ 𝜀∥𝑑Λ(𝑑,𝑐)∥ (Primal near non-negativity), (7.42e)

∥𝑠−∥ ≤ 𝜀∥𝑐∥ (Dual near non-negativity), (7.42f)

∥𝑠∥ ≤ 𝐶o∥𝑐∥ (Dual norm bound) (7.42g)

where 𝐶po ≔ 8𝐶o𝑀𝑛3/2 = poly(𝑛, 𝑀).

Oracle 7.2. Proximal-Opt-Oracle

Input: Data (𝑊, 𝑑, 𝑐, 𝑐, 𝑀, 𝜀) for Prox-Opt (System 7.13).

Output: One of the following:

(i) A solution (𝑥, 𝑠) to Prox-Opt(𝑊, 𝑑, 𝑐, 𝑐, 𝑀, 𝜀),

(ii) A Farkas certificate 𝑦 ∈ 𝔉(𝑊, 𝑑),

(iii) A Farkas certificate 𝑦 ∈ 𝔉(𝑊⊥ , 𝑐),

(iv) A lifting certificate (𝐼 , 𝑝) ∈ ℭ(𝑊,𝑀).

The implementation of Oracle 7.2 is given in Section 7.7.2, using Theorem 7.4.7.

Lemma 7.6.3 (Proof on p. 189). There exists an implementation of Proximal-Opt-Oracle (Oracle 7.2) for
data (𝑊, 𝑑, 𝑐, 𝑐, 𝑀, 𝜀) with following running times, depending on the outcomes:

Outcome Running time

(i) 𝑂
(
Ψ(A) log(𝑀𝜀−1)

)
(ii), (iii), (iv) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋim(A⊤))

7.7 Implementation of oracles and subroutines

All of the fast LP solvers we are going to use in a black-box manner are based on interior point
methods. The papers [Bra20; CLS19; JSWZ21] use the standard log barrier, while the papers
[BTSS20; LS19] are using a different central path based on leverage scores, or more generally Lewis
weights. Another new result shows faster running times for matrices with small treewidth [DLY21].
Interior point methods rely on a primal-dual centered initialization point which is not easy to
achieve for the original problem. Therefore, all the above-mentioned papers use an auxiliary
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system for initialization, that has the property that near-optimal solutions to this system can be
rounded to near-optimal and near-feasible solutions of the original system. We could apply their
main theorems here, but we feel that the reader would benefit more from a general exposition of the
main theorems in of the above-mentioned papers. The discussion in this paragraph is summarized
in the following theorem:

Theorem 7.7.1 ([Bra+21; Bra20; DLY21; JSWZ21; LS19]). Consider System 1.1 for A ∈ R𝑚×𝑛 with
rk(A) = 𝑚. Assume that primal and dual are feasible and furthermore a primal-dual feasible pair
(𝑥0 , 𝑠0) ∈ R𝑛+𝑛 with ∥𝑥0 ◦ 𝑠0 − 𝜇01𝑛 ∥ < 0.5 is given for some 𝜇0 > 0. Then a primal-dual feasible pair
(𝑥, 𝑠) ∈ R𝑛+𝑛 with duality gap ⟨𝑥, 𝑠⟩ ≤ 𝜇 can be found in time

(1) In 𝑂((𝑚𝑛 + 𝑚2.5) log(𝜇0/𝜇)
)

expected running time [Bra+21].

(2) In 𝑂
(
𝑛𝜔 log(𝜇0/𝜇)

)
deterministic running time, assuming 𝜔 ≥ 13/6 [Bra20]. The same expected

running time is achievable assuming 𝜔 ≥ 2 + 1/18 [JSWZ21].

(3) In 𝑂
(
(nnz(A) + 𝑚2)

√
𝑚 log(𝜇0/𝜇)

)
expected running time [LS19], where nnz(A) denotes the

number of nonzero entries in A.

(4) In 𝑂(𝑛tw(A)2 log(𝜇0/𝜇)) expected running time, where tw(A) is the treewidth of the matrix A.

Note that the all the implementations of Oracle 7.3 are interior point methods, which heavily
makes use of the given initial point (𝑥0 , 𝑠0). On the other hand, other implementations of the oracle
could be based on cutting plane methods or combinatorial algorithms that could just ignore the
initially given solution (𝑥0 , 𝑠0).

Oracle 7.3. Blackbox-Approx-Solver

Input: An instance of LP(A, 𝑑, 𝑐) with feasible primal-dual pair (𝑥0 , 𝑠0) such that ∥𝑥0 ◦ 𝑠0 −
𝜇01∥ ≤ 1

2 for some 𝜇0 ≥ 0 and 𝜇 > 0.

Output: A feasible solution (𝑥, 𝑠) to LP(A, 𝑑, 𝑐)with ⟨𝑥, 𝑠⟩ ≤ 𝜇.

7.7.1 Proofs of Theorem 7.4.6 and Theorem 7.4.7

We create the auxiliary System 7.14 which for a correct guess 𝑀 (i.e., 𝑀 ≥ 𝜅𝑊 ) maintains optimal
solutions of the original instance, and which can be initialized close to the central path of the
standard log-barrier. Note that 𝜅 and �̄� can be significantly larger in System 7.14 than in the original
System 1.1. Fortunately this does not matter, as we only aim for approximate solutions to the system.
Importantly, this new system preserves sparsity and rank patterns, which is necessary to achieve
the runtimes claimed in Theorem 7.7.1 under the mild Assumption 7.4.5. We state System 7.14 in
both matrix formulation and subspace formulation. The matrix formulation confirms that we can
use Assumption 7.4.5. The subspace formulation will be used in the remainder of this section.
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System 7.14. Initialization-LP

Data: Data (A, 𝑑, 𝑐) for an instance of LP with data and values 𝑀𝑃 , 𝑀𝐷 ≥ 0.

min ⟨𝑐, 𝑥 − ¯
𝑥⟩+𝑀𝑃 ⟨1, ¯

𝑥⟩ max ⟨𝑦,A𝑑⟩−𝑀𝐷𝑠

A𝑥 −A
¯
𝑥 = A𝑑 A⊤𝑦 + 𝑠 − 𝑠1 = 𝑐

𝑛∑
𝑖=1

𝑥𝑖 + �̄� = 𝑀𝐷 −A⊤𝑦 +
¯
𝑠 = 𝑀𝑃1 − 𝑐

𝑥, �̄�,
¯
𝑥 ≥ 0 𝑠, 𝑠,

¯
𝑠 ≥ 0,

min ⟨𝑐, 𝑥 − ¯
𝑥⟩+𝑀𝑃 ⟨1, ¯

𝑥⟩ max ⟨𝑐 − 𝑠 + 𝑠1, 𝑑⟩−𝑀𝐷𝑠

𝑥 −
¯
𝑥 ∈𝑊 + 𝑑 𝑠 − 𝑠1 ∈𝑊⊥ + 𝑐

𝑛∑
𝑖=1

𝑥𝑖 + �̄� = 𝑀𝐷 𝑠 − 𝑠1 +
¯
𝑠 = 𝑀𝑃1

𝑥, �̄�,
¯
𝑥 ≥ 0 𝑠, 𝑠,

¯
𝑠 ≥ 0,

Lemma 7.7.2 (Initialization). If 𝑀𝑃 ≥ 𝐶∥𝑐∥, 𝑀𝐷 ≥ (𝑛 + 1)𝐶∥𝑑∥ and 𝐶 = 4, then System 7.14 can be
initialized near the central path induced by the standard log-barrier with parameter

𝜇0 = 𝑂

(
𝑀𝑃𝑀𝐷

𝑛 + 1

)
= 𝑂(∥𝑐∥∥𝑑∥). (7.43)

Proof. For the primal side set 𝑥 = 1
𝑛+1𝑀𝐷1,

¯
𝑥 = 1

𝑛+1 (𝑀𝐷1 − 𝑑), �̄� = 1
𝑛+1𝑀𝐷 and on the dual side

𝑦 = 0, 𝑠 = 𝑀𝑃1,
¯
𝑠 = 𝑀𝑃1 + 𝑐, 𝑠 = 𝑀𝑃 . It is easy to see that (𝑥,

¯
𝑥, �̄�, 𝑦, 𝑠,

¯
𝑠, 𝑠) is a feasible solution to

Initialization-LP (System 7.14). Further, for 𝜇 = 1
𝑛+1𝑀𝑃𝑀𝐷 we have that

∥1 − 𝜇−1
0 (𝑥 ◦ 𝑠, ¯

𝑥 ◦
¯
𝑠, �̄� ◦ 𝑠)∥ =

√
∥1 − 𝜇−1𝑥 ◦ 𝑠∥2 + ∥1 − 𝜇−1

¯
𝑥 ◦
¯
𝑠∥2 + ∥1 − 𝜇−1 �̄� ◦ 𝑠∥2

=

√
0 + ∥1 − 1

(𝑛 + 1)𝜇 (𝑀𝐷1 − 𝑑) ◦ (𝑀𝑃1 + 𝑐)∥2 + 0

=
1

𝑀𝑃𝑀𝐷
∥𝑑 ◦ 𝑐 −𝑀𝐷1 ◦ 𝑐 +𝑀𝑃1 ◦ 𝑑∥

=

(
1

𝐶2(𝑛 + 1) +
1
𝐶
+ 1
𝐶(𝑛 + 1)

)
≤ 2
𝐶

≤ 1
2 ,

proving that the inital point is in the desired neighborhood of the central path. □

Proofs of Theorem 7.4.6 and Theorem 7.4.7

Theorem 7.4.6 (Restatement). There exists a pair of algorithms (Algorithm 7.4 and Algorithm 7.5) that
returns either of the following outcomes:

(F1) Near feasible primal-dual solutions (𝑥, 𝑠) such that

(F1.1) 𝑥 is feasible to Apx-Feas(𝑊, 𝑑, 𝑀, 𝜀), and
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Algorithm 7.4: Apx-Feasibility-Primal
Input : Instance of Primal with data (𝑊, 𝑑), 𝜀 > 0,
Output :One in {(F1.1), (F2), (F4)}.

1 if 𝑑 = 0 then
2 return 0 ⊲ Case (F1.1)

3 𝑐 ← 0, 𝑀𝑃 ← 1, 𝑀𝐷 ← (𝐶f − 1)∥𝑑∥ , 𝜇← 𝜀∥𝑑∥
4 (
¯
𝑥, 𝑥, �̄�,

¯
𝑠, 𝑠, 𝑠) ← Blackbox-Approx-Solver(Initialization-LP(𝑀𝑃 , 𝑀𝐷), 𝜇))

5 if ⟨𝑑, 𝑠 − 𝑠1⟩ +𝑀𝐷 𝑠 ≥ 0 then
6 return 𝑥 −

¯
𝑥 ⊲ Case (F1.1)

7 else
8 ♦ ← 𝒽

𝑛×𝑚
im (A⊤ , supp((𝑠 − 𝑠1)−), 𝐽 , 𝑀)

9 return ♦ ⊲ Case (F2) or (F4)

Algorithm 7.5: Apx-Feasibility-Dual
Input : Instance of Dual with data (𝑊, 𝑐), 𝜀 > 0,
Output :One in {(F1.2), (F3) , (F4)}.

1 if 𝑐 = 0 then
2 return 0 ⊲ Case (F1.2)

3 𝑑← 0, 𝑀𝑃 ← 𝑛−1/2𝐶f∥𝑐∥ , 𝑀𝐷 ← 1, 𝜇← 𝜀∥𝑐∥
4 (
¯
𝑥, 𝑥, �̄�,

¯
𝑠, 𝑠, 𝑠) ← Blackbox-Approx-Solver(Initialization-LP(𝑀𝑃 , 𝑀𝐷), 𝜇)

5 if ⟨𝑐, 𝑥 − ¯
𝑥⟩ +𝑀𝑃 ⟨1, ¯

𝑥⟩ ≥ 0 then
6 return 𝑠 − 𝑠 ⊲ Case (F1.2)

7 else
8 ♦ ← 𝒽

𝑚×𝑛
ker (A, supp((𝑥 −

¯
𝑥)−), 𝐽 , 𝑀)

9 return ♦ ⊲ Case (F3) or (F4)

(F1.2) 𝑠 is feasible to Apx-Feas(𝑊⊥ , 𝑐, 𝑀, 𝜀).

(F2) A Farkas certificate of primal infeasibility: 𝑦 ∈ 𝔉(𝑊, 𝑑),

(F3) A Farkas certificate of dual infeasibility: 𝑦 ∈ 𝔉(𝑊⊥ , 𝑐),

(F4) A lifting certificate (𝐼 , 𝑝) ∈ ℭ(𝑊,𝑀).

The running time depends on the outcome and is presented in Table 7.1.

Outcome Running time

(F1) 𝑂
(
Ψ(A) log(𝑀𝜀−1)

)
(F2) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (𝒽𝑛×𝑚

im (A⊤))
(F3) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (𝒽𝑚×𝑛

ker (A))
(F4) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (𝒽𝑛×𝑚

im (A⊤)) + 𝒯 (𝒽𝑚×𝑛
ker (A))

Table 7.2: Running times to implement Theorem 7.4.6

Proof of Theorem 7.4.6. Let us first find a primal near-feasible solution via Algorithm 7.4. If 𝑑 = 0,
then 𝑥 = 0 fulfills (F1.1). Otherwise, we apply Blackbox-Approx-Solver (Oracle 7.3) to System 7.14
(Initialization-LP) with data (𝑊, 𝑑) as well as (𝑐, 𝑀𝑃 , 𝑀𝐷) = (0, 1, (𝐶f − 1)∥𝑑∥) and initialize with
𝜇0 = 𝑂

( 1
𝑛+1𝑀𝑃𝑀𝐷

)
, noting that the assumptions of Lemma 7.7.2 are fulfilled. The terminating

parameters for Blackbox-Approx-Solver are set to 𝜇 = 𝜀∥𝑑∥. Note that log(𝜇0/𝜇) = 𝑂(𝜀−1𝑀)
and so in time 𝑂(Ψ(A)𝜀−1 log(𝑀)) we obtain solutions (𝑥,

¯
𝑥, �̄�) and (𝑠,

¯
𝑠, 𝑠) with duality gap
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⟨𝑥, 𝑠⟩ + ⟨¯
𝑥,
¯
𝑠⟩ + ⟨�̄� , 𝑠⟩ ≤ 𝜀∥𝑑∥. Let us distinguish between following cases based on the negated

dual objective ⟨𝑑, 𝑠 − 𝑠1⟩ +𝑀𝐷𝑠 in System 7.14.

Case I. ⟨𝑑, 𝑠 − 𝑠1⟩ +𝑀𝐷𝑠 ≥ 0. In this case, the primal objective value in System 7.14 is

⟨1, ¯
𝑥⟩ ≤ ⟨𝑑, 𝑠 − 𝑠1⟩ +𝑀𝐷𝑠 + ⟨𝑥, 𝑠⟩ + ⟨¯

𝑥,
¯
𝑠⟩ + ⟨�̄� , 𝑠⟩ ≤ 0 + 𝜀∥𝑑∥ = 𝜀∥𝑑∥. (7.44)

Now, �̂� ≔ 𝑥 −
¯
𝑥 is the required solution for (F1.1) as

�̂� ∈𝑊 + 𝑑,
∥ �̂�−∥ ≤ 𝜀∥𝑑∥ ,
∥ �̂�∥ ≤ ∥ �̂�∥1 ≤ ∥𝑥∥1 + ∥¯

𝑥∥1 ≤ (𝐶f − 1)∥𝑑∥ + 𝜀∥𝑑∥ ≤ 𝐶f∥𝑑∥ .
(7.45)

Case II. ⟨𝑑, 𝑠 − 𝑠1⟩ +𝑀𝐷𝑠 < 0. Then 𝑠 = 𝑠 − 𝑠1 ∈𝑊⊥ satisfies

⟨𝑑, 𝑠⟩ < −𝑀𝐷𝑠 = −(𝐶f − 1)∥𝑑∥𝑠 ≤ −𝑛−1(𝐶f − 1)∥𝑑∥∥𝑠−∥1 . (7.46)

Let 𝐽 ≔ supp(𝑠−). If ♦ ≔ 𝒽
𝑛×𝑚
im (A⊤ , 𝑠 , 𝐽 , 𝑀) fullfils ♦ ∈ ℭ(𝑊⊥ , 𝑀), then we terminate in case (F4).

Else, let 𝑧 ≔ ♦. Then 𝑧 ∈𝑊⊥, is sign-consistent with 𝑠, 𝑧𝐽 = 0, and ∥𝑧 − 𝑠∥∞ ≤ 𝑀∥𝑠−∥1. By the
sign-consistency, 𝑧 ≥ 0, since 𝑠𝑖 ≥ 0 for all 𝑖 ∈ [𝑛] \ 𝐽. We show that ⟨𝑑, 𝑧⟩ < 0, and consequently,
𝑧 is a Farkas certificate i.e. 𝑧 ∈ 𝔉(𝑊, 𝑑) as in (F2). This follows since

⟨𝑑, 𝑧⟩ = ⟨𝑑, 𝑠⟩ + ⟨𝑑, 𝑧 − 𝑠⟩ ≤ ⟨𝑑, 𝑠⟩ + ∥𝑑∥1∥𝑧 − 𝑠∥∞
(7.46)
< −𝑛−1𝐶f∥𝑑∥∥𝑠−∥1 +𝑀∥𝑑∥1∥𝑠−∥1 ≤ 0,

(7.47)
where the last inequality follows by definition of 𝐶f.

Analogously a near-feasible dual solution (or one of the alternatives) can be found with Algorithm 7.5.
If 𝑐 = 0, then 𝑠 = 0 fulfills (F1.2). Otherwise, we apply Blackbox-Approx-Solver (Oracle 7.3) to
System 7.14 (Initialization-LP) with data (𝑊, 𝑐) as well as (𝑑, 𝑀𝑃 , 𝑀𝐷) = (0, 𝑛−1/2𝐶f∥𝑐∥ , 1) and
initialize with 𝜇0 = 𝑂

( 1
𝑛+1𝑀𝑃𝑀𝐷

)
, noting that the assumptions of Lemma 7.7.2 are fulfilled. The

terminating parameters for Blackbox-Approx-Solver are set to 𝜇 = 𝜀∥𝑐∥. Note that log(𝜇0/𝜇) =
𝑂(𝜀−1𝑀) and so in time 𝑂(Ψ(A)𝜀−1 log(𝑀)) we obtain solutions (𝑥,

¯
𝑥, �̄�) and (𝑠,

¯
𝑠, 𝑠) with duality

gap ⟨𝑥, 𝑠⟩ + ⟨¯
𝑥,
¯
𝑠⟩ + ⟨�̄� , 𝑠⟩ ≤ 𝜀∥𝑐∥. Let us consider following cases based on the primal objective

⟨𝑐, 𝑥 − ¯
𝑥⟩ +𝑀𝑃 ⟨1, ¯

𝑥⟩.

Case I. ⟨𝑐, 𝑥 − ¯
𝑥⟩ +𝑀𝑃 ⟨1, ¯

𝑥⟩ ≥ 0. In this case, the dual objective value is

−𝑀𝐷𝑠 > ⟨𝑐, 𝑥 − ¯
𝑥⟩ +𝑀𝑃 ⟨1, ¯

𝑥⟩ − (⟨𝑥, 𝑠⟩ + ⟨¯
𝑥,
¯
𝑠⟩ + ⟨�̄� , 𝑠⟩) ≥ 0 − 𝜀∥𝑐∥ . (7.48)

Let 𝑠 ≔ 𝑠 − 𝑠1. Note that by the constraint 𝑠 +
¯
𝑠 = 𝑀𝑃1 and

¯
𝑠 ≥ we have that ∥𝑠+∥∞ ≤ 𝑀𝑃 .

Hence, we get the required solution

𝑠 ∈𝑊⊥ + 𝑐,
∥𝑠−∥ ≤

√
𝑛𝑠 ≤ 𝜀∥𝑐∥ ,

∥𝑠∥ ≤
√
𝑛∥𝑠∥∞ ≤

√
𝑛max{∥𝑠+∥∞ , ∥𝑠−∥∞} ≤

√
𝑛max{𝑀𝑃 , 𝑠} ≤ 𝐶f∥𝑐∥

(7.49)

for (F1.2).

Case II. ⟨𝑐, 𝑥 − ¯
𝑥⟩ +𝑀𝑃 ⟨1, ¯

𝑥⟩ < 0. Then �̂� ≔ 𝑥 −
¯
𝑥 ∈𝑊 satisfies

⟨𝑐, �̂�⟩ < −𝑀𝑃 ∥ ¯
𝑥∥1 = −𝑛−1/2𝐶f∥𝑐∥∥ ¯

𝑥∥1 . (7.50)
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Let 𝐽 ≔ supp(�̂�−). If ♦ ≔ 𝒽
𝑚×𝑛
ker (A, �̂� , 𝐽 , 𝑀) fulfills ♦ ∈ ℭ(𝑊,𝑀), then we terminate in (F4).

Else, let 𝑤 ≔ ♦. Then 𝑤 ∈ 𝑊 is sign-consistent with �̂�, 𝑤𝐽 = 0 and ∥𝑤 − �̂�∥∞ ≤ 𝑀∥ �̂�−∥1. By
sign-consistency 𝑤 ≥ 0, since �̂�𝑖 ≥ 0 for all 𝑖 ∈ [𝑛] \ 𝐽. We show that ⟨𝑐, 𝑤⟩ < 0, and consequently,
𝑤 ∈ 𝔉(𝑊⊥ , 𝑀) is a Farkas certificate as in (F3). This follows since

⟨𝑐, 𝑤⟩ = ⟨𝑐, �̂�⟩ + ⟨𝑐, 𝑤 − �̂�⟩ < −𝑛−1/2𝐶f∥𝑐∥∥ �̂�−∥1 +
√
𝑛𝑀∥ �̂�−∥1∥𝑐∥ ≤ 0,

where the last inequality follows by choice of 𝐶f. □

Algorithm 7.6: Apx-Optimal

Input : Instance of LP(A, 𝑑, 𝑐), 𝜀 > 0, guess 𝑀.
Output :One in {(M1), (M2), (M3), (M4)}

1 𝜀𝑜 ← min{(4𝐶o)−1 , 𝜀}
2 𝜀 𝑓 ← (4𝑛)−1𝜀𝑜
3 ♦ ← Apx-Feasibility-Primal(LP, 𝜀 𝑓 )
4 if ♦ not in Case (F1.1) then
5 return ♦
6 �̂� ← ♦
7 ♦ ← Apx-Feasibility-Dual(LP, 𝜀 𝑓 )
8 if ♦ not in Case (F1.2) then
9 return ♦

10 𝑠 ← ♦
11 𝑀𝐷 ← 4𝑀𝑛3/2𝐶f∥𝑑∥ , and, 𝑀𝑃 ← 4𝑀𝑛1/2𝐶f∥𝑐∥

12
(
¯
𝑥, 𝑥, �̄�,

¯
𝑠, 𝑠, 𝑠) ←Blackbox-Approx-Solver

(
Initialization-LP(A, 𝑑, 𝑐, 𝑀𝑃 , 𝑀𝐷), 𝜀𝑜)

)
13 �̃� ← 𝑥 −

¯
𝑥, 𝑠 ← 𝑠 − 𝑠1

14 if ∥ �̃�−∥ ≤ 𝜀𝑜 ∥𝑑∥ and ∥𝑠−∥ ≤ 𝜀𝑜 ∥𝑐∥ then
15 return (�̃� , 𝑠)

16 if ∥ �̃�−∥ > 𝜀𝑜 ∥𝑑∥ then
17 ℓ ← −�̃� + (0 ∧ �̂�)
18 𝑢 ←∞1
19 ♦ ←ℋ

𝑚×𝑛
ker (A, �̂� − �̃� , ℓ , 𝑢, 𝑀)

20 if ♦ ∈ ℭ(𝑊,𝑀) then
21 return 𝑣
22 𝑣 ← ♦
23 𝑧 ← �̃� + 𝑣
24 𝐽 ← supp

(
(𝑧 − �̂�)−

)
, 𝐼 ← [𝑛] \ 𝐽

25 ℓ̄𝐽 ← 𝑧𝐽 − �̂�𝐽 , ℓ̄𝐼 ← 0, 𝑢 ← 𝑧 − �̂�
26 ♦ ←ℋ

𝑚×𝑛
ker (A, 𝑧 − �̂� , ℓ̄ , �̄� , 𝑀)

27 if ♦ ∈ ℭ(𝑊,𝑀) then
28 return ♦
29 �̃� ← ♦
30 𝑤 ← 𝑧 − �̂� − �̃�
31 return 𝑤 ⊲ Case (F2) as we must have

⟨𝑐, 𝑤⟩ < 0
32 ⊲ We have ∥𝑠−∥ > 𝜀𝑜 ∥𝑐∥.
33 ♠ ←ℋ

𝑛×𝑚
im (A⊤ , 𝑠 − 𝑠, ℓ , 𝑢, 𝑀)

34 return ♠ ⊲ Case (M4)

Theorem 7.4.7 (Restatement). Let an instance of a linear program of the form System 1.2 and 𝑀 ≥ 1,
𝜀 > 0 be given. There exists an algorithm (Algorithm 7.6) that returns either of the following outcomes:

(M1) A pair of primal and dual near-feasible and near-optimal solutions (𝑥, 𝑠) as solutions to System 7.8,
i.e., Apx-Opt(𝑊, 𝑑, 𝑐, 𝑀, 𝜀).

(M2) A Farkas certificate of primal infeasibility 𝑦 ∈ 𝔉(𝑊, 𝑑),

(M3) A Farkas certificate of dual infeasibility 𝑦 ∈ 𝔉(𝑊⊥ , 𝑐), or

(M4) A lifting certificate (𝐼 , 𝑝) ∈ ℭ(𝑊,𝑀).

The running time depends on the outcome and is as follows:

Outcome Running time

(M1) 𝑂
(
Ψ(A) log(𝑀𝜀−1)

)
(M2) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋ𝑛×𝑚

im (A⊤))
(M3) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋ𝑚×𝑛

ker (A))
(M4) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋ𝑛×𝑚

im (A⊤)) + 𝒯 (ℋ𝑚×𝑛
ker (A))
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Proof of Theorem 7.4.7. We let

𝜀𝑜 ≔ min{(4𝐶o)−1 , 𝜀}, 𝜀 𝑓 ≔ (4𝑛)−1𝜀𝑜 , 𝑀𝐷 ≔ 4𝑀𝑛3/2𝐶f∥𝑑∥ , and 𝑀𝑃 ≔ 4𝑀𝑛1/2𝐶f∥𝑐∥.
(7.51)

First, apply the algorithms Apx-Feasibility-Primal and Apx-Feasibility-Dual to data (𝑊, 𝑑, 𝑐, 𝜀 𝑓 , 𝑀).
Note that log(𝜀 𝑓 −1) = 𝑂(log(𝑀𝑛𝜀−1)), hence the asymptotic runtime bound is observed. If it
returns in (F4) we return in (M4). If it returns in (F2), we return in (M2), if it returns in (F3), we
return in (M3). Note that the claimed runtime bounds are observed. From now on assume that the
call returned in (F1). Then we obtain vectors �̂� and 𝑠 such that

�̂� ∈𝑊 + 𝑑 , ∥ �̂�−∥ ≤ 𝜀 𝑓 ∥𝑑∥ , ∥ �̂�∥ ≤ 𝐶f∥𝑑∥ ,
𝑠 ∈𝑊⊥ + 𝑐 , ∥𝑠−∥ ≤ 𝜀 𝑓 ∥𝑐∥ , ∥𝑠∥ ≤ 𝐶f∥𝑐∥ .

(7.52)

Proceed by using Blackbox-Approx-Solver for System 7.14 with 𝑊, 𝑑, 𝑐, 𝑀𝑃 , 𝑀𝐷 and 𝜇 =

𝜀𝑜 ∥𝑐∥∥𝑑∥. In time 𝑂(Ψ(A) log(𝜀𝑜−1𝑀))) we can obtain solutions (𝑥,
¯
𝑥, �̄�) and (𝑠,

¯
𝑠, 𝑠) with duality

gap ⟨𝑥, 𝑠⟩ + ⟨¯
𝑥,
¯
𝑠⟩ + ⟨�̄� , 𝑠⟩ ≤ 𝜀𝑜 ∥𝑐∥∥𝑑∥.

We let �̃� = 𝑥 −
¯
𝑥 ∈𝑊 + 𝑑 and 𝑠 = 𝑠 − 𝑠1 ∈𝑊⊥ + 𝑐 and distinguish three cases.

Case I is the successful case in which we can derive near-feasible and near-optimal dual solutions.
In Case II we have large primal error in which case we will be able to conclude that either the
guess of 𝑀 was too low (certified by an element in ℭ(𝑊,𝑀)) or that the primal is in fact infeasible,
certified by a Farkas certificate in 𝔉(𝑊,𝑀). Deriving one of these certificates is not straightforward
as we are dealing with a modified linear program to get the near-feasible solution �̂� than the
program in which we aim to find the near-optimal solution as well. In the paragraph “Norm
reduction” we explain how such a certificate can be obtained in Algorithm 7.6 nonetheless. The
final case, Case III analogously finds a certificate of small guess 𝑀 or obtains a certificate of dual
infeasibility in 𝔉(𝑊⊥ , 𝑐). In this case the argumentation relying on norm reduction can be omitted.

Case I. ∥ �̃�−∥ ≤ 𝜀𝑜 ∥𝑑∥ and ∥𝑠−∥ ≤ 𝜀𝑜 ∥𝑐∥.

In this case, we claim that (�̃� , 𝑠) is a near-feasible near-optimal pair of solutions as required in
(M1). It is straightforward, that (�̃� , 𝑠) ∈ (𝑊 + 𝑑) × (𝑊⊥ + 𝑐) fulfill the subspace constraints in
System 7.8. Further, as 𝜀𝑜 ≤ 𝜀 the Primal apx. feasbility and Dual apx. feasibility constraints are
fulfilled as well. Now , we have

−𝑀𝐷1 ≤ −𝜀𝑜 ∥𝑑∥1 ≤ −�̃�− ≤ �̃� = 𝑥 −
¯
𝑥 ≤ 𝑀𝐷1 , and

−𝑀𝑃1 ≤ −𝜀𝑜 ∥𝑐∥1 ≤ −𝑠− ≤ 𝑠 = 𝑠 − 𝑠1 ≤ 𝑀𝑃1,
(7.53)

where all the inequalities follow by the assumption of Case I and the constraints in the subspace
formulation in (7.14). In particular ∥ �̃�∥∞ ≤ 𝑀𝐷 and ∥𝑠∥∞ ≤ 𝑀𝑃 , implying ∥ �̃�∥ ≤

√
𝑛𝑀𝑃 ∥𝑑∥ ≤

𝐶o∥𝑑∥ (showing (7.15f)) and ∥𝑠∥ ≤
√
𝑛𝑀𝐷 ∥𝑐∥ ≤ 𝐶o∥𝑐∥ (showing (7.15g)). It remains to show

(7.15e), i.e., the bound on ∥𝑥 ◦ 𝑠∥. With the norm bounds on �̃� and 𝑠 we obtain

∥ �̃� ◦ 𝑠∥ ≤ ∥𝑥 ◦ 𝑠∥ + ∥ �̃�− ◦ 𝑠−∥ + ∥ �̃�− ◦ 𝑠∥ + ∥ �̃� ◦ 𝑠−∥
≤

(
𝜀𝑜 + 𝜀𝑜

2 + 𝜀𝑜𝐶o + 𝜀𝑜𝐶o
)
∥𝑐∥∥𝑑∥

≤ 4𝜀𝑜𝐶o∥𝑐∥∥𝑑∥
≤ 𝜀∥𝑐∥∥𝑑∥.

(7.54)

Case II. ∥ �̃�−∥ > 𝜀𝑜 ∥𝑑∥.
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In this case, we use the approximately feasible solution �̂� to find a lifting certificate (𝐼 , 𝑝) ∈
ℭ(𝑊,𝑀) or show dual infeasibility. The intuition is that because of the high cost 𝑀𝑃 on the

variables in
¯
𝑥 the solution �̃� is actually a far worse solution than the almost feasible solution �̂�.

On the other hand, (
¯
𝑥, 𝑥, �̄�) is almost optimal to System 7.14 as certified by the small duality gap

with (
¯
𝑠, 𝑠, 𝑠). We will turn this into a contradiction.

Let 𝐼 ≔ supp(�̂�−), 𝐽 = [𝑛] \ 𝐼 and let us define ℓ , 𝑢 ∈ R𝑛 as ℓ𝐽 = −�̃�𝐽 , ℓ𝐼 = �̂�𝐼 − �̃�𝐼 , 𝑢 = ∞1. Then
ℓ ≤ �̂� − �̃� ≤ 𝑢 and �̂� − �̃� ∈𝑊 . If ♦ ≔ ℋ

𝑚×𝑛
ker (A, �̂� − �̃� , ℓ , 𝑢, 𝑀) ∈ ℭ(𝑊,𝑀) then we return in (M4).

Otherwise, let 𝑣 ≔ ♦. Then, 𝑣 ∈𝑊, ℓ ≤ 𝑣 ≤ 𝑢 and

∥𝑣∥∞ ≤ 𝑀∥ℓ+ + 𝑢−∥1 = 𝑀∥ℓ+∥1 ≤ 𝑀∥ �̃�−∥1 , (7.55)

since 𝑢 ≥ 0, and |ℓ𝑖 | ≤ �̃�−𝑖 whenever ℓ𝑖 > 0. We let 𝑧 ≔ �̃� + 𝑣. Now,

𝑧 ∈𝑊 + 𝑑, −�̂�− ≤ 𝑧, and ∥𝑧 − �̃�∥∞ = ∥𝑣∥∞ ≤ 𝑀∥ �̃�−∥1 (7.56)

hold. In particular,
|𝑧−∥1 ≤ ∥ �̂�−∥1 ≤

√
𝑛∥ �̂�−∥ ≤

√
𝑛𝜀 𝑓 ∥𝑑∥ , (7.57)

where the last inequaility holds by (7.52).

Norm reduction If ∥𝑧+∥1 > 𝑀𝐷 we can not easily convert 𝑧 to a feasible solution of (7.14) with
the parameters 𝑀𝑃 ,𝑀𝐷 chosen above. Therefore, we reduce the ℓ1-norm of 𝑧 by sign-consistently
moving it towards �̂�, without decreasing the objective value with respect to 𝑐.

To this end, let 𝐽 ≔ supp
(
(𝑧 − �̂�)−

)
, 𝐼 ≔ [𝑛] \ 𝐽, ℓ̄𝐽 = 𝑧𝐽 − �̂�𝐽 , ℓ̄𝐼 = 0, 𝑢 = 𝑧 − �̂� and ♦ ≔

ℋ
𝑚×𝑛
ker (A, 𝑧 − �̂� , ℓ̄ , �̄� , 𝑀). If ♦ ∈ ℭ(𝑊,𝑀), then return in case (M4). Else, let �̃� ≔ ♦ and

𝑤 ≔ 𝑧 − �̂� − �̃� ∈𝑊 is sign-consistent with 𝑧 − �̂�, 𝑤𝐽 = 0 and

∥𝑧 − �̂� − 𝑤∥∞ = ∥�̃�∥∞ ≤ 𝑀∥ℓ̄+ + �̄�−∥1 = 𝑀∥𝑧𝐽 − �̂�𝐽 ∥1 ≤ 𝑀
(
∥𝑧−∥1 + ∥ �̂�∥1

)
. (7.58)

By choice of ℓ̄ and �̄� we further have 𝑤 ≥ 0. If ⟨𝑐, 𝑤⟩ < 0, then 𝑤 is a Farkas certificate of dual
infeasibility 𝑤 ∈ 𝔉(𝑊⊥ , 𝑐) and we return in (M3). Else ⟨𝑐, 𝑤⟩ ≥ 0 and �̃� ≔ 𝑧 − 𝑤 fulfills

�̃� ∈𝑊 + 𝑑, ⟨�̃� , 𝑐⟩ = ⟨𝑧 − 𝑤, 𝑐⟩ ≤ ⟨𝑧, 𝑐⟩ (7.59)

and we have

∥ �̃�−∥1 = ∥(𝑧𝐽−𝑤𝐽)−∥1+∥(𝑧𝐼−𝑤𝐼)−∥1 ≤ ∥𝑧−∥1+∥(�̂�+�̃�)−∥1
�̃�𝐼≥ℓ̄𝐼=0
≤ ∥𝑧−∥1+∥ �̂�−∥1

(7.57),(7.52)
≤ 2

√
𝑛𝜀 𝑓 ∥𝑑∥ ,
(7.60)

Further note that

∥ �̃�∥∞ = ∥𝑧 − 𝑤∥∞
(7.58)
≤ 𝑀(∥𝑧−∥1 + ∥ �̂�∥1) + ∥ �̂�∥∞ ≤ (𝑀 + 1)∥ �̂�∥1 +𝑀∥𝑧−∥1

(7.52),(7.57)
≤ (𝑀 + 1)

√
𝑛𝐶f∥𝑑∥ +

√
𝑛𝜀 𝑓𝑀∥𝑑∥ ≤ 4𝑀

√
𝑛𝐶f∥𝑑∥

(7.51)
≤ 𝑀𝐷

𝑛
.

(7.61)

We are ready to show hat �̃� contradicts the small duality gap of �̃�. By (7.61) we can map �̃� to a
primal feasible solution

(𝑧′, �̄�′,
¯
𝑧′) ≔ (�̃�+ , 𝑀𝐷 − ∥ �̃�+∥1 , �̃�−) ≥ 0 (7.62)
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of (7.14). The objective value of this solution is

⟨𝑐, 𝑧′ − ¯
𝑧′⟩ +𝑀𝑃 ∥¯

𝑧′∥1 = ⟨𝑐, �̃�⟩ +𝑀𝑃 ∥ �̃�−∥1
≤ ⟨𝑐, 𝑧⟩ + 2

√
𝑛𝜀 𝑓𝑀𝑃 ∥𝑑∥ (by (7.59), (7.60))

= ⟨𝑐, �̃�⟩ + ⟨𝑐, 𝑧 − �̃�⟩ + 2
√
𝑛𝜀 𝑓𝑀𝑃 ∥𝑑∥

≤ ⟨𝑐, �̃�⟩ + ∥𝑐∥1∥𝑧 − �̃�∥∞ + 2
√
𝑛𝜀 𝑓𝑀𝑃 ∥𝑑∥

≤ ⟨𝑐, �̃�⟩ +𝑀∥𝑐∥1∥ �̃�−∥1 + 2
√
𝑛𝜀 𝑓𝑀𝑃 ∥𝑑∥ (by (7.56))

< ⟨𝑐, �̃�⟩ +
(√
𝑛𝑀∥𝑐∥ + 2𝑛𝜀𝑜−1𝜀 𝑓𝑀𝑃

)
∥ �̃�−∥1 (∥ �̃�−∥ > 𝜀𝑜 ∥𝑑∥)

< ⟨𝑐, �̃�⟩ +
(√
𝑛𝑀∥𝑐∥ + 2𝑛𝜀𝑜−1𝜀 𝑓𝑀𝑃

)
∥ �̃�−∥1 + ∥𝑐∥(∥ �̃�−∥ − 𝜀𝑜 ∥𝑑∥)

≤ ⟨𝑐, �̃�⟩ +
(√
𝑛(𝑀 + 1)∥𝑐∥ + 2𝑛𝜀𝑜−1𝜀 𝑓𝑀𝑃

)
∥ �̃�−∥1 − 𝜀𝑜 ∥𝑐∥∥𝑑∥

≤ ⟨𝑐, 𝑥 − ¯
𝑥⟩ +𝑀𝑃 ∥ ¯

𝑥∥1 − 𝜀𝑜 ∥𝑐∥∥𝑑∥ ,
(by (7.51) 𝜀 𝑓 ≤ (4𝑛)−1𝜀𝑜 , 𝑀𝑃 ≥ 2(𝑀 + 1)

√
𝑛∥𝑐∥)

This is a contradiction, since ⟨𝑐, 𝑥 − ¯
𝑥⟩ +𝑀𝑃 ∥ ¯

𝑥∥1 is the objective value of the solution (𝑥, �̄�,
¯
𝑥)

that was chosen to be within 𝜀𝑜 ∥𝑐∥∥𝑑∥ of the optimum value.

Hence, such a feasible solution does not exist. So either we had that ♦ ∈ ℭ(𝑊,𝑀), (i.e. we were
in case (M4)) or we terminated with the Farkas certificate 𝑤 ∈ 𝔉(𝑊⊥ , 𝑐).

Case III. ∥𝑠−∥ > 𝜀𝑜 ∥𝑐∥.

The argument is similar to the one in Case II, but we do not need to perform the norm reducton.

Again, we use the approximately feasible solution 𝑠 to find a lifting certificate inℭ(𝑊⊥ , 𝑀) or show
primal infeasibility. Let us define ℓ ≔ 𝑠−𝑀𝑃1 and 𝑢 ≔ 𝑠+𝑠− and let ♠ ≔ ℋ

𝑛×𝑚
im (A⊤ , 𝑠−𝑠, ℓ , 𝑢, 𝑀).

If ♠ ∈ ℭ(𝑊⊥ , 𝑀)we terminate in case (M4). Else, let 𝑣 ≔ ♠. Then, 𝑣 ∈𝑊⊥ and fulfils

∥𝑣∥∞ ≤ 𝑀∥ℓ+ + 𝑢−∥1 = 𝑀∥𝑢−∥1 ≤ 𝑀∥𝑠−∥1 ,

since ℓ ≤ 0 and |𝑢𝑖 | ≤ 𝑠−𝑖 whenever 𝑢𝑖 < 0. We let 𝑧 ≔ 𝑠 − 𝑣. Now

𝑧 ∈𝑊⊥+𝑐 , −𝑠− = 𝑠−𝑢 ≤ 𝑠−𝑣 = 𝑧 , 𝑧 = 𝑠−𝑣 ≤ 𝑠−ℓ = 𝑀𝑃1 and ∥𝑧−𝑠∥∞ = ∥𝑣∥∞ ≤ 𝑀∥𝑠−∥1.
(7.63)

In particular,
∥𝑧−∥1 ≤ ∥𝑠−∥1 ≤

√
𝑛𝜀 𝑓 ∥𝑐∥. (7.64)

The dual objective of System 7.14 can be rewritten as

⟨𝑦,A𝑑⟩ −𝑀𝐷𝑠 =
〈
A⊤𝑦, 𝑑

〉
−𝑀𝐷𝑠 = ⟨𝑐, 𝑑⟩ − ⟨𝑠 − 𝑠1, 𝑑⟩ −𝑀𝐷𝑠,

as used in the subspace version of System 7.14. So, equivalently we could minimize ⟨𝑠 − 𝑠1, 𝑑⟩ +
𝑀𝐷𝑠. The vector 𝑧 can be transformed into a feasible dual solution as follows. Let 𝑧𝑚 ≔

min(0,min𝑖∈[𝑛] 𝑧𝑖). Note that |𝑧𝑚 | = ∥𝑧−∥∞ ≤
√
𝑛𝜀 𝑓 ∥𝑐∥ by (7.64). We can define a dual

feasible solution (𝑧′, �̄�′,
¯
𝑧′) to the System 7.14 with 𝑊, 𝑑, 𝑐, 𝑀𝑃 and 𝑀𝐷 as (𝑧′, �̄�′,

¯
𝑧′) ≔ (𝑧 −
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𝑧𝑚1,−𝑧𝑚 , 𝑀𝑃1− 𝑧) ≥ 0 by (7.63). We proceed in similar manner as for Case II and show that this
feasible solution contradicts near-optimality of (𝑦, 𝑠,

¯
𝑠, 𝑠) for the dual of System 7.14. We have

⟨𝑑, 𝑧′ − �̄�′1⟩ +𝑀𝐷 �̄�
′ = ⟨𝑑, 𝑧⟩ +𝑀𝐷 |𝑧𝑚 |
≤ ⟨𝑑, 𝑠⟩ + ⟨𝑑, 𝑧 − 𝑠⟩ +

√
𝑛𝜀 𝑓𝑀𝐷 ∥𝑐∥ (|𝑧𝑚 | ≤

√
𝑛𝜀 𝑓 ∥𝑐∥, see above.)

≤ ⟨𝑑, 𝑠⟩ + ∥𝑑∥1∥𝑧 − 𝑠∥∞ +
√
𝑛𝜀 𝑓𝑀𝐷 ∥𝑐∥

≤ ⟨𝑑, 𝑠⟩ +𝑀∥𝑑∥1∥𝑠−∥1 +
√
𝑛𝜀 𝑓𝑀𝐷 ∥𝑐∥ (by (7.63))

≤ ⟨𝑑, 𝑠⟩ +
√
𝑛𝑀∥𝑑∥∥𝑠−∥1 +

√
𝑛𝜀 𝑓𝑀𝐷 ∥𝑐∥

< ⟨𝑑, 𝑠⟩ +
(√
𝑛𝑀∥𝑑∥ +

√
𝑛𝜀 𝑓 𝜀𝑜

−1𝑀𝐷

)
∥𝑠−∥1 (∥𝑠−∥ > 𝜀𝑜 ∥𝑐∥)

< ⟨𝑑, 𝑠⟩ +
(√
𝑛𝑀∥𝑑∥ +

√
𝑛𝜀 𝑓 𝜀𝑜

−1𝑀𝐷

)
∥𝑠−∥1 + ∥𝑑∥(∥𝑠−∥ − 𝜀𝑜 ∥𝑐∥)

< ⟨𝑑, 𝑠⟩ +
(√
𝑛(𝑀 + 1∥𝑑∥ +

√
𝑛𝜀 𝑓 𝜀𝑜

−1𝑀𝐷

)
∥𝑠−∥1 − 𝜀𝑜 ∥𝑐∥∥𝑑∥

≤ ⟨𝑑, 𝑠 − 𝑠1⟩ +𝑀𝐷𝑠 − 𝜀𝑜 ∥𝑐∥∥𝑑∥ ,
(by (7.51) 𝑀𝐷 ≥ 2

√
𝑛(𝑀 + 1)∥𝑑∥, 𝜀 𝑓 ≤ (2𝑛)−1𝜀𝑜)

This is a contradiction, since ⟨𝑑, 𝑠 − 𝑠1⟩ +𝑀𝐷𝑠 is the objective value of the solution (𝑠, 𝑠,
¯
𝑠) that

was chosen to be within 𝜀𝑜 ∥𝑐∥∥𝑑∥ of the optimum value.

Hence, such a feasible solution does not exist, and therefore, ♠must have fulfilled ♠ ∈ ℭ(𝑊⊥ , 𝑀),
i.e., it is a lifting certificate (Case (M4)). □

7.7.2 Implementation of the oracles

We proceed to show Lemma 7.5.1 and Lemma 7.6.3 which correspond to the implementations of
Oracle 7.1 and Oracle 7.2, respectively.

Lemma 7.5.1 (Restatement). Given a matrix A ∈ R𝑚×𝑛 and vector 𝑑 ∈ R𝑛 . Let 𝑊 = ker(A), and
𝑀 be an estimate on 𝜅𝑊 . Further, let 0 < 𝜀 < 1. There exists an implementation of Oracle 7.1 for data
(𝑊, 𝑑, 𝑀, 𝜀) with following outcome-dependent running times:

Outcome Running time

(i) 𝑂
(
Ψ(A) log(𝑀𝜀−1)

)
(ii), (iii) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋim(A⊤))

Lemma 7.6.3 (Restatement). There exists an implementation of Proximal-Opt-Oracle (Oracle 7.2) for
data (𝑊, 𝑑, 𝑐, 𝑐, 𝑀, 𝜀) with following running times, depending on the outcomes:

Outcome Running time

(i) 𝑂
(
Ψ(A) log(𝑀𝜀−1)

)
(ii), (iii), (iv) 𝑂

(
Ψ(A) log(𝑀𝜀−1)

)
+ 𝒯 (ℋim(A⊤))

We note that Oracle 7.1 is a special case of Oracle 7.2; thus, Lemma 7.5.1 follows as a special case
of Lemma 7.6.3. Before proving the latter we formulate another Lemma that will be required in the
proof (Lemma 7.7.3).

Lemma 7.7.3 (Exchanging near optimal solutions). For𝑊 ⊆ R𝑛 , 𝑑, 𝑐 ∈ R𝑛 , guess 𝑀 ≥ 1 and 𝜀 > 0
let (𝑥, 𝑠) and (�̄� , 𝑠) be two solutions to Apx-Opt(𝑊, 𝑑, 𝑐, 𝑀, 𝜀). Then, (𝑥, 𝑠) and (�̄� , 𝑠) are both solutions
to Apx-Opt

(
𝑊, 𝑑, 𝑐, 𝑀, 8𝜀

√
𝑛𝐶o

)
.
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Algorithm 7.7: Apx-Optimal-Proximal (Implementation of Oracle 7.2)

Input :Data (𝑊, 𝑑, 𝑐, 𝑐, 𝑀, 𝜀) for Prox-Opt (System 7.13)
Output :One in {(i), (ii), (iii), (iv)}

1 Set 𝐼 , 𝐽 , 𝐼 , 𝐽 , �̄�, �̂� as in (7.69)
2 // Step I
3 ♦ ← Apx-Optimal(𝜋

𝐼
(𝑊), 𝑑

𝐼
, 𝑐
𝐼
, 𝑀, �̂�)

4 if ♦ ∈ 𝔉(𝜋
𝐼
(𝑊), 𝑑

𝐼
) then

5 return (0
𝐽
, ♦) ⊲ ∈ 𝔉(𝑊, 𝑑), see Fact 7.2.7

6 if ♦ ∈ ℭ(𝜋
𝐼
(𝑊), 𝑀) then

7 Lift ♦ to an element �̃� ∈ ℭ(𝑊,𝑀)
8 return �̃�;
9 (�̂� , 𝑠) ← ♦

10 // Step II

11 ♠ ← Apx-Optimal(𝑊, �̄�, 𝑐, 𝑀, �̄�)
12 if ♠ ∈ 𝔉(𝑊, �̄�) then
13 return ♠

14 if ♠ ∈ ℭ(𝑊,𝑀) then
15 return ♠
16 (𝑤, 𝑠) ← ♠
17 �̄� ← 𝑤 + 𝑑 − �̄�
18 // Step III
19 𝑠 ← (0𝐽 , 𝑠)
20 if ∥ �̄� ◦ 𝑠∥ ≤ 𝛿∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥ then
21 return (�̄� , 𝑠)
22 else
23 ℓ ← −𝑑

𝐼
− �̂�−

24 Let 𝑢 ∈ (R ∪ {∞})𝐼 such that

𝑢𝑖 ←
�̃� 𝑖 − 𝑑𝑖 if 𝑖 ∈ supp(𝑐),
∞ else.

25 ♦ ←ℋ
𝑚×𝑛
ker (A, �̃� − 𝑑, ℓ , 𝑢, 𝑀)

26 return ♦ ⊲ ♦ ∈ ℭ(𝑊,𝑀)

Proof. All constraints but the duality gap (7.15e) are preserved. Here, note that ⟨𝑥 − �̄� , 𝑠 − 𝑠⟩ = 0
as 𝑥 − �̄� ∈𝑊 and 𝑠 − 𝑠 ∈𝑊⊥ and so

⟨𝑥, 𝑠⟩ + ⟨�̄� , 𝑠⟩ = ⟨𝑥, 𝑠⟩ + ⟨�̄� , 𝑠⟩ ≤
√
𝑛(∥𝑥 ◦ 𝑠∥ + ∥ �̄� ◦ 𝑠∥) ≤ 2

√
𝑛𝜀∥𝑐∥∥𝑑∥. (7.65)

Furthermore, we have that ⟨𝑥, 𝑠⟩ ≥ −
√
𝑛(∥𝑥−∥∥𝑠∥ + ∥𝑥∥∥𝑠−∥) ≥ −2

√
𝑛𝜀𝐶o∥𝑑∥∥𝑐∥. By the same

argumentation ⟨�̄� , 𝑠⟩ ≥ −2
√
𝑛𝜀𝐶o∥𝑑∥∥𝑐∥, and so

⟨𝑥, 𝑠⟩ ≤ 2𝜀
√
𝑛(𝐶o + 1)∥𝑑∥∥𝑐∥ ,

⟨�̄� , 𝑠⟩ ≤ 2𝜀
√
𝑛(𝐶o + 1)∥𝑑∥∥𝑐∥

(7.66)

and thus
∥𝑥 ◦ 𝑠∥ ≤ ∥𝑥 ◦ 𝑠∥1 ≤ ⟨𝑥, 𝑠⟩ + 2(∥𝑥−∥1∥𝑠∥ + ∥𝑥∥∥𝑠−∥1)

≤ 2𝜀
√
𝑛(𝐶o + 1)∥𝑑∥∥𝑐∥ + 4𝜀

√
𝑛𝐶o∥𝑑∥∥𝑐∥

≤ 8𝜀
√
𝑛𝐶o∥𝑑∥∥𝑐∥.

(7.67)

The bound for ∥ �̄� ◦ 𝑠∥ follows by symmetry analogously. □

In Algorithm 7.7 and in its analysis via Lemma 7.6.3 we will require the following recurring
terms.

𝛿 ≔
𝜀2
√
𝑛
. (7.68)

Furthermore, let

𝐼 ≔
{
𝑖 ∈ [𝑛] : 𝑑𝑖 ≤ 2𝑀∥𝑑Λ(𝑑,𝑐)∥

}
, 𝐽 ≔ [𝑛] \ 𝐼 , �̂� ≔

𝛿

16𝑀𝑛𝐶o · 8
√
𝑛𝐶o · 4𝑀𝑛3/2

,

𝐼 ≔
{
𝑖 ∈ [𝑛] : 𝑑𝑖 ≤ 4𝑀𝑛∥𝑑Λ(𝑑,𝑐)∥

}
, 𝐽 ≔ [𝑛] \ 𝐼 , �̄� ≔

𝛿

8
√
𝑛𝐶o · 4𝑀𝑛3/2

.

(7.69)

Proof of Lemma 7.6.3. We split the proof into three steps. In Step I we construct the dual solution
the problem. In Step II we construct the primal solution. In Step III we show that if stitching
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7 BLACKBOX SOLVERS 7.7 Implementation of oracles and subroutines

together the primal solution from Step II and dual solution from Step I fails, then we are able to
construct a certificate of such failure.

Step I. Providing the dual solution.

We run Apx-Optimal (Algorithm 7.6) on the data (𝜋𝐼(𝑊), 𝑑𝐼 , 𝑐𝐼) with guess 𝑀 and parameter �̂�.
The reason that we do not consider the elements in [𝑛] \ 𝐼 is that we need to bound the minimum-
norm vector in the affine space in which we run the solver. Note that ∥𝑑𝐼 ∥ ≤ 2

√
𝑛𝑀∥𝑑Λ(𝑑,𝑐)∥ and

that supp(𝑐) ⊆ 𝐼 as 𝑐 ≥ 0. Let us discuss the potential outcomes of the algorithm. We can only
be in case (M2), if the original system 𝑥 ∈𝑊 + 𝑑 was already infeasible. In particular, a Farkas
certificate extends to the original system (see Fact 7.2.7). (M3) can not happen as 𝑐[𝑛]\𝐼 = 0 by
definition of 𝐼 and so 𝑐𝐼 is a feasible dual solution to LP(𝜋𝐼(𝑊), 𝑑𝐼 , 𝑐𝐼), by further noting that
𝑐𝐼 − 𝑐𝐼 ∈

(
𝜋𝐼(𝑊)

)⊥. If in case (M4), we output the corresponding lifting certificate in ℭ(𝜋𝐼(𝑊), 𝑀)
and terminate. The remaining case is that we obtained approximately feasible and approximately
optimal primal and dual solutions (�̂� , 𝑠) as in (M1) fulfilling

∥ �̂�−∥ ≤ �̂�∥𝑑𝐼 ∥ ≤ �̂� · 2
√
𝑛𝑀∥𝑑Λ(𝑑,𝑐)∥ ≤ 𝜀∥𝑑Λ(𝑑,𝑐)∥ ,

∥𝑠−∥ ≤ �̂�∥𝑐𝐼 ∥ ,
∥ �̂� ◦ 𝑠∥ ≤ �̂�∥𝑑𝐼 ∥∥𝑐𝐼 ∥ ,
∥ �̂�∥ ≤ 𝐶o∥𝑑𝐼 ∥ , and

∥𝑠∥ ≤ 𝐶o∥𝑐𝐼 ∥.

(7.70)

Step II. Providing the primal solution.

Let �̄� ∈ R𝑛 be defined as

�̄�𝑖 ≔

{
𝑑𝑖 if 𝑖 ∈ 𝐼 ,
2𝑀𝑛∥𝑑Λ(𝑑,𝑐)∥ otherwise.

(7.71)

Essentially, �̄� is 𝑑 with a cut-off for variables large compared to the norm of 𝑑Λ(𝑑,𝑐). Consider
LP(𝑊, �̄�, 𝑐) and apply Algorithm 7.6 with 𝑀 and �̄�. We analyze the different outcomes according
to Theorem 7.4.7. As in Step I the case (M3) can not occur as 𝑐 is a feasible dual solution. In
case of primal infeasibility (M2), we show how to convert the certificate of primal infeasibility
for the auxiliary system LP(𝑊, �̄�, 𝑐) into either a primal infeasibility certificate of the original
system or find an element in ℭ(𝑊,𝑀). A certificate of primal infeasibility for LP(𝑊, �̄�, 𝑐) is a
vector 𝑠 ∈ 𝔉(𝑊, �̄�), i.e., 𝑠 ∈𝑊⊥ , 𝑠 ≥ 0 such that

〈
�̄�, 𝑠

〉
< 0. By definition of �̄�, the last condition

is equivalent to
⟨𝑑𝐼 , 𝑠𝐼⟩ +

〈
4𝑀𝑛∥𝑑Λ(𝑑,𝑐)∥1𝐽 , 𝑠𝐽

〉
=

〈
�̄�, 𝑠

〉
< 0. (7.72)

Let ℓ , 𝑢 ∈ R𝑛 such that ℓ𝐼 = 0, ℓ𝐽 = 𝑠𝐽 and 𝑢 = 𝑠. Then compute ♦ ≔ ℋ
𝑛×𝑚
im (A⊤ , 𝑠 , ℓ , 𝑢, 𝑀). If

♦ ∈ ℭ(𝑊⊥ , 𝑀) terminate with the Farkas certificate, otherwise let 𝑦 ≔ ♦. Then 𝑦 ∈ 𝑊⊥ and
𝑧 ≔ 𝑠 − 𝑦 fulfills 𝑠 ≥ 𝑧 ≥ 0 such that 𝑧𝐽 = 0 and ∥𝑠 − 𝑧∥∞ = ∥𝑦∥∞ ≤ 𝑀∥𝑢− + ℓ+∥1 ≤ 𝑀∥𝑠𝐽 ∥1. But
then

⟨𝑑, 𝑧⟩ = ⟨𝑑𝐼 , 𝑧𝐼⟩ = ⟨𝑑𝐼 , 𝑠𝐼⟩ + ⟨𝑑𝐼 , 𝑧𝐼 − 𝑠𝐼⟩
(7.72)
< −

〈
4𝑀𝑛∥𝑑Λ(𝑑,𝑐)∥1𝐽 , 𝑠𝐽

〉
+ ∥𝑑−

𝐼
∥1∥𝑠 − 𝑧∥∞

≤ −
〈
4𝑀𝑛∥𝑑Λ(𝑑,𝑐)∥1𝐽 , 𝑠𝐽

〉
+𝑀∥𝑑Λ(𝑑,𝑐)∥1∥𝑠𝐽 ∥1 ≤ 0,

so 𝑧 is a Farkas certificate of the original system LP(𝑊, 𝑑, 𝑐), i.e., 𝑧 ∈ 𝔉(𝑊, 𝑑).
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It remains to consider the (successful) case (M1), i.e., we obtain primal-dual near-feasible and
near-optimal solution (�̄�, 𝑠) to LP(𝑊, �̄�, 𝑐). In this case, we can define �̄� ≔ �̄� + 𝑑 − �̄� and get

�̄� ∈𝑊 + 𝑑,
𝑠 ∈𝑊⊥ + 𝑐 =𝑊⊥ + 𝑐,

∥ �̄�−∥ ≤ ∥�̄�−∥ ≤ �̄�∥ �̄�∥ ,
∥𝑠−∥ ≤ �̄�∥𝑐∥ ,

∥�̄� ◦ 𝑠∥ ≤ �̄�∥ �̄�∥∥𝑐∥ ≤ 4�̄�𝑀𝑛3/2∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥ ,
∥�̄�∥ ≤ 𝐶o∥ �̄�∥ ≤ 4𝐶o𝑀𝑛3/2∥𝑑Λ(𝑑,𝑐)∥ , and

∥𝑠∥ ≤ 𝐶o∥𝑐∥

(7.73)

Note that for the primal side we get the proximity and near-non-negativity from

∥ �̄� − 𝑑∥ = ∥�̄� − �̄�∥ ≤ ∥�̄�∥ + ∥ �̄�∥ ≤ 2 · 4𝐶o𝑀𝑛3/2∥𝑑Λ(𝑑,𝑐)∥ , and (7.74)

∥ �̄�−∥ ≤ �̄�∥ �̄�∥ ≤ 4�̄�𝑀𝑛3/2∥𝑑Λ(𝑑,𝑐)∥ ≤
𝜀√
𝑛
∥𝑑Λ(𝑑,𝑐)∥ , (7.75)

Now, for 𝑗 ∈ 𝐽 note that

�̄� 𝑗 = 𝑤 𝑗 − �̄� 𝑗 + 𝑑 𝑗 ≥ −∥𝑤−∥ + (4 − 2)𝑀𝑛∥𝑑Λ(𝑑,𝑐)∥ ≥ (−𝜀 + 2𝑀𝑛)∥𝑑Λ(𝑑,𝑐)∥ ≥ 𝑀𝑛∥𝑑Λ(𝑑,𝑐)∥ , (7.76)

Step III. Combining primal and dual solution.

Let us extend the dual solution 𝑠 to the full space via 𝑠 ≔ (0𝐽 , 𝑠). We now consider the primal-dual
pair (�̄� , 𝑠) and distinguish cases based on ∥ �̄� ◦ 𝑠∥.
We distinguish following two cases.

Case I. ∥ �̄� ◦ 𝑠∥ ≤ 𝛿∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥.

We can now show that (�̄� , 𝑠) is the desired solution to System 7.13. As 𝛿 < 𝜀 the condition
(7.42c) is fulfilled. The subspace conditions (7.42a) and (7.42b) are straightforward. The primal
proximity constraint (7.42d) follows from (7.74) and the choice of 𝐶po. From (7.75) follows
near-feasibility (7.42e). Dual near-feasibility (7.42f) and norm bound (7.42g) follow from (7.70).

Case II. ∥ �̄� ◦ 𝑠∥ > 𝛿∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥.

We will show that in this case 𝑀 < 𝜅𝑊 must hold, which we will certify with an element in
ℭ(𝑊,𝑀). We do so by showing that the primal solution �̂� in Step I of the proof can not be
used in conjunction with Hoffman proximity results to produce a proximal solution to 𝑑.

To this end, extend �̂� arbitrarily to an element �̃� ∈ 𝑊 + 𝑑 such that �̃�𝐼 = �̂�. We proceed by
converting this solution into another one that is proximal to 𝑑 without increasing the objective
value respective to 𝑐. To this end let ℓ , 𝑢 ∈ R𝐼 such that

ℓ𝐼 ≔ −𝑑𝐼 − �̂�− and 𝑢𝑖 ≔

{
�̃� 𝑖 − 𝑑𝑖 if 𝑖 ∈ supp(𝑐),
∞ else.

These vectors have the property

∥ℓ+ + 𝑢−∥1 ≤ ∥𝑑Λ(𝑑,𝑐)∥1 + ∥ �̂�−∥1
(7.70)
≤ ∥𝑑Λ(𝑑,𝑐)∥1 + �̄� · 2𝑀

√
𝑛∥𝑑Λ(𝑑,𝑐)∥1 ≤ 2∥𝑑Λ(𝑑,𝑐)∥1 , (7.77)
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Let ♦ ≔ ℋ
𝑚×𝑛
ker (A, �̃� − 𝑑, ℓ , 𝑢, 𝑀). In the remainder of the proof we show that ♦ ∈ ℭ(𝑊,𝑀), i.e.,

we terminate with a lifting certificate.

Assume not. Then 𝑧 ≔ ♦ fulfills 𝑧 ∈ R𝑛 with ∥𝑧∥∞ ≤ 𝑀∥ℓ+ + 𝑢−∥1 ≤ 2𝑀∥𝑑Λ(𝑑,𝑐)∥1 by (7.77).
Defining �̌� ≔ 𝑑 + 𝑧, we note that �̌�𝐽 ≥ 𝑑𝐽 − ∥𝑧∥∞1 ≥ 0 and ⟨𝑐, �̌�⟩ = ⟨𝑐, 𝑑 + 𝑧⟩ ≤ ⟨𝑐, �̃�⟩ hold as
𝑐 ≥ 0 and �̌� 𝑖 = 𝑑𝑖 + 𝑧 𝑖 ≤ 𝑑𝑖 + 𝑢𝑖 = �̃� 𝑖 for 𝑖 ∈ supp(𝑐). Therefore, we get that

⟨�̌� , 𝑠⟩ = ⟨�̌� − �̃� , 𝑠⟩ + ⟨�̃� , 𝑠⟩ = ⟨�̌� − �̃� , 𝑐⟩ + ⟨�̃� , 𝑠⟩ ≤ ⟨�̃� , 𝑠⟩ = ⟨�̂� , 𝑠⟩ ≤ ∥ �̂� ◦ 𝑠∥
(7.70)
≤ �̂�∥𝑑𝐼 ∥∥𝑐𝐼 ∥.

(7.78)
Using the bound on the norm of 𝑧 we get the primal proximity as

∥ �̌� − 𝑑∥∞ = ∥𝑧∥∞ ≤ 2𝑀∥𝑑Λ(𝑑,𝑐)∥1 , (7.79)

from which we conclude that

∥ �̌�𝐼 ∥ ≤ ∥ �̌�𝐼 − 𝑑𝐼 ∥ + ∥𝑑𝐼 ∥
(7.79)
≤ 2𝑀

√
𝑛∥𝑑Λ(𝑑,𝑐)∥ + 2𝑀

√
𝑛∥𝑑Λ(𝑑,𝑐)∥ ≤ 4𝑀

√
𝑛∥𝑑Λ(𝑑,𝑐)∥. (7.80)

Further, we have
∥ �̌�−

𝐼
∥ ≤ ∥(𝑑𝐼 + ℓ )−∥ = ∥ �̂�−∥ ≤ �̂�∥𝑑𝐼 ∥. (7.81)

Therefore, with (7.78), (7.79), (7.80) and (7.81), we have that

∥ �̌� ◦ 𝑠∥ = ∥ �̌�𝐼 ◦ 𝑠 𝐼 ∥ ≤ ⟨�̌� , 𝑠⟩ + 2
(
∥ �̌�−

𝐼
∥1∥𝑠 𝐼 ∥∞ + ∥ �̌�𝐼 ∥∞∥𝑠−𝐼 ∥1

)
≤ �̂�∥𝑑𝐼 ∥∥𝑐𝐼 ∥ + 2

√
𝑛
(
�̂�∥𝑑𝐼 ∥ · 𝐶o∥𝑐∥ + 4𝑀

√
𝑛∥𝑑Λ(𝑑,𝑐)∥ ·

√
𝑛 �̂�∥𝑐∥

)
≤

(
2𝑀
√
𝑛 + 2

√
𝑛 · 2𝑀

√
𝑛 · 𝐶o + 4𝑀𝑛

)
�̂�∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥

≤ 16𝑀𝑛𝐶o �̂�∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥.

(7.82)

Further

�̌�𝐽 − 𝑑𝐽 + �̄�𝐽 ≥ −∥ �̌�𝐽 − 𝑑𝐽 ∥∞1 + �̄�𝐽
(7.79)
≥ −2𝑀

√
𝑛∥𝑑Λ(𝑑,𝑐)∥1 + 2𝑀𝑛∥𝑑Λ(𝑑,𝑐)∥1 ≥ 0. (7.83)

Therefore, (�̌� + �̄� − 𝑑, 𝑠) is feasible to Apx-Opt(𝑊, �̄�, 𝑐, �̃�, 16𝑀𝑛𝐶o �̂�) for some �̃� ≥ 𝑀. Fur-
ther, we already knew that (�̄�+ �̄�−𝑑, 𝑠) = (�̄�, 𝑠) is feasible to Apx-Opt(𝑊, �̄�, 𝑐, 𝑀, �̄�). Hence, by
Lemma 7.7.3 we have that (�̄�+�̄�−𝑑, 𝑠) is feasible to Apx-Opt(𝑊, �̄�, 𝑐, �̃�,max{16𝑀𝑛𝐶o �̂�, �̄�} · 8

√
𝑛𝐶o)).

Further, note that supp(�̄� − 𝑑) ⊆ 𝐽 and that supp(𝑠) ⊆ 𝐼 and so

supp(�̄� − 𝑑) ∩ supp(𝑠) ⊆ 𝐽 ∩ 𝐼 = ∅. (7.84)

Therefore,

∥ �̄� ◦ 𝑠∥ (7.84)
=

(�̄� + �̄� − 𝑑) ◦ 𝑠 (7.15e)
≤ max{16𝑀𝑛𝐶o �̂�, �̄�} · 8

√
𝑛𝐶o∥𝑐∥∥ �̄�∥ (7.85)

≤ max{16𝑀𝑛𝐶o �̂�, �̄�} · 8
√
𝑛𝐶o∥𝑐∥ · 4𝑀𝑛3/2∥𝑑Λ(𝑑,𝑐)∥ (7.86)

≤ 𝛿∥𝑑Λ(𝑑,𝑐)∥∥𝑐∥ , (7.87)

contradicting the assumption of Case II. □
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7.8 Projection-free black-box algorithms

It is noticeable that the exact linear algebra performed in Algorithms 7.1 to 7.3 can dominate the
overall running time for the approximate solvers. The main aim of this section is to describe
methods to reduce the computational burden of the exact linear algebra. We could have stated
the main algorithms and theorems of the previous sections in terms of the ideas presented in this
section, but for ease of presentation opted to postpone their introduction.

We will be able to state the following improved runtimes for both feasibility and optimization
algorithms:

Theorem 7.8.1 (Projection-free blackbox algorithms). Given data (A, 𝑑, 𝑐), A ∈ R𝑚×𝑛 ,𝑊 ≔ ker(A)
such that LP(A, 𝑑, 𝑐) has primal and dual feasible solutions, as well as a guess 𝑀 ≥ 𝜅A. There are algorithms
that solve following LP problems in the corresponding runtimes.

Problem Running time

𝑥 ∈ Primal(𝑊, 𝑑) 𝑂
(
𝑚(Ψ(A) log(𝑀) + 𝔏(A))

)
𝑠 ∈ Dual(𝑊⊥ , 𝑑) 𝑂

(
(𝑛 − 𝑚)(Ψ(A) log(𝑀) + 𝔏(A))

)
(𝑥, 𝑠) optimal to LP(𝑊, 𝑑, 𝑐) 𝑂

(
𝑚(𝑛 − 𝑚)(Ψ(A) log(𝑀) + 𝔏(A))

)
Note that while the black-box framework itself does not rely on projections, the black-box

algorithm themselves might perform such expensive operations.
In Theorem 7.8.1, approximate solvers to a harder problem (LP) go hand in hand with exact

solvers to an easier problem (Linear System Solve (LSS)). This does not come as a surprise. In
real-world problems, approximate solutions to LP can be found efficiently with IPM. The drawback
in comparison to Simplex based algorithms is that once an approximately optimal solution is found,
the bottleneck is to turn these solutions into optimal basic feasible solutions, see e.g., [GWXY21].

Fast exact linear system solvers. The reduction of the exact linear algebra tasks to linear systems
solvers raises the question of how such solvers compare to approximate solvers for LP. Assuming
that we are given a basis 𝐵, so that A𝐵 ∈ R𝑚×𝑚 is invertible, a long-standing bound has been 𝑂(𝑚𝜔).
This corresponds to just inverting the matrix A𝐵 and then for a system A𝐵𝑥 = 𝑏 solve 𝑥 = A−1

𝐵
𝑏. For

sparse matrices this has been improved on in a breakthrough result by Peng and Vempala [PV21],
but their result depends on the condition number of A. Techniques that solve linear system in
dependency on parameters related to treewidth have been developed in [AY13; LRT79].

7.8.1 Operating in subspaces

The main results of the previous sections are formulated in subspace language. While the initial
constraint matrix A ∈ R𝑚×𝑛 is given where 𝑊 = ker(A),e we operate on subproblems where for
some 𝐼 ⊆ [𝑛] we aim to solve (or approximate) an LP in the spaces 𝑊𝐼 and 𝜋𝐼(𝑊) with vectors
𝑑𝐼 and 𝑐𝐼 . Such operations can also be concatenated, i.e, for 𝐽 ⊆ 𝐼 we might consider 𝜋𝐽(𝑊𝐼)
and 𝜋𝐼(𝑊)𝐽 . The formulations we demonstrate in this section will be applicable to such chained
subspace operations as well. j The easier cases is to consider the space 𝑊𝐼 . It is easy to see that
this corresponds to the constraint matrix A𝐼 , i.e., 𝑊𝐼 = ker(A𝐼). With Assumption 7.4.5 we have
Ψ(A𝐼) = 𝑂(Ψ(A)).

Next, consider the space Π𝐼(A). We could perform matrix manipulation such as finding an
invertible matrix B ∈ R𝑚×𝑚 such that the matrix A ≔ BA fulfills ker(A) = ker(A) and such that
A contains a block A𝐾×𝐼 for some 𝐾 ⊆ [𝑚] such that ker(A𝐾×𝐼) = 𝜋𝐼(𝑊). But note that on the one
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hand computing such a transformation can be expensive and on the other hand the entries of A𝐾×𝐼
might have much higher numerical complexity as well as nnz(A𝐾×𝐼) ≫ nnz(A). Furthermore, the
treewidth of the matrix may be affected. In general, it could be that Ψ(A𝐾×𝐼) ≫ Ψ(A).

Instead, we opt to not modify the matrix and instead augment the matrix by negative copies of
the columns not in 𝐼. Namely, for 𝐽 ≔ [𝑛] \ 𝐼, we set Â ≔

[
−A𝐽 A

]
, where with Assumption 7.4.5

we have Ψ(Â) = 𝑂(Ψ(A)). We further extend the vectors 𝑑 to �̂� ≔ (0𝐽 , 𝑑) and 𝑐 to �̂� ≔ (−𝑐𝐽 , 𝑐). The
output (𝑥, 𝑠) of a black-box solver with data (Â, �̂�, �̂�) can then be converted to a corresponding pair
(𝑥, 𝑠) of the original system via the canonical coordinate projection on (�̂� , �̂�).

7.8.2 Approximating minimum-norm points

Another recurring task in our algorithms is the computation of minimum-norm points in subspaces.
That is, for some subspace 𝑊 with corresponding matrix A such that 𝑊 = ker(A) and a vector
𝑑, we want to find Π𝑊⊥(𝑑), i.e., the minimum-norm point in 𝑊 + 𝑑. This task is in general
expensive. In particular, solving it exactly may not be cheaper than approximately solving an
LP. One way of addressing this issue is to reduce the task to LLS. Here, note that if rk(A) = 𝑚

we can express Π𝑊⊥(𝑑) = A⊤(AA⊤)−1A𝑑. Hence, with Assumption 7.4.5, the task of computing
the projection of 𝑑 onto𝑊⊥ can be reduced to a single LLS with the matrix AA⊤. Unfortunately,
it could be in general that 𝔏(AA⊤) ≫ 𝔏(A). A different approach is the following. Note that
everywhere were we apply projections, the exact projection is required. Instead, it would suffice to
compute a vector 𝑧 ∈ 𝑊 + 𝑑 such that ∥𝑧∥ = poly(𝑀, 𝑛)∥Π𝑊⊥(𝑑)∥. Algorithms 7.1 to 7.3 would
still go through, would such a 𝑧 provided instead of an exact projection, modulo some polynomial
modifications in the values of 𝐶alg

po , 𝐶alg
pf and 𝜀. This is the motivation behind the definition of

𝔓≈. Recall that any basic vector 𝑥𝐵 ∈ 𝑊 + 𝑑 for some basis 𝐵 ∈ ℬ(𝑊) has the property that
∥𝑥𝐵∥ = ∥A−1

𝐵
A𝑑∥ = ∥A−1

𝐵
AΠ𝑊⊥(𝑑)∥ ≤ ∥A−1

𝐵
A∥∥Π𝑊⊥(𝑑)∥ ≤ �̄�𝑊 ∥Π𝑊⊥(𝑑)∥ by Proposition 3.3.3.

Hence, an algorithm that finds any basic solution in𝑊 + 𝑑 is an implementation of 𝔓≈(A, �̄�) and
therefore for 𝔓≈(A, 𝑛𝜅𝑊 ) (recall Theorem 3.3.8). Note, that analogously a basic dual solution can
be found: Given a basis 𝐵 ∈ ℬ(𝑊) and the affine space𝑊⊥ + 𝑐, we can find the basic solution 𝑠𝐵

corresponding to 𝐵 via solving 𝑠𝐵 = 𝑐 −A⊤A−⊤
𝐵
𝑐𝐵. If we assume that 𝔏(A) ≥ nnz(A), then 𝑥𝐵 and

𝑠𝐵 can both be computed in time 𝔏(A).
We also have to take care of the tasks of computing approximate projections for subspaces

𝑊𝐼 + 𝑑𝐼 and 𝜋𝐼(𝑊) + 𝑑𝐼 , that is finding vectors in the respective spaces whose norm approximates
∥Π[𝑊𝐼 ]⊥(𝑑𝐼)∥ and Π[𝜋𝐼 (𝑊)]⊥(𝑑𝐼). Again, reformulated as problem over bases, the first task boils
down to finding a maximal independent set of variables in 𝐼, ignoring the variables in 𝐽 = [𝑛] \ 𝐼.
The second task is the opposite: Find a maximal independent set in 𝐽 and augment it to a basis
in ℬ(𝑊) by iteratively adding independent columns in 𝐼. Now, basic solutions with these bases
(and their coordinate projections onto 𝐼) correspond again to minimum-norm approximations with
multiplicative error �̄�.

With these insights, we want to phrase this implementation of 𝔓≈(A, 𝑛𝜅𝑊 ) as a sequence of
linear system solves. So, the aim is to express 𝒯 (𝔓≈(A, 𝑛𝜅𝑊 )) as a function of 𝒯 (𝔏(A)).

If we are given a basis, then we can manage this approximation within a single linear system
solve as described above. Otherwise, the bottleneck is to actually compute a basis. There are
several algorithms of doing this, see e.g., [CKL13] and references therein. We describe another
approach to be able to express the task of finding a basis as a sequence of linear system solves. The
algorithm goes as follows: Initially, set 𝐵 = {𝑖} for some arbitrary index 𝑖 with A𝑖 ≠ 0. Now, to
augment 𝐵 by one index, we set 𝑁 ≔ [𝑛] \ 𝐵, use a random vector 𝑢 ∈ 𝑅𝑁 and solve A𝐵𝑥 = A𝑁𝑢

for 𝑥. If the system is feasible, then 𝐵 is a basis with high probability. Otherwise, there exists an
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index 𝑗 ∈ 𝑁 such that A𝑗 ∉ im(A𝐵). We aim to find such an index 𝑗 and add it to 𝐵. We then repeat
the process until 𝐵 is a basis. To find such a 𝑗, we partition 𝑁 into two parts of almost even size
𝑁1 ∪𝑁2 = 𝑁, |𝑁1 | = |𝑁2 | ± 1 and solve the two systems A𝐵𝑥 = A𝑁1𝑢𝑁1 and A𝐵𝑥 = A𝑁2𝑢𝑁2 both for
𝑥. We keep iterating with one of 𝑁1 or 𝑁2, depending on where the linear system solve failed. This
recursion has depth log(𝑛) and hence it requires 𝑂(𝔏(A)) to augment 𝐵 by one element. We then
repeat the process until 𝐵 is a basis.

The algorithm described above works correctly with high probability and requires 𝑂(rk(A))
many linear system solves. Hence, we have that 𝒯 (𝔓≈(A, 𝜅𝑊 )) = 𝑂(rk(A)𝒯 (𝔏(A))).

Note that the bottleneck of the algorithm is to find the initial basis. Once the basis is found,
we only require a single linear system solve to find an approximate miminum-norm point in the
subspace. In the current formulation we compute for every approximate projection the basis from
scratch. But the algorithms behave in a dynamic manner in which variables are projected out
one-by-one. This can be exploited as we once we have a basis only have to perform a pivot. A pivot
can be performed within a single linear system solve. This drops the amortized time per projection
to just a single linear system solve.

The idea is the following. Assume we have computed an initial basis 𝐵 and now in a recursive
call to Algorithm 7.1 or Algorithm 7.3 we project onto the coordinates 𝐼 ⊆ [𝑛]. Let 𝐽 ≔ [𝑛] \ 𝐼. As
described above, the task is now to compute a new basis 𝐵 such that 𝐵 ∩ 𝐽 is maximized among all
bases. The naive computation would take 𝑂(|𝐽 |) = 𝑂(𝑛)many linear system solves. We show how
to do it in 𝑂(rk(𝐽))many system solves. First, with the procedure described above we can augment
𝐽 ∩ 𝐵 to a maximally independent set 𝐾 ⊆ 𝐽 within 𝑂(rk(A𝐽\𝐵))many linear system solves. Then,
for any 𝑘 ∈ 𝐾 we solve the linear system A𝐵\𝐾𝑥 +A𝐾\{𝑘}𝑦 = A𝑘 for 𝑥 and 𝑦. Such a solution must
exist, and all solutions fulfill 𝑥 ≠ 0. We can then drop any index 𝑖 ∈ supp(𝑥) from 𝐵. We repeat
this procedure for all 𝑘 ∈ 𝐾 which gives another total of |𝐾 | linear system solves.

In particular note, note we have that dim(𝜋𝐼(𝑊)⊥) = dim(𝑊⊥) − |𝐾 |. This yields overall 𝑂(𝑚)
many linear system solves in both Algorithm 7.1 and Algorithm 7.3.

We also have to be careful as we do not have access to the value of 𝜅𝑊 but only work with guesses
𝑀. But this can be handled easily. If the algorithm encounters vectors 𝑥, 𝑥𝐵 ∈𝑊 + 𝑑, where 𝑥𝐵 is
a basic solution, such that ∥𝑥𝐵∥ > 𝑛𝑀∥𝑥∥, then the vector 𝑥𝐵 − 𝑥 ∈ 𝑊 can be used to generate a
certificate in ℭ(𝑊,𝑀). If on the other hand no such pair of vectors is encountered, then all required
guarantees we have for 𝜅𝑊 carry over to 𝑀.

Approximating the lifting map. We can easily extend the argumentation above to the lifting
map. In the algorithms, we require to compute 𝐿𝑊

𝐼
(𝑤) for some 𝑥 ∈ 𝜋𝐼(𝑊). Again, it suffices for

𝐽 ≔ [𝑛] \ 𝐼 to find a vector 𝑣 ∈ R𝐽 such that (𝑣, 𝑤) ∈𝑊 and ∥𝑣∥ ≤ poly(𝑛, 𝑀)∥[𝐿𝑊
𝐼
(𝑤)]𝐽 ∥. This can

again be done by finding a maximal independent set 𝐾 ⊆ 𝐽 and solve A𝐾𝑥 = A𝐼𝑤 for 𝑥. As seen
above, the naive static approach requires 𝑂(rk(A𝐽))many linear system solves for this task. But
note, that whenever we perform such an operation in the algorithms, we are already given a basis 𝐵
such that 𝐵 ∩ 𝐽 is maximized among all bases. Hence, A𝐵∩𝐽 is already a such a full rank submatrix
rk(A𝐵∩𝐽) = rk(A𝐽). Hence, a single linear system solve suffices.

7.8.3 Avoiding closure computation

Another expensive task is the computation of the closusure cl of a subset of variables. Recall, that
in InnerLoop and Feasibility-Algorithm we compute a set of large coordinates 𝐾, compute their
closure cl(𝐾) and recurse on 𝐼 ≔ [𝑛] \ cl(𝐾). This is to ensure that the dimension decreases on
the subspace on which we recurse, more precisely, we ensure that dim(𝜋𝐼(𝑊))⊥ < dim(𝑊⊥). As
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the original space fulfilled dim(𝑊⊥) = 𝑚 this gives us a recursion depth of just 𝑚 instead of 𝑛.
However, we can circumvent the expensive operation of computing the closure. Assume that we
have picked a set of large variables 𝐾 in either Algorithm 7.1 or Algorithm 7.3 and let �̄� ≔ [𝑛] \ 𝐾
be the remaining variables. In the notation of the algorithms this would correspond to 𝐾 = 𝐼 ∪ 𝐽.
Instead of recursing on 𝐼 via 𝜋𝐼(𝑊) we are going to recurse on a set 𝑃 which will fulfill 𝐼 ⊆ 𝑃 ⊆ 𝐾
and the corresponding subspace 𝜋𝑃(𝑊). What does 𝐾′ need to fulfill? We need that the set 𝐾′

defined as the set we want to project our recursively while running on 𝜋𝑃(𝑊) contains an element
that is not contained in cl(𝐾). This is exactly the condition we require to obtain a recursive depth of
at most 𝑚.

We will find 𝑃 as follows. We sort the variables in �̄� ≔ {1, . . . , |�̄� |} such that 𝑑1 ≥ · · · ≥ 𝑑|𝐾 |
and find the unique index 𝑗 ∈ [�̄�] such that {1, . . . , 𝑗 − 1} ⊆ cl(𝐾) and 𝑗 ∉ cl(𝐾) or conclude that
�̄� ⊆ cl(𝐾) and set 𝑗 = |�̄� |. This can be achieved with binary search with the same algorithm as in
Section 7.8.2 in log(𝑛) linear system solves. We now set 𝑃 ≔ { 𝑗 , . . . , |�̄� |}.

In the following we will describe why this procedure gives us the desired recursion depth. In
the algorithms, we rely on one of two types of arguments why 𝐾′ is non-empty. We now have to
extend these arguments to 𝐾′ \ cl(𝐾), to show that indeed 𝐾′ \ cl(𝐾) is non-empty.

The first argument is a minimum-norm vector argument. We have, that every vector 𝑧 ∈ 𝜋𝑃(𝑊)+𝑑𝑃
has norm ∥𝑧∥ ≥ ∥Π𝜋𝑃 (𝑊)⊥(𝑑𝑃)∥ and by the guarantee of the algorithms this is enough to identify
a variable 𝑖 ∈ 𝑃 such that 𝑧𝑖 = ∥𝑧∥∞ which is sufficiently large. Now, the variables in 𝐾′ ∩ cl(𝐾)
vanish on minimum-norm vector, that is [Π𝜋𝑃 (𝑊)⊥(𝑑𝑃)]𝑃∩cl(𝐾) = 0. In particular, for 𝐿 ≔ 𝑃 ∩ cl(𝐾)
and 𝑀 ≔ 𝑃 \ 𝐿 we have that 𝜋𝑃(𝑊) = R𝐿 × 𝜋𝑀(𝑊) and so we have ∥𝑧𝑀 ∥ ≥ ∥Π𝜋𝑀 (𝑊)⊥(𝑑𝑀)∥ =
∥Π𝜋𝑃 (𝑊)⊥(𝑑𝑃)∥. Hence, we can identify a variable 𝑖 ∈ 𝑀 such that 𝑧𝑖 = ∥𝑧𝐾 ∥∞ ≥ ∥Π⊥𝑝𝑖𝐼 (𝑑𝐼)∥ which
is sufficiently large and is hence in 𝐾′ and can be projected out in the next iteration.

The second argument is a proximity argument. The idea is that 𝑑𝐼 has norm that is much larger
than the guaranteed proximity of the recursive call to the algorithm. That is the black-box call in
the algorithn produces 𝑥 ∈𝑊𝑃 + 𝑑𝑃 such that ∥𝑥 − 𝑑𝑃 ∥∞ ≪ ∥𝑑𝑃 ∥∞. But note that by choice of 𝑃 we
have that ∥𝑑𝑃 ∥∞ is attained on a variable in 𝑃 \ cl(𝐾). So, we are able to identify a variable 𝑖 such
that 𝑖 ∈ 𝐾′ \ cl(𝐾).

7.A Applying interior point methods as blackboxes

This section discusses how the recent breakthroughs in IPM for LP can be leveraged to implement
Oracle 7.3.

The IPMs we use can be classified by the barrier function that is used.

7.A.1 The standard log-barrier

The papers [CLS19], [Bra20], [JSWZ21] and [DLY21] use the standard log-barrier. As we do in
this chapter, all of these papers construct an auxiliary system to be able to initialize the IPM with
a near-central point. Therefore, we are not able to use their main theorems directly, but have to
extract the behavior of the algorithms in the respective auxiliary systems that they use. [CLS19] as
well as [Bra20] uses feasible primal-dual points throughout. Hence, we can use their algorithms
directly to obtain the bounds Ψ(A) = 𝑂(𝑛𝜔) randomized ([CLS19]) as well as deterministically
[Bra20] as long as 𝜔 ≥ 2 + 1/6.

The same holds for the result in [DLY21]. The arxiv version contains Theorem A.1 which
shows that an exact feasible point of the auxiliary system is returned. This gives us that Ψ(A) =
𝑂(𝑛tw(A)2).
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Deviating from the other solvers, [JSWZ21] uses sketching techniques on the left and as a result
their returned points are not feasible. They discuss in Appendix H of the arxiv that they can
recover feasible points without decreasing the duality gap at computational cost that is dominated
by the algorithm. Hence, we can also apply their results to obtain Ψ(A) = 𝑂(𝑛𝜔) for a randomized
algorithm as long as 𝜔 ≥ 2 + 1/18.

7.A.2 The Lee-Sidford barrier

The papers [LS19] and [Bra+21] use the Lee-Sidford barrier. For [Bra+21] they maintain a feasible
dual solution of the auxiliary program, but to reconstruct a feasible primal solution they require
a linear system solve with matrix ADA⊤, where D is some diagonal matrix and additional cost
nnz(A). This result is stated in Lemma 4.11 of the arxiv version. Note that Ψ(A) ≥ nnz(A) by
assumption, hence this term gets dominated anyway. For the term regarding the linear system solve,
not that our overall runtime computes as many linear system solves as calls to the approximate
solver. Hence, the reconstruction of a feasible primal solution has costs that are dominated by the
black box linear system solves as well. The result of [Bra+21] gives us therefore an overall running
time of Ψ(A) = 𝑂(𝑚𝑛 + 𝑚2.5) randomized.

For [LS19] we get similar results on reconstructing a primal-dual feasible solution with appropriate
duality gap to the auxiliary system. Theorem 43 yields a feasible dual point to the system, while
Theorem 1 gives us a feasible primal point. These theorems contain a running time parameter 𝒯𝑤
that is similar to 𝔏(A) defined in this chapter. An earlier paper by the same authors [LS15] shows
how to amortize the linear system solves to obtain the claim amortized running time per linear
system solve of 𝑂(nnz(A) + 𝑚2). Hence, we they obtain the overall randomized algorithm with
Ψ(A) = 𝑂(

√
𝑚(nnz(A) + 𝑚2)) that implements Oracle 7.3.

7.B A symmetric initialization system

In this section we want to discuss an alternative to our system for initialization System 7.14 (Initialization-
LP). Recall that we chose Initialization-LP to ensure that Ψ for the modified matrix matches Ψ of
the original matrix under Assumption 7.4.5. On the other hand, the proofs that we can implement
the black-box solvers as required are quite complicated. In this section we present a different
system, which turns out to be symmetric on primal and dual side, so guarantees on the primal carry
over analogously to the dual side. Furthermore, the system preserves 𝜅𝑊 up to constant factors,
which recall is not the case for Initialization-LP. On the downside, the number of constraints on
the primal side increases from 𝑚 to 𝑚 + 𝑛, hence, we can not guarantee anymore that Ψ does not
increase significantly.

In case that 𝑚 = Θ(𝑛) this does not change the asymptotic runtime. We also want to point out
that the papers [Bra+21; DLY21] are able to handle additional lower and upper bounds without
increasing the runtime.

Throughout, we let A ∈ R𝑚×𝑛 , 𝑊 = ker(A), and let 𝑏 ∈ R𝑚 , 𝑐, 𝑑 ∈ R𝑛 such that A𝑑 = 𝑏. In
order to apply interior point methods to (1.1), one needs to work with an extended system where
a near-central initial solution can be easily obtained—in particular, both primal and dual sides
must be strictly feasible. A common approach is to use the self-dual homogenous initialization
[YTM94]; however, this may significantly increase the condition numbers �̄�𝐴 and 𝜅𝐴. An alternative
initialization that approximately preserves �̄�𝐴 and 𝜅𝐴 was proposed in [VY96], and also used in
[DHNV20]. The drawback of this formulation is that the primal and dual side are not symmetric:
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we would have to prove several properties on the primal and dual side separately. However, as
primal and dual are nearly symmetric, major parts of the proofs of these lemmas would be identical.

We now propose a symmetric modification of the system in [VY96] that also preserves the
condition numbers approximately. Throughout, 𝑀 is an estimate of the 𝜅𝑊 . Given an instance
(𝑊, 𝑐, 𝑑), we derive two other parameters from 𝑀.

𝑀𝑃 = 2∥𝑐∥1𝑀, 𝑀𝐷 = 2∥𝑑∥1𝑀 . (7.88)

The system is then defined as follows:

System 7.15. Symmetric Initialization-LP

Data: Data (A, 𝑑, 𝑐) for an instance of LP with data and values 𝑀𝑃 , 𝑀𝐷 ≥ 0.

min ⟨𝑐, 𝑥 − ¯
𝑥⟩+𝑀𝑃 ⟨1, ¯

𝑥⟩ max ⟨𝑦, 𝑏⟩−𝑀𝐷 ⟨1, 𝑠⟩
A𝑥 −A

¯
𝑥 = 𝑏 A⊤𝑦 + 𝑠 − 𝑠 = 𝑐

𝑥 − 1
2 ¯
𝑥 + �̄� = 𝑀𝐷1 −A⊤𝑦 + 1

2 𝑠 + ¯
𝑠 = 𝑀𝑃1 − 𝑐

𝑥, �̄�,
¯
𝑥 ≥ 0 𝑠, 𝑠,

¯
𝑠 ≥ 0.

min ⟨𝑐, 𝑥 − ¯
𝑥⟩+𝑀𝑃 ⟨¯

𝑥, 1⟩ max ⟨𝑑, 𝑐⟩−⟨𝑑, 𝑠 − 𝑠⟩ −𝑀𝐷 ⟨1, 𝑠⟩
𝑥 −
¯
𝑥 ∈𝑊 + 𝑑 𝑠 − 𝑠 ∈𝑊⊥ + 𝑐

𝑥 − 1
2 ¯
𝑥 + �̄� = 𝑀𝐷1 𝑠 − 1

2 𝑠 + ¯
𝑠 = 𝑀𝑃1

𝑥, �̄�,
¯
𝑥 ≥ 0 𝑠, 𝑠,

¯
𝑠 ≥ 0.

which displays the desired symmetry via 𝑥 ∼ 𝑠,
¯
𝑥 ∼ 𝑠 and �̄� ∼

¯
𝑠 in the subspace formulation of

System 7.15. In the following we will show that the system can be initialized centrally and that the
condition number �̄� does not increase by too much. Let us begin with the latter.

We denote by Â the primal constraint matrix of System 7.15, that is

Â =

[
A −A 0
I − 1

2 I I

]
. (7.89)

Lemma 7.B.1. Let �̂� ≔ ker(Â) for Â as in (7.89). Then, 𝜅�̂� ≤ 4𝜅𝑊 .

Proof. Let 𝑔 = (𝑥, 𝑦, 𝑧) ∈ R3𝑛 denote a minimum support vector in �̂� . First, assume there is an
index 𝑖 ∈ [𝑛] such that 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 all have nonzero values. Then, let 𝑔′ = (𝑒 𝑖 , 𝑒 𝑖 ,− 1

2 𝑒
𝑖), where 𝑒 𝑖

denotes the 𝑖-th vector in the standard basis. We have 𝑔′ ∈ �̂� , and supp(𝑔′) ⊆ supp(𝑔). By the
minimality of 𝑔, this implies 𝑔 = 𝛼𝑔′ for 𝛼 ≠ 0; the ratio between the largest and the smallest
absolute value entries is 2.

For the rest of the proof, we can assume that there is no index 𝑖 such that 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are all nonzero.
By construction, 𝑤 = 𝑥 − 𝑦 ∈ 𝑊 . Let 𝑇𝑥𝑦 ⊆ [𝑛] denote the set of indices where 𝑥𝑖𝑦𝑖 ≠ 0, 𝑇𝑥 ⊆ [𝑛]
the set with 𝑥𝑖 ≠ 0, 𝑦𝑖 = 0, and 𝑇𝑦 ⊆ [𝑛] the set with 𝑦𝑖 ≠ 0, 𝑥𝑖 = 0. By our assumption, if 𝑖 ∈ 𝑇𝑥𝑦
then 𝑧𝑖 = 0, and therefore 𝑥𝑖 = 1

2 𝑦𝑖 . If 𝑖 ∈ 𝑇𝑥 then 𝑧𝑖 = −𝑥𝑖 , and if 𝑖 ∈ 𝑇𝑦 then 𝑧𝑖 = 1
2 𝑦𝑖 .

We claim that 𝑤 is a minimum support vector in𝑊 . Indeed, if there is a smaller support vector
𝑤′ ∈𝑊 with supp(𝑤′) ⊊ supp(𝑤), then we can map it to 𝑔′ = (𝑥′, 𝑦′, 𝑧′) ∈ �̂� as follows. For each
𝑖 ∈ 𝑇𝑥𝑦 , we set 𝑥′

𝑖
= 2𝑤′

𝑖
, 𝑦′

𝑖
= 𝑤′

𝑖
. For each 𝑖 ∈ 𝑇𝑥 , we let 𝑥′

𝑖
= 𝑤′

𝑖
, 𝑧′

𝑖
= −𝑤′

𝑖
, and for each 𝑖 ∈ 𝑇𝑦 , we
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let 𝑦′
𝑖
= −𝑤′

𝑖
, 𝑧′

𝑖
= − 1

2𝑤
′
𝑖
. We set all other coordinates of 𝑔′ to 0. It is easy to verify that 𝑔′ ∈ �̂� and

supp(𝑔′) ⊊ supp(𝑔), giving a contradiction.
Hence, the largest ratio between the absolute value of elements of 𝑤 is ≤ 𝜅𝑊 . The same

construction as described above can be used to map the entries of 𝑤 to the entries of 𝑔. This implies
a bound ≤ 4𝜅𝑊 on the ratios between the elements of 𝑔, since each of (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) will be one of
𝑤𝑖 ,−𝑤𝑖 , 2𝑤𝑖 and − 1

2𝑤𝑖 . □

Initial solutions While we use the black box results in Theorem 7.4.4, it is worth noting that for
interior point methods, the system can be easily initialized near the central path with the following
solutions.

(𝑥,
¯
𝑥, �̄�) = 2

3𝑀𝐷(1𝑛 , 1𝑛 , 1𝑛) + (𝑑, 0𝑛 ,−𝑑)

(𝑦, 𝑠,
¯
𝑠, 𝑠) = 2

3𝑀𝑃(0𝑚 , 1𝑛 , 1𝑛 , 1𝑛) + (0𝑚 , 0𝑛 ,−
1
2 𝑐,−𝑐)

(7.90)

The duality gap between these solutions is ≈ 4
3𝑛𝑀𝑃𝑀𝐷 .

7.C Miscellaneous

Lemma 7.C.1. Let A ∈ R𝑚×𝑛 ,𝑊 = ker(A) and 𝐼 ⊆ [𝑛]. Then, both of the following can be computed in
time 𝑂(min{𝑚2𝑛, 𝑛𝜔}).

(i) 𝐿𝑊
𝐼
(𝑝), for any 𝑝 ∈ 𝜋𝐼(𝑊).

(ii) 𝐿𝑊⊥
𝐼
(𝑞), for any 𝑞 ∈ 𝜋𝐼(𝑊⊥).

Proof. Let us begin with (i). First, obtain a vector 𝑤 ∈ 𝑊 such that 𝑤𝐼 = 𝑝. This can be done by
solving the linear system A[𝑛]\𝐼𝑥 = −A𝐼𝑝 and setting 𝑤 = (𝑥, 𝑝) in time 𝑂(min{𝑚2𝑛, 𝑛𝜔}). The
components in [𝑛] \ 𝐼 of 𝐿𝑊

𝐼
(𝑝) are now given by the orthogonal projection of 𝑥 onto (𝑊[𝑛]\𝐼)⊥. Note

that𝑊[𝑛]\𝐼 = ker(A[𝑛]\𝐼). So, for B ≔ A[𝑛]\𝐼 we have

[𝐿𝑊𝐼 (𝑝)][𝑛]\𝐼 = B⊤(BB⊤)−1B𝑥,

where BB⊤ ∈ R𝑚×𝑚 can be computed in𝑂(min{𝑚2𝑛, 𝑛𝜔}) and its inverse in𝑂(𝑚𝜔) ≤ 𝑂(min{𝑚2𝑛, 𝑛𝜔}).
All other operations are matrix-vector products and can be computed in time 𝑂(𝑚𝑛). Therefore,
the overall running time of computing 𝐿𝑊

𝐼
(𝑝) is 𝑂(min{𝑚2𝑛, 𝑛𝜔}).

To show(ii), analogously to (i) we first obtain a vector �̂� ∈ 𝑊⊥ such that �̂�𝐼 = 𝑞. Note that
𝑊⊥ = im(A⊤) and so we find 𝑦 ∈ R𝑚 such that (A𝐼)⊤𝑦 = 𝑞. This can again be done in time
𝑂(min{𝑚2𝑛, 𝑛𝜔}). Then, we can set �̂� = A⊤𝑦 ∈𝑊⊥. The coordinates in [𝑛] \ 𝐼 of 𝐿𝑊⊥

𝐼
(𝑞) are now

given by by the projection of �̂�[𝑛]\𝐼 onto 𝜋[𝑛]\𝐼(𝑊). The space 𝜋[𝑛]\𝐼(𝑊) can be represented as the
kernel of a matrix Â, that arises by performing Gaussian elimination and pivoting the entries in 𝐼
in time 𝑂(𝑛𝑚𝜔−1) ≤ 𝑂(min{𝑚2𝑛, 𝑛𝜔}) [BH74; IMH82]. Then, we have

[𝐿𝑊⊥𝐼 (𝑞)][𝑛]\𝐼 = I − Â⊤(ÂÂ⊤)−1Â�̂�[𝑛]\𝐼 .

As in (i) this can be computed in time 𝑂(min{𝑚2𝑛, 𝑛𝜔}). □
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8 Circuit diameter

We study the circuit diameter of polyhedra, introduced by Borgwardt, Finhold, and
Hemmecke [BFH15] as a relaxation of the combinatorial diameter. We show that
the circuit diameter of a system { 𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 0 ≤ 𝑥 ≤ 𝑢 } (i.e., System 1.3) for
A ∈ R𝑚×𝑛 is bounded as𝑂(𝑚2 log(𝑚+𝜅A)+𝑛 log 𝑛), where 𝜅A is the circuit imbalance
measure of the constraint matrix. This yields a strongly polynomial circuit diameter
bound e.g., if all entries of A have polynomially bounded encoding length in 𝑛. Further,
we present circuit augmentation algorithms for LPs using the minimum-ratio circuit
cancelling rule. Even though the standard minimum-ratio circuit cancelling algorithm
is not finite in general, our variant can solve an optimization LP in 𝑂(𝑛3 log(𝑛 + 𝜅A))
augmentation steps. In this tune, we also prove an improved bound on the convergence
of steepest-descent augmentation.

This chapter is based on joint work with Daniel Dadush, Farbod Ekbatani, Zhuan Khye
Koh, and László A. Végh [DKNV22; ENV22].
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8.1 Introduction

For a system
{
𝑥 ∈ R𝑑 : M𝑥 ≤ 𝑑

}
with integer constraint matrix M, polynomial diameter bounds

were given in terms of the maximum subdeterminant ΔM [Bon+14; BR13; DH16; EV17]. These
arguments can be strengthened to using a parametrization by a ‘discrete curvature measure’
𝛿M ≥ 1/(𝑛Δ2

M) (see Chapter 3). The best such bound was given by Dadush and Hähnle [DH16] as
𝑂(𝑑3 log(𝑑/𝛿M)/𝛿M), using a shadow vertex simplex algorithm.
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8 CIRCUIT DIAMETER 8.1 Introduction

As a natural relaxation of the combinatorial diameter, Borgwardt, Finhold, and Hemmecke
[BFH15] initiated the study of circuit diameters. Consider a polytope in the standard equality form

𝑃 = { 𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 𝑥 ≥ 0 } (P)

for A ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑛 . This corresponds to the feasible point of Primal(A, 𝑏, ·). All edge directions
of 𝑃 are elementary vectors, and the set of elementary vectors ℰ(A) equals the set of all possible
edge directions of 𝑃 in the form (P) for varying 𝑏 ∈ R𝑛 [ST97].

Recall the definition of a circuit walk as a set of consecutive points 𝑥(1) , 𝑥(2) , . . . , 𝑥(𝑘+1) ∈ 𝑃 such
that for each 𝑖 = 1, . . . , 𝑘, 𝑥(𝑖+1) = 𝑥(𝑖) + 𝑔(𝑖) for 𝑔(𝑖) ∈ ℰ(A), and further, 𝑥(𝑖) + (1 + 𝜀)𝑔(𝑖) ∉ 𝑃 for
any 𝜀 > 0, i.e., each consecutive circuit step is maximal. The circuit diameter of 𝑃 is the minimum
length of a circuit walk between any two vertices 𝑥, 𝑦 ∈ 𝑃. Note that, in contrast to walks in the
vertex-edge graph, circuit walks are non-reversible and the minimum length from 𝑥 to 𝑦 may be
different from the one from 𝑦 to 𝑥; this is due to the maximality requirement. The circuit-analogue
of the Hirsch conjecture, formulated in [BFH15], asserts that the circuit diameter of a polytope in 𝑑
dimensions with 𝑛 facets is at most 𝑛 − 𝑑; this may be true even for unbounded polyhedra, see
[BSY18]. For 𝑃 in the form (P), 𝑑 = 𝑛 − 𝑚 and hence the conjectured bound is 𝑚.

Circuit diameter bounds have been shown for some combinatorial polytopes such as dual
transportation polyhedra [BFH15], matching, travelling salesman, and fractional stable set polytopes
[KPS19]. The paper [BDF16] introduced several other variants of the circuit diameter, and explored
the relation between them.

Circuit augmentation algorithms Circuit diameter bounds are inherently related to circuit
augmentation algorithms. This is a general algorithmic scheme to solve System 1.1

min ⟨𝑐, 𝑥⟩ s.t. A𝑥 = 𝑏 , 𝑥 ≥ 0 . (LP)

The algorithm proceeds through a sequence of feasible solutions 𝑥(𝑡). An initial feasible 𝑥(0) is
required in the input. For 𝑡 = 0, 1, . . . , the current 𝑥(𝑡) is updated to 𝑥(𝑡+1) = 𝑥(𝑡) + 𝛼𝑔 for some
𝑔 ∈ ℰ(A) such that ⟨𝑐, 𝑔⟩ ≤ 0, and 𝛼 > 0 such that 𝑥(𝑡) + 𝛼𝑔 is feasible. The elementary vector 𝑔 is
an augmenting direction if ⟨𝑐, 𝑔⟩ < 0 and such an 𝛼 > 0 exists; by LP duality, 𝑥(𝑡) is optimal if and
only if no augmenting direction exists. The augmentation is maximal if 𝑥(𝑡) + 𝛼′𝑔 is infeasible for
any 𝛼′ > 𝛼; 𝛼 is called the maximal stepsize for 𝑥(𝑡) and 𝑔. An upper bound on the number of steps
of a circuit augmentation algorithm with maximal augmentations for arbitrary cost 𝑐 and starting
point 𝑥(0) yields an upper bound on the circuit diameter.

The simplex algorithm can be seen as a circuit augmentation algorithm that is restricted to using
special elementary vectors corresponding to edges of the polyhedron.1 For the general framework,
the iterates 𝑥(𝑘) may not be vertices. However, in case of maximal augmentations, they must all lie
on the boundary of the polyhedron.

In unpublished work, Bland [Bla76] extended the Edmonds–Karp–Dinic algorithm [Din70; EK72]
algorithm for general LP, see also [Lee89, Proposition 3.1]. Circuit augmentation algorithms were
revisited by De Loera, Hemmecke, and Lee in 2015 [DHL15], analyzing different augmentation
rules and extending them to integer programming. We give an overview of their results first
for linear programming. In particular, they studied three augmentation rules that use maximal

1Simplex may contain degenerate pivots when the basic solution remains the same; we do not count these as augmentation
steps.
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8 CIRCUIT DIAMETER 8.1 Introduction

augmentation. Let 𝑥(𝑡) be the current feasible solution, and we aim to select an augmenting
direction 𝑔 as follows.

• Dantzig-descent direction: Select 𝑔 such that −⟨𝑐, 𝑔⟩ is maximized, where 𝑔 = 𝑔𝐶 is the
elementary vector with lcm(𝑔𝐶) = 1 for a circuit 𝐶 ∈ 𝒞𝑊 .

• Deepest-descent direction: Select 𝑔 such that −𝛼⟨𝑐, 𝑔⟩ is maximized, where 𝛼 is the maximal
stepsize for 𝑥(𝑡) and 𝑔.

• Steepest-descent direction: Select 𝑔 such that −⟨𝑐, 𝑔⟩/∥𝑔∥1 is maximized.

Computing Dantzig- and deepest-descent directions is in general NP-hard, see [LKS19] and
as detailed below. The steepest-descent direction can be formulated by an LP; but without any
restrictions on the input problem, this may not be simpler than the original one. However, it
could be easier to solve in practice; Borgwardt and Viss [BV20] exhibits an implementation of a
steepest-descent circuit augmentation algorithm with encouraging computational results.

Augmenting directions for flow problems

It is instructive to consider these algorithms for the special case of minimum-cost flows. Given a
directed graph 𝐷 = (𝑉, 𝐸)with capacities 𝑢 ∈ R𝐸, costs 𝑐 ∈ R𝐸, and node demands 𝑏 ∈ R𝑉 with
𝑏(𝑉) = ∑

𝑖∈𝑉 𝑏𝑖 = 0. The objective is to find the minimum cost flow 𝑥 that satisfies the capacity
constraints: 0 ≤ 𝑥 ≤ 𝑢, and the node demands: for each node 𝑖 ∈ 𝑉 , the total incoming minus
the total outgoing flow equals 𝑏𝑖 . This can be written in the form Capacitated-LP with A as the
node-arc incidence matrix of 𝐷, a TU matrix. Let us define the residual graph 𝐷𝑥 = (𝑉, 𝐸𝑥), where
for (𝑖 , 𝑗) ∈ 𝐸𝑥 we let (𝑖 , 𝑗) ∈ 𝐸 if 𝑥𝑖 𝑗 < 𝑢𝑖 𝑗 and (𝑗 , 𝑖) ∈ 𝐸 if 𝑥𝑖 𝑗 > 0. The cost of a reverse arc will be
defined as 𝑐 𝑗𝑖 = −𝑐𝑖 𝑗 . We will also refer to the residual capacities of arcs; these are 𝑢𝑖 𝑗 − 𝑥𝑖 𝑗 in the first
case and 𝑥𝑖 𝑗 in the second.

Let us observe that the augmenting directions correspond to directed cycles in the residual graph.
Circuit augmentation algorithms for the primal and dual problems yield the rich classes of cycle
cancelling and cut cancelling algorithms, see the survey [SIM00].

The maximum flow problem between a source 𝑠 and sink 𝑡 can be formulated as a special case as
follows. We add a new arc (𝑡 , 𝑠) with capacity ∞, set the demands 𝑏 ≡ 0, and costs as 𝑐𝑡𝑠 = −1
and 𝑐𝑖 𝑗 = 0 otherwise. Bland’s [Bla76] observation was that the steepest-descent direction for this
problem corresponds to finding a shortest residual 𝑠-𝑡 path, as chosen in the Edmonds–Karp–Dinic
algorithm.

More generally, a steepest-descent direction amounts to finding a residual cycle 𝐶 ⊆ 𝐸𝑥 that
minimizes the mean cycle cost 𝑐(𝐶)/|𝐶 |. Thus, the steepest descent algorithm for minimum-cost
flows corresponds to the classical Goldberg–Tarjan algorithm [GT89] that is strongly polynomial
with running time 𝑂(|𝑉 | · |𝐸 |2) [RG94].

Let us now consider the other two variants. A Dantzig-descent direction in this context asks
for the most negative cycle, i.e., a cycle maximizing −𝑐(𝐶). A deepest-descent direction asks for a
cycle 𝐶 of arcs that maximizes −𝛼𝑐(𝐶), where 𝛼 is the residual capacity of 𝐶. Computing both
these directions exactly is NP-complete, since they generalize the Hamiltonian-cycle problem: for
every directed graph, we can set up a flow problem where 𝐸𝑥 coincides with the input graph,
all residual capacities are equal to 1, and all costs are −1. We note that De Loera, Kafer, and
Sanità [LKS19] showed that computing the Dantzig- and deepest-descent directions is also NP-hard
for the fractional matching polytope.

Nevertheless, the deepest-descent direction can be suitably approximated. Wallacher [Wal89]
proposed selecting a minimum ratio cycle in the residual graph. This is a cycle in 𝐸𝑥 that minimizes
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8 CIRCUIT DIAMETER 8.1 Introduction

𝑐(𝐶)/𝑑(𝐶), where 𝑑𝑒 = 1/𝑢𝑒 for every residual arc 𝑒 ∈ 𝐸𝑥 ; such a cycle can be found in strongly
polynomial time. It is easy to show that this cycle approximates the deepest descent direction
within a factor |𝐸𝑥 |. Wallacher’s algorithm can be naturally extended to linear programming
[MS00], and has found several combinatorial applications, e.g. [Way02; WZ99], and has also been
used in the context of integer programming [SW99]. We discuss an improved new variant in
Section 8.6. A different relaxation of the deepest-descent algorithm was given by Barahona and
Tardos [BT89], based on Weintraub’s algorithm [Wei74].

Convergence bounds

We now state the convergence bounds from [DHL15]. The original statement refers to subdetermi-
nant bounds; we paraphrase them in terms of finding approximately optimal solutions.

Theorem 8.1.1 (De Loera, Hemmecke, Lee [DHL15]). Consider a linear program in the form Capacitated-
LP. Assume we are given an initial feasible solution 𝑥(0), and let OPT denote the optimum value. By an 𝜀-
optimal solution we mean an iterate 𝑥(𝑡) such that

〈
𝑐, 𝑥(𝑡)

〉
≤ OPT + 𝜀.

(a) For given 𝜀 > 0, one can find an 𝜀-optimal solution in 2𝑛 log2

(
⟨𝑐,𝑥(0)⟩−OPT

𝜀

)
deepest-descent

augmentations.

(b) For given 𝜀 > 0, one can find an 𝜀-optimal solution in 2𝑛2𝛾
𝜀 log2

(
⟨𝑐,𝑥(0)⟩−OPT

𝜀

)
Dantzig-descent

augmentations, where 𝛾 is an upper bound on the maximum entry in any feasible solution.

(c) One can find an exact optimal solution in min{𝑛 |𝒞A |, ℓA} steepest-descent augmentations, where ℓA

denotes the number of distinct values of ⟨𝑐, 𝑔⟩/∥𝑔∥1 over 𝑔 ∈ ℰ(A).

In general, circuit augmentation algorithms may not even finitely terminate; see [MS00] for an
example on Wallacher’s rule for minimum cost flows. In parts (a) and (b), assume that all basic
solutions are 1/𝑘-integral for some 𝑘 ∈ Z and cost function is 𝑐 ∈ Z𝑛 . If 𝑥(𝑡) is a 𝜀-optimal solution
for 𝜀 < 1/𝑘, then we can identify an optimal vertex of the face containing 𝑥(𝑡) using a Carathéodory
decomposition argument, this can be implemented by a sequence of ≤ 𝑛 circuit augmentations
(see [DHL15, Lemma 5]).

According to part (c), steepest descent terminates with an optimal solution in a finite number
of iterations; moreover, the bound only depends on the linear space ker(𝐴) and 𝑐, and not on the
parameters 𝑏 and 𝑢. However, the bound can be exponentially large.

Bland’s original observation was that ℓA is strongly polynomially bounded for the maximum
flow problem. Recall that all elementary vectors 𝑔 correspond to cycles in the auxiliary graph.
Normalizing such that 𝑔𝑖 ∈ {0,±1}, −⟨𝑐, 𝑔⟩ = 1 for every augmenting cycle (as these must use the
(𝑡 , 𝑠) arc), and ∥𝑔∥1 is between 1 and |𝐸 |. In fact, the crucial argument by Edmonds and Karp [EK72]
and Dinic [Din70] is showing that the length of the shortest augmenting path is non-decreasing,
and must strictly increase within |𝐸 | consecutive iterations.

For an integer cost function 𝑐 ∈ Z𝑛 , Lee [Lee89, Proposition 3.2] gave the following upper bound
on ℓA:

Proposition 8.1.2. If ∥𝑐∥1 ≤ (𝑛 − 𝑚 + 1)∥𝑐∥∞, then

ℓA ≤
1
2 ∥𝑐∥∞(𝑛 − 𝑚 + 1)�̄�A((𝑛 − 𝑚 + 1)�̄�A + 1) .
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8 CIRCUIT DIAMETER 8.1 Introduction

In order to bound the circuit distance between vertices 𝑥 and 𝑦 let us use the following cost
function. For the basis 𝐵 defining 𝑦, let

𝑐𝑖 =


0 if 𝑖 ∈ 𝐵 ,
1 if 𝑖 ∈ [𝑛] \ 𝐵, 𝑦𝑖 = 0 ,

−1 if 𝑖 ∈ [𝑛] \ 𝐵, 𝑦𝑖 = 𝑢𝑖 .
(8.1)

With this cost function, Theorem 8.1.1(c) and Proposition 8.1.2 yield a bound 𝑂((𝑛 −𝑚)2�̄�2
A) on the

circuit diameter using the steepest descent algorithm.
Extending the analysis of the Goldberg-Tarjan algorithm [GT89], we present a new bound that

only depends on the fractional circuit imbalance 𝜅A, and is independent of 𝑐. The same bound was
independently obtained by Gauthier and Derosiers [GD21]. The proof is given in Section 8.7.

Theorem 8.1.3. For the problem Capacitated-LP with constraint matrix A ∈ R𝑚×𝑛 , the steepest-descent
algorithm terminates within 𝑂(𝑛2𝑚𝜅A log(𝜅A + 𝑛)) augmentations starting from any feasible solution 𝑥(0).

This improves on the above bound 𝑂((𝑛 − 𝑚)2�̄�2
A) for most values of the parameters (recall

that 𝜅A ≤ �̄�2
A). Moreover, this bounds the running time for steepest descent for an arbitrary cost

function 𝑐, not necessarily of the form (8.1).
Both these bounds are independent of 𝑏, however, 𝜅A and �̄�A may be exponentially large in

the encoding length 𝐿A of the matrix A. In contrast, Theorem 8.1.1(a) yields a polynomial bound
𝑂(𝑛𝐿𝐴,𝑏) on the number of deepest-descent iterations, where 𝐿𝐴,𝑏 is the encoding length of (𝐴, 𝑏).
In what follows, we review a new circuit augmentation algorithm from [DKNV22] that achieves a
log𝜅A dependence; the running time is bounded as 𝑂(𝑛3𝐿A), independently from 𝑏.

Imbalance and diameter The combinatorial diameter bound 𝑂(𝑑3 log(𝑑/𝛿M)/𝛿M) from [DH16]
mentioned above translates to a bound 𝑂((𝑛 − 𝑚)3𝑚𝜅A log(𝜅A + 𝑛)) for the system in the form (P),
see [ENV22]. For circuit diameters, the Goldberg-Tarjan minimum-mean cycle cancelling algorithm
for minimum-cost flows [GT89] naturally extends to a circuit augmentation algorithm for general LP
using the steepest-descent rule. This yields a circuit diameter bound𝑂(𝑛2𝑚𝜅A log(𝜅A+𝑛)) [ENV22],
see also [GD21]. However, note that these bounds may be exponential in the bit-complexity of the
input.

8.1.1 Our contributions

Our first main contribution improves the 𝜅A dependence to a log𝜅A dependence for circuit diameter
bounds.

Theorem 8.1.4. The circuit diameter of a system in the form (P) with constraint matrix A ∈ R𝑚×𝑛 is
𝑂(𝑚2 log(𝑚 + 𝜅A)).

The proof in Section 8.3 is via a simple ‘shoot towards the optimum’ scheme. Recall the concept
of conformal circuit decompositions.

Consider a feasible basis 𝐵 ⊆ [𝑛] and 𝑁 = [𝑛] \ 𝐵 such that 𝑥∗ = (A−1
𝐵
𝑏, 0𝑁 ) ≥ 0𝑛 is a basic

feasible solution. This is the unique optimal solution to (LP) for the cost function 𝑐 = (0𝐵 , 1𝑁 ). For
the current iterate 𝑥(𝑡), let us consider a conformal circuit decomposition 𝑥∗ − 𝑥(𝑡) = ∑𝑘

𝑗=1 ℎ
(𝑗). Note

that the existence of such a decomposition does not yield a circuit diameter bound 𝑛 due to the
maximality requirement in the definition of circuit walks. For each 𝑗 ∈ [𝑘], 𝑥(𝑡) + ℎ(𝑗) ∈ 𝑃, but there
might be a larger augmentation 𝑥(𝑡) + 𝛼ℎ(𝑗) ∈ 𝑃 for 𝛼 > 1.
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8 CIRCUIT DIAMETER 8.1 Introduction

Still, one can use this decomposition to construct a circuit walk. Let us pick the most improving
circuit from the decomposition, i.e., the one maximizing −

〈
𝑐, ℎ(𝑗)

〉
= ∥ℎ(𝑗)

𝑁
∥1, and obtain 𝑥(𝑡+1) =

𝑥(𝑡) + 𝛼(𝑡)ℎ(𝑗) for the maximum stepsize 𝛼(𝑡) ≥ 1. The proof of Theorem 8.1.4 is based on analyzing
this procedure. The first key observation is that

〈
𝑐, 𝑥(𝑡)

〉
= ∥𝑥(𝑡)

𝑁
∥1 decreases geometrically. Then,

we look at the set of indices 𝐿𝑡 =
{
𝑖 ∈ [𝑛] : 𝑥∗

𝑖
> 𝑛𝜅A∥𝑥(𝑡)𝑁 ∥1

}
and 𝑅𝑡 =

{
𝑖 ∈ [𝑛] : 𝑥(𝑡)

𝑖
≤ 𝑛𝑥∗

𝑖

}
, and

show that indices may never leave these sets once they enter. Moreover, a new index is added to
either set every 𝑂(𝑚 log(𝑚 + 𝜅A)) iterations. In Section 8.4, we extend this bound to the setting
with upper bounds on the variables.

Theorem 8.1.5. The circuit diameter of a system in the form A𝑥 = 𝑏, 0 ≤ 𝑥 ≤ 𝑢 with constraint matrix
A ∈ R𝑚×𝑛 is 𝑂(𝑚2 log(𝑚 + 𝜅A) + 𝑛 log 𝑛).

There is a straightforward reduction from the capacitated form to (P) by adding 𝑛 slack
variables; however, this would give an 𝑂(𝑛2 log(𝑛 + 𝜅A)) bound. For the stronger bound, we use a
preprocessing that involves cancelling circuits in the support of the current solution; this eliminates
all but 𝑂(𝑚) of the capacity bounds in 𝑂(𝑛 log 𝑛) iterations, independently from 𝜅A.

For rational input, log(𝜅A) = 𝑂(𝐿A) where 𝐿A denotes the total encoding length of A [DHNV20].
Hence, our result yields an 𝑂(𝑚2𝐿A + 𝑛 log 𝑛) diameter bound on A𝑥 = 𝑏, 0 ≤ 𝑥 ≤ 𝑢. This can
be compared with the bound 𝑂(𝑛𝐿A,𝑏) using deepest descent augmentation steps in [DHL15],
where 𝐿A,𝑏 is the encoding length of (A, 𝑏). (Such a bound holds for every augmentation rule that
decreases the optimality gap geometrically, including the minimum-ratio circuit rule discussed
below.) Besides our bound being independent of 𝑏, it is also applicable to systems given by
irrational inputs.

In light of these results, the next important step towards the polynomial Hirsch conjecture might
be to show a poly(𝑛, log𝜅A) bound on the combinatorial diameter of (P). Note that—in contrast
with the circuit diameter—not even a poly(𝑛, 𝐿A,𝑏) bound is known. In this context, the best known
general bound is 𝑂((𝑛 − 𝑚)3𝑚𝜅A log(𝜅A + 𝑛)) implied by [DH16].

Circuit augmentation algorithms The diameter bounds in Theorems 8.1.4 and 8.1.5 rely on
knowing the optimal solution 𝑥∗; thus, they do not provide efficient LP algorithms. We next present
circuit augmentation algorithms with poly(𝑛, 𝑚, log𝜅A) bounds on the number of iterations. Such
algorithms require subroutines for finding augmenting circuits. In many cases, such subroutines
are LPs themselves. However, they may be of a simpler form, and might be easier to solve in
practice. Borgwardt and Viss [BV20] exhibits an implementation of a steepest-descent circuit
augmentation algorithm with encouraging computational results.

Our main subroutine assumption Ratio-Circuit(A, 𝑐, 𝑤) is the well-known minimum-ratio circuit
rule. It takes as input a matrix A ∈ R𝑚×𝑛 , 𝑐 ∈ R𝑛 , 𝑤 ∈ (R+ ∪ {∞})𝑛 , and returns a basic optimal
solution to the following system; this can be equivalently written as an LP using auxiliary variables.

min ⟨𝑐, 𝑧⟩ s.t. A𝑧 = 0 , ⟨𝑤, 𝑧−⟩ ≤ 1 . (8.2)

If bounded, a basic optimal solution will be a circuit 𝑧 that minimizes ⟨𝑐, 𝑧⟩/⟨𝑤, 𝑧−⟩.
Given a feasible 𝑥 ∈ 𝑃 for (P), we use weights 𝑤𝑖 = 1/𝑥𝑖 (and uses 𝑤𝑖 = ∞ if 𝑥𝑖 = 0). For

minimum-cost flow problems, this rule was proposed by Wallacher [Wal89]; such a cycle can
be found in strongly polynomial time for flows. The main advantage of this rule is that the
optimality gap decreases by a factor 1 − 1/𝑛 in every iteration. This rule, along with the same
convergence property, can be naturally extended to linear programming [MS00], and has found
several combinatorial applications, e.g. [Way02; WZ99], and has also been used in the context of
integer programming [SW99].
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8 CIRCUIT DIAMETER 8.1 Introduction

On the negative side, Wallacher’s algorithm is not strongly polynomial: it does not even terminate
finitely for minimum-cost flows, as shown in [MS00]. In contrast, our algorithms achieve a strongly
polynomial running time whenever 𝜅 ≤ 2poly(𝑛). An important modification is the occasional use
of a second type of circuit augmentation step Support-Circuit that removes circuits in the support
of the current (non-basic) iterate 𝑥(𝑡) (see Subroutine 8.1); this can be implemented using simple
linear algebra. Our first result addresses the feasibility setting:

Theorem 8.1.6. Consider an LP of the form (P) with cost function 𝑐 = (0[𝑛]\𝑁 , 1𝑁 ) for some 𝑁 ⊆ [𝑛].
There exists a circuit augmentation algorithm that either finds a solution 𝑥 such that 𝑥𝑁 = 0 or a dual
certificate that no such solution exists, using 𝑂(𝑛2 log(𝑛 + 𝜅A)) Ratio-Circuit and 𝑛2 Support-Circuit
augmentation steps.

Such problems typically arise in Phase I of the Simplex method when we add auxiliary variables
in order to find a feasible solution. The algorithm is presented in Section 8.5. The analysis
extend that of Theorem 8.1.4, tracking large coordinates 𝑥(𝑡)

𝑖
. Our second result considers general

optimization:

Theorem 8.1.7. Consider an LP of the form (LP). There exists a circuit augmentation algorithm that
finds an optimal solution or concludes unboundedness using 𝑂(𝑛3 log(𝑛 + 𝜅A)) Ratio-Circuit and 𝑛3

Support-Circuit augmentation steps.

The proof is given in Section 8.6. The main subroutine identifies a new index 𝑖 ∈ [𝑛] such
that 𝑥(𝑡)

𝑖
= 0 in the current iteration and 𝑥∗

𝑖
= 0 in an optimal solution; we henceforth fix this

variable to 0. To derive this conclusion, at the end of each phase the current iterate 𝑥(𝑡) will be
optimal to (LP) with a slightly modified cost function 𝑐; the conclusion follows using a proximity
argument (Theorem 8.2.5). The overall algorithm repeats this subroutine 𝑛 times. The subroutine
is reminiscent of the feasibility algorithm (Theorem 8.1.6) with the following main difference:
whenever we identify a new ‘large’ coordinate, we slightly perturb the cost function.

Comparison to black-box LP approaches An important milestone towards strongly polynomial
linear programming was Tardos’s 1986 paper [Tar86] on solving (LP) in time poly(𝑛, 𝑚, logΔA),
where ΔA is the maximum subdeterminant of A. Her algorithm makes 𝑂(𝑛𝑚) calls to a weakly
polynomial LP solver for instances with small integer capacities and costs, and uses proximity
arguments to gradually learn the support of an optimal solution. This approach was extended to
the real model of computation for an poly(𝑛, 𝑚, log𝜅A) bound [DNV20]. This result uses proximity
arguments with circuit imbalances 𝜅A, and eliminates all dependence on bit-complexity.

The proximity tool Theorem 8.2.5 derives from [DNV20], and our circuit augmentation algorithms
are inspired by the feasibility and optimization algorithms in this paper. However, using circuit
augmentation oracles instead of an approximate LP oracles changes the setup. Our arguments
become simpler since we proceed through a sequence of feasible solutions, whereas much effort in
[DNV20] is needed to deal with infeasibility of the solutions returned by the approximate solver.
On the other hand, we need to be more careful as all steps must be implemented using circuit
augmentations in the original system, in contrast to the higher degree of freedom in [DNV20]
where we can make approximate solver calls to arbitrary projections and modifications of the input
LP.
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8.2 Preliminaries

For 𝑃 as in (P), 𝑥 ∈ 𝑃 and an elementary vector 𝑔 ∈ ℰ(A), we let aug𝑃(𝑥, 𝑔) ≔ 𝑥 + 𝛼𝑔 where
𝛼 = arg max{ �̄� : 𝑥 + �̄�𝑔 ∈ 𝑃 }.

Recall that for a linear space𝑊 ⊆ R𝑛 and 𝑧 ∈𝑊 , there exists a conformal circuit decomposition
of 𝑧 into at most 𝑛 circuits. That is, we can write 𝑧 =

∑𝑘
𝑡=1 ℎ

(𝑡) such that 𝑘 ≤ 𝑛, and ℎ(𝑡) ∈ ℰ(𝑊) and
ℎ(𝑡) ⊑ 𝑧 for all 𝑡 ∈ [𝑘] (Lemma 2.0.3).

8.2.1 Circuit oracles

In Sections 8.4 to 8.6, we use a simple circuit finding subroutine Support-Circuit(A, 𝑐, 𝑥, 𝑆) that will
be used to identify circuits in the support of the solution. This can be implemented easily using
Gaussian elimination.

Subroutine 8.1. Support-Circuit(A, 𝑐, 𝑥, 𝑆)

For a matrix A ∈ R𝑚×𝑛 , vectors 𝑐, 𝑥 ∈ R𝑛 and 𝑆 ⊆ [𝑛], the output is an elementary vector
𝑧 ∈ ℰ(A) with supp(𝑧) ⊆ supp(𝑥), supp(𝑧) ∩ 𝑆 ≠ ∅ with ⟨𝑐, 𝑧⟩ ≤ 0, or concludes that no
such circuit exists.

The circuit augmentation algorithms in Sections 8.5 and 8.6 will use the subroutine Ratio-
Circuit(A, 𝑐, 𝑤).

Subroutine 8.2. Ratio-Circuit(A, 𝑐, 𝑤)

The input is a matrix A ∈ R𝑚×𝑛 , 𝑐 ∈ R𝑛 , 𝑤 ∈ (R+ ∪ {∞})𝑛 , and returns a basic optimal
solution to the following system:

min ⟨𝑐, 𝑧⟩ s.t. A𝑧 = 0 , ⟨𝑤, 𝑧−⟩ ≤ 1 . (8.3)

And a basic optimal solution (𝑦, 𝑠) to the following dual program:

max −𝜆 s.t. 𝑠 = 𝑐 +A⊤𝑦 0 ≤ 𝑠 ≤ 𝜆𝑤 (8.4)

We remark that 𝑤𝑖𝑧−𝑖 = 0 whenever 𝑤𝑖 = ∞ and 𝑧−
𝑖
= 0 in (8.3). Note that (8.3) can be

reformulated as an LP using additional variables, and the dual LP can be equivalently written
as (8.4). If (8.3) is bounded, then a basic optimal solution is an elementary vector 𝑧 ∈ ℰ(A) that
minimizes ⟨𝑐, 𝑧⟩/⟨𝑤, 𝑧−⟩. Further, note that every feasible solution to (8.4) is also feasible to the
dual of (LP). The following lemma is well-known, see e.g., [MS00, Lemma 2.2].

Lemma 8.2.1. Let OPT denote the optimum value of (LP). Given a feasible solution 𝑥 to (LP), let 𝑔 be the
elementary vector returned by Ratio-Circuit(𝐴, 𝑐, 1/𝑥), and 𝑥′ = aug𝑃(𝑥, 𝑔). Then,

⟨𝑐, 𝑥′⟩ −OPT ≤
(
1 − 1

𝑛

)
(⟨𝑐, 𝑥⟩ −OPT) .

Furthermore, 𝛼 ≥ 1 for the augmentation step.

Proof. Let 𝑥∗ be an optimal solution to (LP), and let 𝑧 = (𝑥∗ − 𝑥)/𝑛. Then, 𝑧 is feasible to (8.3) for
𝑤 = 1/𝑥. The claim easily follows by noting that ⟨𝑐, 𝑔⟩ ≤ ⟨𝑐, 𝑧⟩ = (OPT− ⟨𝑐, 𝑥⟩)/𝑛, and noting that
𝑥 + 𝑔 ∈ 𝑃 is implied by ⟨1/𝑥, 𝑔−⟩ ≤ 1. □
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8.2.2 Proximity results

The condition number 𝜅A is mainly used for proving norm bounds that can be interpreted as
special forms of Hoffman-proximity results. We formulate such statements that will be needed for
our analyses. These can be derived from more general results in [DNV20]; see also [ENV22]. The
references also explain the background and similar results in previous literature, in particular, to
proximity bounds via ΔA in e.g. [Tar86] and [CGST86]. For completeness, we include the proofs.

Lemma 8.2.2. For A ∈ R𝑚×𝑛 , let 𝑧 ∈ ker(A), and let 𝑁 ⊆ [𝑛] such that A[𝑛]\𝑁 has full column rank.
Then, ∥𝑧∥∞ ≤ 𝜅A∥𝑧𝑁 ∥1.

Proof. Consider a conformal circuit decomposition ℎ(1) , . . . , ℎ(𝑘) of 𝑧. By the full column-rank
assumption of A[𝑛]\𝑁 , for every ℎ(𝑡), 𝑁 ∩ supp(ℎ(𝑡)) ≠ ∅. Consequently, ∥ℎ(𝑡)∥∞ ≤ 𝜅A |ℎ(𝑡)𝑗 | ≤ 𝜅A |𝑧 𝑗 |
for some 𝑗 ∈ 𝑁 . The claim on ∥𝑧∥∞ =

∑𝑘
𝑡=1 ∥ℎ(𝑡)∥∞ follows from this using the conformity of the

decomposition. □

Lemma 8.2.3. For A ∈ R𝑚×𝑛 , let 𝑧 − 𝑥 ∈ ker(A), and let 𝑇 ⊆ [𝑛] such that [𝑛] \ 𝑇 ⊆ supp(𝑥), and there
is no circuit in supp(𝑥) intersecting 𝑇. Then,

(𝜅A + 1)∥𝑧𝑇 ∥1 ≥ ∥𝑥𝑇 ∥∞ and (𝑛𝜅A + 1)∥𝑧𝑇 ∥1 ≥ ∥𝑥𝑇 ∥1 .

Proof. Consider a conformal circuit decomposition ℎ(1) , . . . , ℎ(𝑘) of 𝑧 − 𝑥. By the assumption,
for every ℎ(𝑡) with 𝑇 ∩ supp(ℎ(𝑡)) ≠ ∅, there exists an index 𝑗 ∈ 𝑇 ∩ supp(ℎ(𝑡)) such that 𝑥 𝑗 =
0 < 𝑧 𝑗 . This shows that ∥ℎ(𝑡)

𝑇
∥∞ ≤ 𝜅A𝑧 𝑗 ; moreover, by the conformity of the decomposition,

∥𝑧𝑇 − 𝑥𝑇 ∥∞ =
∑𝑘
𝑡=1 ∥ℎ

(𝑡)
𝑇
∥∞ ≤ 𝜅A∥𝑧𝑇 ∥1. This implies the first claim. The second claim follows since

∥𝑥𝑇 ∥1 ≤ ∥𝑧𝑇 ∥1 + ∥𝑧𝑇 − 𝑥𝑇 ∥1 ≤ ∥𝑧𝑇 ∥1 + 𝑛∥𝑧𝑇 − 𝑥𝑇 ∥∞. □

For 𝑇 = [𝑛], we obtain the following corollary.

Corollary 8.2.4. Let 𝑥 be a basic (not necessarily feasible) solution to (LP). Then, for any 𝑧 where A𝑧 = 𝑏,
we have (𝜅A + 1)∥𝑧∥1 ≥ ∥𝑥∥∞.

The following proximity theorem will be key to derive 𝑥∗
𝑖
= 0 for certain variables in our

optimization algorithm; see [DNV20] and [ENV22, Theorem 6.5]. For 𝑐 ∈ R𝑛 , we use LP(𝑐) to
denote (LP) with cost vector 𝑐, and OPT(𝑐) as the optimal value of LP(𝑐).

Theorem 8.2.5. Let 𝑐, 𝑐′ ∈ R𝑛 be two cost vectors, such that both LP(𝑐) and LP(𝑐′) have finite optimum
values. Let 𝑠′ be a dual optimal solution to LP(𝑐′). If there exists an index 𝑗 ∈ [𝑛] such that

𝑠′𝑗 > (𝑚 + 1)𝜅A∥𝑐 − 𝑐′∥∞ ,

then 𝑥∗
𝑗
= 0 for every optimal solution 𝑥∗ to LP(𝑐).

Proof. We may assume that 𝑐 ≠ 𝑐′, as otherwise we are done by complementary slackness. Let
𝑥′ be an optimal solution to LP(𝑐′). We have that 𝑥′

𝑗
= 0. For the purpose of contradiction,

suppose that there exists an optimal solution 𝑥∗ to LP(𝑐) such that 𝑥∗
𝑗
> 0. Let ℎ(1) , . . . , ℎ(𝑘) be

a conformal circuit decomposition of 𝑥∗ − 𝑥′. Then, ℎ(𝑡)
𝑗

> 0 for some 𝑡 ∈ [𝑘], and therefore

∥ℎ(𝑗)∥1 ≤ (𝑚 + 1)∥ℎ(𝑗)∥∞ ≤ (𝑚 + 1)𝜅ℎ(𝑡)
𝑗

Observe that for any 𝑖 ∈ [𝑛] where ℎ(𝑡)
𝑖

< 0, we have 𝑠′
𝑖
= 0

because 𝑥′
𝑖
> 𝑥∗

𝑖
≥ 0. Hence,〈
𝑐, ℎ(𝑡)

〉
=

〈
𝑐 − 𝑐′, ℎ(𝑡)

〉
+

〈
𝑐′, ℎ(𝑡)

〉
≥ −∥𝑐 − 𝑐′∥∞∥ℎ(𝑡)∥1 +

〈
𝑠′, ℎ(𝑡)

〉
≥ −(𝑚 + 1)𝜅A∥𝑐 − 𝑐′∥∞ ℎ(𝑡)𝑗 + 𝑠

′
𝑗ℎ
(𝑡)
𝑗

> 0 .
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Since 𝑥∗ − ℎ(𝑡) is feasible to LP(𝑐), this contradicts the optimality of 𝑥∗. □

8.2.3 Estimating circuit imbalances

The circuit augmentation algorithms in Sections 8.5 and 8.6 explicitly use the circuit imbalance
measure 𝜅A. However, this is NP-hard to approximate within a factor 2𝑂(𝑛), see [DHNV20; Tun99].
We circumvent this problem using a standard guessing procedure, see e.g. [DHNV20; VY96].
Instead of 𝜅A, we use an estimate �̂�, initialized as �̂� = 𝑛. Running the algorithm with this estimate
either finds the desired feasible or optimal solution (which we can verify), or fails. In case of failure,
we conclude that �̂� < 𝜅A, and replace �̂� by �̂�2. Since the running time of the algorithms is linear
in log(𝑛 + �̂�), the running time of all runs will be dominated by the last run, giving the desired
bound. For simplicity, the algorithm descriptions use the explicit value 𝜅A. Throughout, we use
the shorthand 𝜅 = 𝜅A whenever 𝐴 is clear from the context.

8.3 The Circuit Diameter Bound

In this section, we show Theorem 8.1.4, namely, a bound 𝑂(𝑚2 log(𝑚 + 𝜅𝐴)) on the circuit diameter
of a polyhedron in standard form (P). As outlined in the Introduction, let 𝐵 ⊆ [𝑛] be a feasible basis
and 𝑁 = [𝑛] \ 𝐵 such that 𝑥∗ = (A−1

𝐵
𝑏, 0𝑁 ) is a basic solution to (LP). We can assume 𝑛 ≤ 2𝑚: the

union of the supports of the starting vertex 𝑥(0) and the target vertex 𝑥∗ is at most 2𝑚; we can fix all
other variables to 0. The simple ‘shoot towards the optimum’ procedure is shown in Algorithm 8.1.

Algorithm 8.1: Diameter Bound
Input :A polytope 𝑃 as in (P) a vector 𝑥(0) ∈ 𝑃 and a vertex 𝑥∗ ∈ 𝑃.
Output :A circuit walk from 𝑥(0) to 𝑥∗.

1 Start from 𝑡 = 0 and 𝑥(0).
2 At each iteration 𝑡, let ℎ(1) , . . . , ℎ(𝑘) be a conformal circuit decomposition of 𝑥∗ − 𝑥(𝑡)

3 Let 𝑔(𝑡) be the circuit in the decomposition that maximizes ∥ℎ(𝑖)
𝑁
∥1 for 𝑖 ∈ [𝑘] and update

𝑥(𝑡+1) = aug𝑃(𝑥(𝑡) , 𝑔(𝑡)).
4 Terminate once 𝑥(𝑡+1) = 𝑥∗.

A priori, even finite termination is not clear. The first key lemma shows that ∥𝑥(𝑡)
𝑁
∥1 decreases

geometrically, and bounds the relative error to 𝑥∗.

Lemma 8.3.1. For every iteration 𝑡 ≥ 0 in Algorithm 8.1, we have ∥𝑥(𝑡+1)
𝑁
∥1 ≤ (1 − 1

𝑛 )∥𝑥
(𝑡)
𝑁
∥1 and for all

𝑖 ∈ [𝑛] we have |𝑥(𝑡+1)
𝑖
− 𝑥(𝑡)

𝑖
| ≤ 𝑛 |𝑥∗

𝑖
− 𝑥(𝑡)

𝑖
|.

Proof. Let ℎ(1) , . . . , ℎ(𝑘) with 𝑘 ≤ 𝑛 be the conformal circuit decomposition of 𝑥∗ − 𝑥(𝑡) used in
Algorithm 8.1. Note that ℎ(𝑖)

𝑁
≤ 0𝑁 for 𝑖 ∈ [𝑘] as 𝑥∗

𝑁
= 0𝑁 and 𝑥(𝑡) ≥ 0. Then

∥𝑔(𝑡)
𝑁
∥1 = max

𝑖∈[𝑘]
∥ℎ(𝑖)

𝑁
∥1 ≥

1
𝑘

∑
𝑖∈[𝑘]
∥ℎ(𝑖)

𝑁
∥1 =

1
𝑘
∥𝑥(𝑡)

𝑁
∥1 , and so

∥𝑥(𝑡+1)
𝑁
∥1 = ∥aug𝑃(𝑥(𝑡) , 𝑔(𝑡))𝑁 ∥1 ≤ ∥𝑥(𝑡)𝑁 + 𝑔

(𝑡)
𝑁
∥1 ≤

(
1 − 1

𝑘

)
∥𝑥(𝑡)

𝑁
∥1.

(8.5)

Let 𝛼(𝑡) be such that 𝑥(𝑡+1) = 𝑥(𝑡) + 𝛼(𝑡)𝑔(𝑡). Then, by conformity and (8.5)

𝛼(𝑡) =
∥𝑥(𝑡+1)

𝑁
− 𝑥(𝑡)

𝑁
∥1

∥𝑔(𝑡)
𝑁
∥1

≤
∥𝑥(𝑡)

𝑁
∥1

∥𝑔(𝑡)
𝑁
∥1
≤ 𝑘,
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and so for all 𝑖 we have |𝑥(𝑡+1)
𝑖
− 𝑥(𝑡)

𝑖
| = 𝛼(𝑡) |𝑔(𝑡)

𝑖
| ≤ 𝑘 |𝑔(𝑡)

𝑖
| ≤ 𝑘 |𝑥∗

𝑖
− 𝑥(𝑡)

𝑖
|. □

We analyze the sets

𝐿𝑡 =
{
𝑖 ∈ [𝑛] : 𝑥∗𝑖 > 𝑛𝜅𝐴∥𝑥(𝑡)𝑁 ∥1

}
, 𝑇𝑡 = [𝑛] \ 𝐿𝑡 , 𝑅𝑡 =

{
𝑖 ∈ [𝑛] : 𝑥(𝑡)

𝑖
≤ 𝑛𝑥∗𝑖

}
. (8.6)

Lemma 8.3.2. For every iteration 𝑡 ≥ 0, we have 𝐿𝑡 ⊆ 𝐿𝑡+1 ⊆ 𝐵 and 𝑅𝑡 ⊆ 𝑅𝑡+1.

Proof. We have that 𝐿𝑡 ⊆ 𝐿𝑡+1 as ∥𝑥(𝑡)
𝑁
∥1 is monotonically decreasing by Lemma 8.3.1, and 𝐿𝑡 ⊆ 𝐵

as 𝑥∗
𝑁

= 0𝑁 . For 𝑗 ∈ 𝑅𝑡 note that if 𝑥(𝑡)
𝑗
≥ 𝑥∗

𝑗
, then 𝑥

(𝑡+1)
𝑗
≤ 𝑥

(𝑡)
𝑗

by conformity. Otherwise, by

Lemma 8.3.1 we have 𝑥(𝑡+1) ≤ 𝑥(𝑡)
𝑖
+ 𝑛 |𝑥∗

𝑖
− 𝑥(𝑡)

𝑖
| ≤ 𝑛𝑥∗

𝑖
. In both cases we conclude 𝑗 ∈ 𝑅𝑡+1. □

Lemma 8.3.3. If ∥𝑥(𝑡)
𝑇𝑡
− 𝑥∗

𝑇𝑡
∥∞ > 2𝑚𝑛2𝜅2

𝑥∗𝑇𝑡∞, then 𝑅𝑡 ⊊ 𝑅𝑡+1.

Proof. Let 𝑖 ∈ supp(𝑥(𝑡))\supp(𝑥(𝑡+1)); such a variable exists by the maximality of the augmentation.
Lemma 8.2.2 for 𝑥(𝑡+1) − 𝑥∗ ∈ ker(𝐴) implies that

∥𝑥(𝑡+1) − 𝑥∗∥∞ ≤ 𝜅∥𝑥(𝑡+1)
𝑁
− 𝑥∗𝑁 ∥1 = 𝜅∥𝑥(𝑡+1)

𝑁
∥1 < 𝜅∥𝑥(𝑡)

𝑁
∥1 , (8.7)

and so 𝑖 ∉ 𝐿𝑡 . Noting that 𝑥(𝑡+1) − 𝑥(𝑡) is a circuit and 𝑥(𝑡+1)
𝑖

= 0, it follows that𝑥(𝑡)𝑁 − 𝑥(𝑡+1)
𝑁


1
≤ (𝑚𝜅 + 1)𝑥(𝑡)

𝑖
≤ 2𝑚𝜅𝑥(𝑡)

𝑖
. (8.8)

On the other hand, let ℎ(1) , . . . , ℎ(𝑘) be the conformal circuit decomposition of 𝑥∗ − 𝑥(𝑡) used in
iteration 𝑡 in Algorithm 8.1. Let 𝑗 ∈ 𝑇𝑡 such that |𝑥(𝑡)

𝑗
− 𝑥∗

𝑗
| = ∥𝑥(𝑡)

𝑇𝑡
− 𝑥∗

𝑇𝑡
∥∞. There exists ℎ̃ in this

decomposition such that | ℎ̃ 𝑗 | ≥ 1
𝑛 |𝑥
(𝑡)
𝑗
− 𝑥∗

𝑗
|. As 𝐵 ⊆ [𝑛] is independent one has supp(ℎ̃) ∩ 𝑁 ≠ ∅

and so

∥ ℎ̃𝑁 ∥1 ≥
| ℎ̃ 𝑗 |
𝜅
≥
|𝑥(𝑡)
𝑗
− 𝑥∗

𝑗
|

𝑛𝜅
. (8.9)

From (8.8), (8.9) and noting that ∥ ℎ̃𝑁 ∥1 ≤ ∥𝑔(𝑡)𝑁 ∥1 ≤ ∥𝑥
(𝑡)
𝑁
− 𝑥(𝑡+1)

𝑁
∥1 we get

𝑥
(𝑡)
𝑖
≥
∥𝑥(𝑡)

𝑁
− 𝑥(𝑡+1)

𝑁
∥1

2𝑚𝜅
≥ ∥ ℎ̃𝑁 ∥12𝑚𝜅

≥
∥𝑥(𝑡)

𝑇𝑡
− 𝑥∗

𝑇𝑡
∥∞

2𝑚𝑛𝜅2 . (8.10)

In particular, if as in the assumption of the lemma ∥𝑥(𝑡)
𝑇𝑡
− 𝑥∗

𝑇𝑡
∥∞ > 2𝑚𝑛2𝜅2∥𝑥∗

𝑇𝑡
∥∞, then 𝑥

(𝑡)
𝑖

>

𝑛∥𝑥∗
𝑇𝑡
∥∞ ≥ 𝑛𝑥∗𝑖 . We conclude that 𝑖 ∉ 𝑅𝑡 and 𝑖 ∈ 𝑅𝑡+1 as 𝑥(𝑡+1)

𝑖
= 0. □

We are ready to give the convergence bound.

Proof of Theorem 8.1.4. In light of Lemma 8.3.2, it suffices to show that either 𝐿𝑡 or 𝑅𝑡 is extended in
every 𝑂(𝑛 log(𝑛 + 𝜅)) iterations; recall the assumption 𝑛 ≤ 2𝑚. By Lemma 8.3.3, if ∥𝑥(𝑡)

𝑇𝑡
− 𝑥∗

𝑇𝑡
∥∞ >

2𝑚𝑛2𝜅2
𝑥∗𝑇𝑡∞, then 𝑅𝑡 ⊊ 𝑅𝑡+1 is extended.

Otherwise, ∥𝑥(𝑡)
𝑇𝑡
− 𝑥∗

𝑇𝑡
∥∞ ≤ 2𝑚𝑛2𝜅2

𝑥∗𝑇𝑡∞. Assuming ∥𝑥(𝑡)
𝑁
∥1 > 0, by Lemma 8.3.1, there is an

iteration 𝑟 = 𝑡 + 𝑂(𝑛 log(𝑛 + 𝜅)) such that 𝑛2𝜅(2𝑚𝑛2𝜅2 + 1)∥𝑥(𝑟)
𝑁
∥1 < ∥𝑥(𝑡)

𝑁
∥1. In particular,

(2𝑚𝑛2𝜅2 + 1)∥𝑥∗𝑇𝑡 ∥∞ ≥ ∥𝑥
(𝑡)
𝑇𝑡
∥∞ ≥ ∥𝑥(𝑡)𝑁 ∥∞ ≥

1
𝑛
∥𝑥(𝑡)

𝑁
∥1 > 𝑛𝜅(2𝑚𝑛2𝜅2 + 1)∥𝑥(𝑟)

𝑁
∥1. (8.11)

Therefore ∥𝑥∗
𝑇𝑡
∥∞ > 𝑛𝜅∥𝑥(𝑟)

𝑁
∥1 and so 𝐿𝑡 ⊊ 𝐿𝑟 . □
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8.4 Diameter Bounds for the Capacitated Case

In this section we consider diameter bounds for systems of the form

𝑃𝑢 = { 𝑥 ∈ R𝑛 : A𝑥 = 𝑏, 0 ≤ 𝑥 ≤ 𝑢 } (Bound-P)

The theory in Section 8.3 carries over to 𝑃𝑢 at the cost of turning 𝑚 into 𝑛 via the standard
reformulation

𝑃𝑢 =

{
(𝑥, 𝑦) ∈ R𝑛+𝑛 :

[
A 0
I I

] [
𝑥

𝑦

]
=

[
𝑏

𝑢

]
, 𝑥, 𝑦 ≥ 0

}
, 𝑃𝑢 =

{
𝑥 : (𝑥, 𝑦) ∈ 𝑃𝑢

}
. (8.12)

Corollary 8.4.1. The circuit diameter of a system in the form (P) with constraint matrix A ∈ R𝑚×𝑛 is
𝑂(𝑛2 log(𝑛 + 𝜅A)).

Proof. Follows straightforward from Theorem 8.1.4 together with the reformulation (8.12). It is
easy to check that 𝜅 of the constraint matrix of (8.12) coincides with 𝜅A. □

Intuitively, the polytope should not become more complex; related theory in [Bra+21] also shows
how both-sided bounds can be incorporated in a linear program without significantly changing
the complexity of solving the program.

We prove Theorem 8.1.5 via the following new procedure. A basic feasible point 𝑥∗ ∈ 𝑃𝑢 is
characterized by a partition 𝐵 ∪ 𝐿 ∪ 𝐻 = [𝑛] where 𝐴𝐵 is a basis (has full column rank), 𝑥∗

𝐿
= 0𝐿

and 𝑥∗
𝐻
= 𝑢𝐻 . In 𝑂(𝑛 log 𝑛) iterations, we fix all but 2𝑚 variables to the same bound as in 𝑥∗; for

the remaining system with 2𝑚 variables, we can use the standard reformulation.

Algorithm 8.2: Capacitated Diameter Bound
Input :A polytope 𝑃 as in (Bound-P) a vector 𝑥(0) ∈ 𝑃 and a vertex 𝑥∗ ∈ 𝑃.

1 Let 𝐵 ∪ 𝐿 ∪ 𝐻 = [𝑛] be the partition for 𝑥∗, i.e. 0𝐵 ≤ 𝐴−1
𝐵
𝑏 ≤ 𝑢𝐵, 𝑥∗

𝐿
= 0𝐿 and 𝑥∗

𝐻
= 𝑢𝐻 .

2 Set the cost 𝑐 ∈ R𝑛+ as 𝑐𝑖 = 0 if 𝑖 ∈ 𝐵, 𝑐𝑖 = 1/𝑢𝑖 if 𝑖 ∈ 𝐿, and 𝑐𝑖 = −1/𝑢𝑖 if 𝑖 ∈ 𝐻.
3 Start from 𝑡 = 0 and some 𝑥(0) ∈ 𝑃𝑢 .
4 do
5 if ⟨𝑐, 𝑥(𝑡)⟩ ≥ −|𝐻 | + 1 then
6 Let ℎ(1) , . . . , ℎ(𝑘) be a conformal circuit decomposition of 𝑥∗ − 𝑥(𝑡). Let 𝑔(𝑡) ∈ arg min𝑖∈[𝑘]⟨𝑐, ℎ(𝑖)⟩.
7 else
8 Let 𝑔(𝑡) be the circuit returned by Support-Circuit(A𝑆𝑡 , 𝑐𝑆𝑡 , 𝑥

(𝑡)
𝑆𝑡
, 𝑆𝑡 ), where

𝑆𝑡 ≔
{
𝑖 ∈ 𝐿 ∪ 𝐻 : 𝑥(𝑡)

𝑖
≠ 𝑥∗

𝑖

}
.

9 𝑥(𝑡+1) ← aug𝑃(𝑥(𝑡) , 𝑔(𝑡)).
10 𝑡 ← 𝑡 + 1
11 𝑆𝑡 ←

{
𝑖 ∈ 𝐿 ∪ 𝐻 : 𝑥(𝑡)

𝑖
≠ 𝑥∗

𝑖

}
12 while |𝑆𝑡 | > 𝑚

13 Run Diameter Bound on Ã ≔

[
A𝐵∪𝑆𝑡 0

I I

]
and �̃� =

[
𝑏

𝑢

]
.

Proof of Theorem 8.1.5. We show that Algorithm 8.2 has the claimed number of iterations. First, note

that ⟨𝑐, 𝑥∗⟩ = −|𝐻 | is the optimum value. Initially,
〈
𝑐, 𝑥(0)

〉
= −∑

𝑖∈𝐻
𝑥
(0)
𝑖

𝑢𝑖
+∑

𝑖∈𝐿
𝑥
(0)
𝑖

𝑢𝑖
≤ 𝑛. Similar

to Lemma 8.3.1, due to our choice of 𝑔(𝑡) from the conformal circuit decomposition, we have
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〈
𝑐, 𝑥(𝑡+1)〉+ |𝐻 | ≤ (1− 1

𝑛 )(
〈
𝑐, 𝑥(𝑡)

〉
+ |𝐻 |). In particular, 𝑂(𝑛 log 𝑛) iterations suffice to find an iterate

𝑡 such that ⟨𝑐, 𝑥(𝑡)⟩ < −|𝐻 | + 1.
Note that the calls to Support-Circuit do not increase

〈
𝑐, 𝑥(𝑡)

〉
, so from now we will never make

use of the conformal circuit decomposition again. A call to Support-Circuit will set at least one
variable 𝑖 ∈ supp(𝑔(𝑡)) to either 0 or 𝑢𝑖 . We claim that either 𝑥(𝑡+1)

𝑖
= 0 for some 𝑖 ∈ 𝐿, or 𝑥(𝑡+1)

𝑖
= 𝑢𝑖

for some 𝑖 ∈ 𝐻, that is, we set a variable to the ‘right’ boundary. To see this, note that if 𝑥(𝑡+1)
𝑖

hits the wrong boundary, then the gap between
〈
𝑐, 𝑥(𝑡+1)〉 and −|𝐻 | must be at least 1, a clear

contradiction to
〈
𝑐, 𝑥(𝑡+1)〉 < −|𝐻 | + 1.

Thus, after at most 𝑛 calls to Support-Circuit, we get |𝑆𝑡 | ≤ 𝑚, at which point we call Algorithm 8.1
with ≤ 2𝑚 variables, so the diameter bound of Theorem 8.1.4 applies. □

8.5 A Circuit-Augmentation Algorithm for Feasibility

In this section we prove Theorem 8.1.6: given a system (LP) with cost 𝑐 = (0[𝑛]\𝑁 , 1𝑁 ) for some
𝑁 ⊆ [𝑛], find a solution 𝑥 with 𝑥𝑁 = 0, or show that no such solution exists.

As an application, assume we are looking for a feasible solution to the program (P). We can
construct an auxiliary linear program, that has trivial feasible solutions and whose optimal solutions
correspond to feasible solutions of the original program (P). This is very much in the same tune as
Phase I simplex algorithms.

min ⟨1𝑛 , 𝑧⟩ s.t. A𝑦 −A𝑧 = 𝑏 , 𝑦, 𝑧 ≥ 0 . (Aux-LP)

For the constraint matrix Ã =

[
A −A

]
it is easy to see that 𝜅Ã = 𝜅A and that any solution A𝑥 = 𝑏

can be converted into a feasible solution to (Aux-LP) via (𝑦, 𝑧) = (𝑥+ , 𝑥−). Hence, if the subroutines
Support-Circuit and Ratio-Circuit are available for (Aux-LP), then we can find a feasible solution
to (P) in 𝑂(𝑛2 log(𝑛 + 𝜅𝐴)) augmentation steps.

Our algorithm is presented in Algorithm 8.3. We maintain a set ℒ𝑡 ⊆ [𝑛] \ 𝑁 , initialized as
∅. Whenever 𝑥(𝑡)

𝑖
≥ 8𝑛3𝜅2∥𝑥(𝑡)

𝑁
∥1 for the current iterate 𝑥(𝑡), we add 𝑖 to ℒ𝑡 . The key part of the

analysis is to show that ℒ𝑡 is extended in every 𝑂(𝑛 log 𝑛) iterations.
We let 𝑇𝑡 = [𝑛] \ ℒ𝑡 denote the complement set. At each iteration when ℒ𝑡 is extended, we

run a sequence of at most 𝑛 Support-Circuit(A, 𝑐, 𝑥(𝑡) , 𝑇𝑡) steps. These are repeated as long as
∥𝑥(𝑡)

𝑇𝑡
∥∞ < 4𝑛𝜅∥𝑥(𝑡)

𝑁
∥1 and there are circuits in supp(𝑥(𝑡)) intersecting 𝑇𝑡 . Afterwards, we run a

sequence of Ratio-Circuit iterations until a new index is added to ℒ𝑡 .
In the Support-Circuit iterations, we have an additional requirement that 𝑔(𝑡)

𝑘
< 0 for at least

one 𝑘 ∈ 𝑇𝑡 for the returned circuit. This is guaranteed whenever
〈
𝑐, 𝑔(𝑡)

〉
< 0. If the oracle would

return a circuit with
〈
𝑐, 𝑔(𝑡)

〉
= 0 and 𝑔

(𝑡)
𝑇𝑡
≥ 0, then we can replace 𝑔(𝑡) by −𝑔(𝑡).

Proof of Theorem 8.1.6. Algorithm 8.3 performs at most 𝑛2 Support-Circuit iterations; we show that
ℒ𝑡 is extended after a sequence of 𝑂(𝑛 log(𝑛 + 𝜅)) Ratio-Circuit iterations; this implies the claim.
Let us first analyze what happens at Ratio-Circuit iterations.

Claim 8.5.0.1. If Ratio-Circuit is used in iteration 𝑡, then either ∥𝑥(𝑡+1)
𝑁
∥1 ≤

(
1 − 1

𝑛

)
∥𝑥(𝑡)

𝑁
∥1, or the algorithm

terminates with a dual certificate.

Proof. The oracle returns 𝑔(𝑡) that is optimal to (8.3) and (𝑦(𝑡) , 𝑠(𝑡)) with optimum value −𝜆. Recall
that we use weights 𝑤𝑖 = 1/𝑥(𝑡)

𝑖
. If

〈
𝑏, 𝑦(𝑡)

〉
> 0, the algorithm terminates. Otherwise, note that〈

𝑐, 𝑥(𝑡)
〉
=

〈
𝑏, 𝑦(𝑡)

〉
+

〈
𝑠(𝑡) , 𝑥(𝑡)

〉
≤ 𝜆

〈
𝑤, 𝑥(𝑡)

〉
= 𝑛𝜆 ,
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Algorithm 8.3: Feasibility-Algorithm
Input :Linear program in standard form (LP) with cost 𝑐 = (0[𝑛]\𝑁 , 1𝑁 ) for some 𝑁 ⊆ [𝑛], and

initial feasible solution 𝑥(0).
Output :A solution 𝑥 with 𝑥𝑁 = 0, or a dual solution 𝑦 with ⟨𝑏, 𝑦⟩ > 0.

1 𝑡 ← 0 ; ℒ−1 ← 0
2 while 𝑥(𝑡)

𝑁
> 0 do

3 ℒ𝑡 ← ℒ𝑡−1 ∪ {𝑖 ∈ [𝑛] : 𝑥(𝑡)
𝑖
≥ 8𝑛3𝜅2∥𝑥(𝑡)

𝑁
∥1}; 𝑇𝑡 ← [𝑛] \ ℒ𝑡

4 if 𝑡 = 0 or ℒ𝑡 \ ℒ𝑡−1 ≠ ∅ then
5 while ∥𝑥(𝑡)

𝑇𝑡
∥∞ < 4𝑛𝜅∥𝑥(𝑡)

𝑁
∥1 and there is a circuit in supp(𝑥(𝑡)) intersecting 𝑇 do

6 𝑔(𝑡) ← Support-Circuit(A, 𝑐, 𝑥(𝑡) , 𝑇𝑡 ) such that 𝑔(𝑡)
𝑘

< 0 for some 𝑘 ∈ 𝑇𝑡
7 𝑥(𝑡+1) ← aug𝑃(𝑥(𝑡) , 𝑔(𝑡)) ; 𝑡 ← 𝑡 + 1 ;

8 (𝑔(𝑡) , 𝑦(𝑡) , 𝑠(𝑡)) ← Ratio-Circuit(A, 𝑐, 1/𝑥(𝑡))
9 if

〈
𝑏, 𝑦(𝑡)

〉
> 0 then

10 Terminate with infeasibility certificate

11 𝑥(𝑡+1) ← aug𝑃(𝑥(𝑡) , 𝑔(𝑡)) ; 𝑡 ← 𝑡 + 1
12 return 𝑥

implying 𝜆 ≥
〈
𝑐, 𝑥(𝑡)

〉
/𝑛, and therefore

〈
𝑐, 𝑔(𝑡)

〉
= −𝜆 ≤ −

〈
𝑐, 𝑥(𝑡)

〉
/𝑛. This implies the claim, noting

that
∥𝑥(𝑡+1)

𝑁
∥1 =

〈
𝑐, 𝑥(𝑡+1)

〉
≤

〈
𝑐, 𝑥(𝑡)

〉
−

〈
𝑐, 𝑔(𝑡)

〉
≤

(
1 − 1

𝑛

)
∥𝑥(𝑡)

𝑁
∥1 .

□

Further, assume that at a Ratio-Circuit iteration, for some index 𝑗 ∈ [𝑛]we have 𝑥(𝑡)
𝑗
≥ 4𝑛𝜅∥𝑥(𝑡)

𝑁
∥1.

Then,
𝑥
(𝑡+1)
𝑗

∥𝑥(𝑡+1)
𝑁
∥1
≥
𝑥
(𝑡)
𝑗
− 𝜅∥𝑥(𝑡+1)

𝑁
− 𝑥(𝑡)

𝑁
∥1

(1 − 1
𝑛 )∥𝑥

(𝑡)
𝑁
∥1

≥
𝑥
(𝑡)
𝑗
− 2𝜅∥𝑥(𝑡)

𝑁
∥1

(1 − 1
𝑛 )∥𝑥

(𝑡)
𝑁
∥1

≥
𝑥
(𝑡)
𝑗
− 𝑥(𝑡)

𝑗
/(2𝑛)

(1 − 1
𝑛 )∥𝑥

(𝑡)
𝑁
∥1

=

(
1 + 1

2𝑛 − 2

) 𝑥
(𝑡)
𝑗

∥𝑥(𝑡)
𝑁
∥1
.

(8.13)

Claim 8.5.0.2. Throughout for every 𝑗 ∈ ℒ𝑡 , we have 𝑥(𝑡)
𝑗
≥ 4𝑛3𝜅2∥𝑥(𝑡)

𝑁
∥1

Proof. The proof is by induction on the number of iterations; it holds at the beginning. Assume
that the property already holds at iteration 𝑡, and let us analyse what happens if Support-Circuit
is called. This may happen only if ∥𝑥(𝑡)

𝑇𝑡
∥∞ < 4𝑛𝜅∥𝑥(𝑡)

𝑁
∥1. By the condition that 𝑔(𝑡)

𝑘
< 0 for some

𝑘 ∈ 𝑇𝑡 , and by the definition of 𝜅, we have ∥𝑔∥∞ ≤ 𝜅 |𝑔(𝑡)
𝑘
|. Together with 𝑥(𝑡)

𝑘
≤ 4𝑛𝜅∥𝑥(𝑡)

𝑁
∥1 and the

induction hypothesis, this guarantees that the augmentation must set a coordinate in 𝑇𝑡 to 0, and
consequently, ∥𝑥(𝑡+1) − 𝑥(𝑡)∥∞ ≤ 4𝑛𝜅2∥𝑥(𝑡)

𝑁
∥1.

To verify the claim for iteration 𝑡+1, consider any index 𝑗 ∈ ℒ𝑡 , and let 𝑟 ≤ 𝑡 be the iteration when
𝑗 was added to ℒ𝑟 ; the claim holds at iteration 𝑟. We analyse the ratio 𝑥(𝑡

′)
𝑗
/∥𝑥(𝑡

′)
𝑁
∥1 for iterations

𝑡′ = 𝑟, . . . , 𝑡 + 1. At every iteration that performs Ratio-Circuit, if 𝑥(𝑡
′)

𝑗
/∥𝑥(𝑡

′)
𝑁
∥1 ≥ 4𝑛3𝜅2 then the

ratio may only increase according to (8.13).
There are at most 𝑛 sequences of at most 𝑛 Support-Circuit augmentations throughout the

algorithm. By the above argument, each augmentation may decrease 𝑥(𝑡
′)

𝑗
by at most 4𝑛𝜅2∥𝑥(𝑡

′)
𝑁
∥1;

hence, the total decrease in 𝑥(𝑡
′)

𝑗
/∥𝑥(𝑡

′)
𝑁
∥1 throughout the algorithm is bounded by 4𝑛3𝜅2. Since the

starting value was ≥ 8𝑛3𝜅2, it follows that the ratio may never drop below 4𝑛3𝜅2. □
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8 CIRCUIT DIAMETER 8.6 A Circuit-Augmentation Algorithm for Optimization

After iteration 𝑡 = 0 or in a later iteration after ℒ𝑡 got extended, we perform a (possibly empty)
sequence of support circuit cancellations. Let us consider an iteration 𝑡 right after we are done with
the support circuit cancellations. We show that ℒ𝑡 is extended within 𝑂(𝑛 log(𝑛 + 𝜅)) consecutive
calls to Ratio-Circuit; this completes the proof.

First, assume that the sequence of support circuit cancellations finished with ∥𝑥(𝑡)
𝑇𝑡
∥∞ > 4𝑛𝜅∥𝑥(𝑡)

𝑁
∥1,

and let 𝑗 ∈ 𝑇𝑡 such that ∥𝑥(𝑡)
𝑇𝑡
∥∞ = 𝑥

(𝑡)
𝑗

. By (8.13), we see that at iteration 𝑟 = 𝑡 + 𝑂(𝑛 log(𝑛 + 𝜅)) we

must have 𝑥(𝑟)
𝑗
/∥𝑥(𝑟)

𝑁
∥1 > 8𝑛3𝜅2, that is, 𝑗 is added into ℒ𝑟 .

Next, assume that after the sequence of support circuit cancellations supp(𝑥(𝑡)) ∩ 𝑇𝑡 became
linearly independent. Within 𝑂(𝑛 log(𝑛 + 𝜅)) consecutive Ratio-Circuit augmentations we reach
an iterate 𝑟 = 𝑡 + 𝑂(𝑛 log(𝑛 + 𝜅)) such that ∥𝑥(𝑟)

𝑁
∥1 ≤ (16𝑛5𝜅3)−1∥𝑥(𝑡)

𝑁
∥1. Then, by Lemma 8.2.3,

∥𝑥(𝑟)
𝑇𝑡
∥1 ≥

∥𝑥(𝑡)
𝑇𝑡
∥1

𝑛𝜅 + 1 ≥
∥𝑥(𝑡)

𝑁
∥1

𝑛𝜅 + 1 > 8𝑛4𝜅2∥𝑥(𝑟)
𝑁
∥1 ,

showing that some 𝑗 ∈ 𝑇𝑡 must be included in ℒ𝑟 . □

8.6 A Circuit-Augmentation Algorithm for Optimization

In this section, we give a circuit-augmentation algorithm for solving (LP), assuming an initial
feasible solution 𝑥(0) is provided. At all times, the algorithm maintains a feasible primal solution
𝑥(𝑡) to (LP), initialized with 𝑥(0). The goal is to augment 𝑥(𝑡) using the subroutines Support-Circuit
and Ratio-Circuit until the emergence of a set ∅ ≠ 𝑁 ⊆ [𝑛]which satisfies 𝑥(𝑡)

𝑁
= 𝑥∗

𝑁
= 0 for every

optimal solution 𝑥∗ to (LP). When this happens, we have reached a lower dimensional face of the
feasible region (P) that contains the optimal face. Hence, we can fix 𝑥(𝑡

′)
𝑁

= 0 in all subsequent
iterations 𝑡′ ≥ 𝑡. In particular, the same procedure is repeated on a smaller LP with constraint
matrix A[𝑛]\𝑁 , RHS vector 𝑏, and costs 𝑐[𝑛]\𝑁 , initialized with the feasible solution 𝑥(𝑡)[𝑛]\𝑁 . Since
ℰ(A[𝑛]\𝑁 ) ⊆ 𝜋[𝑛]\𝑁 (ℰ(A)), a circuit walk of the smaller LP is also a circuit walk of the original LP.
This gives the overall circuit-augmentation algorithm.

In what follows, we focus on the aforementioned procedure (Algorithm 8.4), since the main
algorithm just calls it at most 𝑛 times. An instance of (LP) is given by 𝐴 ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 and
𝑐 ∈ R𝑛 . We fix parameters

𝛿 <
1

𝑛3/2(𝑚 + 2)𝜅
, Γ =

9
√
𝑛𝜅2𝑇

𝛿
, 𝑇 =

⌈
4𝑛 log

(
4𝑚𝑛𝜅

𝛿

)
+ 1

⌉
.

Throughout the procedure, A and 𝑏 will be fixed, but we will sometimes modify the cost function 𝑐.
Recall that for any 𝑐 ∈ R𝑛 , we use LP(𝑐) to denote the problem with cost vector 𝑐, and the optimum
value is OPT(𝑐).

At the start of Algorithm 8.4, we orthogonally project the original cost vector 𝑐 to ker(A). This
does not change the optimal face of (LP). If 𝑐 = 0, then we terminate and return the current feasible
solution 𝑥(0) as it is optimal. Otherwise, we scale the cost to ∥𝑐∥2 = 1, and use Ratio-Circuit to
obtain a basic dual feasible solution 𝑠(−1) to LP(𝑐).

The majority of Algorithm 8.4 consists of repeated phases, ending when
〈
𝑥(𝑡) , 𝑠(𝑡−1)〉 = 0. At the

start of a phase, the set 𝑆 of coordinates with large dual slack 𝑠(𝑡−1)
𝑖
≥ 𝛿 are identified. Based on

this, a modified cost function 𝑐 ≥ 0 is derived from 𝑠(𝑡−1) by truncating the entries not in 𝑆 to zero.
This modified cost 𝑐 will be used until the end of the phase. Next, we augment our current primal
solution 𝑥(𝑡) by calling Support-Circuit(A, 𝑐, 𝑥(𝑡) , 𝑆) to eliminate circuits in supp(𝑥(𝑡)) intersecting 𝑆
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8 CIRCUIT DIAMETER 8.6 A Circuit-Augmentation Algorithm for Optimization

Algorithm 8.4: Variable-Fixing
Input :Linear program in standard form (LP), and initial feasible solution 𝑥(0).
Output :Either an optimal solution to (LP), or a feasible solution 𝑥 with a nonempty set 𝑁 ⊆ [𝑛]

such that 𝑥𝑁 = 𝑥∗
𝑁

= 0 for every optimal solution 𝑥∗ to (LP).
1 𝑡 ← 0, 𝑐 ← Πker(A)(𝑐)
2 if 𝑐 = 0 then
3 return 𝑥(𝑡)

4 𝑐 ← 𝑐/∥𝑐∥2
5 (·, 𝑠(𝑡−1)) ← Ratio-Circuit(A, 𝑐, 1) ⊲ Or any bfs to the dual of LP(𝑐)
6 while

〈
𝑥(𝑡) , 𝑠(𝑡−1)

〉
> 0 do ⊲ Start of a phase

7 𝑆←
{
𝑖 ∈ [𝑛] : 𝑠(𝑡−1)

𝑖
≥ 𝛿

}
8 Set modified cost 𝑐 ∈ R𝑛+ as 𝑐𝑖 ← 𝑠

(𝑡−1)
𝑖

∀𝑖 ∈ 𝑆, and 𝑐𝑖 ← 0 ∀𝑖 ∉ 𝑆
9 while ∃ a circuit in supp(𝑥(𝑡)) intersecting 𝑆 with nonpositive 𝑐-cost do

10 𝑔(𝑡) ← Support-Circuit(A, 𝑐, 𝑥(𝑡) , 𝑆) ⊲ Iteration 𝑡
11 𝑥(𝑡+1) ← aug𝑃(𝑥(𝑡) , 𝑔(𝑡)), 𝑠(𝑡) ← 𝑠(𝑡−1), 𝑡 ← 𝑡 + 1
12 for 𝑖 = 1 to T do
13 (𝑔(𝑡) , 𝑠(𝑡)) ← Ratio-Circuit(A, 𝑐, 1/𝑥(𝑡)) ⊲ Iteration 𝑡
14 𝑥(𝑡+1) ← aug𝑃(𝑥(𝑡) , 𝑔(𝑡)), 𝑡 ← 𝑡 + 1
15 if

〈
𝑐, 𝑔(𝑡−1)

〉
= 0 then

16 break

17 𝑁 ←
{
𝑖 ∈ [𝑛] : 𝑠(𝑡−1)

𝑖
> 𝜅(𝑚 + 1)𝑛𝛿

}
18 return (𝑥(𝑡) , 𝑁)

with nonpositive 𝑐-cost. Note that there are at most 𝑛 such calls because each call sets a primal
variable 𝑥(𝑡)

𝑖
to zero.

In the remaining part of the phase, we augment 𝑥(𝑡) using Ratio-Circuit(A, 𝑐, 1/𝑥(𝑡)) for 𝑇
iterations. In every iteration, Ratio-Circuit(A, 𝑐, 1/𝑥(𝑡)) returns a minimum cost-to-weight ratio
circuit 𝑔(𝑡), where the choice of weights 1/𝑥(𝑡) follows Wallacher [Wal89]. Recall that the oracle also
gives a basic dual feasible solution 𝑠(𝑡) to LP(𝑐). If 𝑔(𝑡) does not improve the current solution 𝑥(𝑡),
i.e.,

〈
𝑐, 𝑔(𝑡)

〉
= 0, then we terminate the phase early as 𝑥(𝑡) is already optimal to LP(𝑐). In this case,

𝑠(𝑡) is an optimal dual solution to LP(𝑐) because
〈
𝑥(𝑡) , 𝑠(𝑡)

〉
= 0. This finishes the description of a

phase.
Let 𝑐(𝑘) denote the modified cost 𝑐 used in phase 𝑘 ≥ 1, with the convention 𝑐(0) = 𝑐. Observe that

𝑐(𝑘) ∈ im(A⊤) + 𝑐 − 𝑟(𝑘) for some 𝑟(𝑘) ∈ R𝑛+ where ∥𝑟(𝑘)∥∞ ≤ 𝑘𝛿. Thus, for any dual feasible solution
𝑠 to LP(𝑐(𝑘)), 𝑠 + 𝑟(𝑘) is dual feasible to LP(𝑐). After the last phase 𝑘, we know that (𝑥(𝑡) , 𝑠(𝑡−1)) is a
pair of primal-dual optimal solutions to LP(𝑐(𝑘)). As the analysis reveals, it turns out that there are
at most 𝑛 phases. Thus, the last step of the algorithm is to identify the coordinates with large dual
slack 𝑠(𝑡−1)

𝑖
relative to 𝑛𝛿. Then, applying Theorem 8.2.5 for 𝑐′ = 𝑐 − 𝑛𝛿 allows us to conclude that

they can be fixed to zero.
To analyze the algorithm, let 𝑆𝑘 denote the set 𝑆 in phase 𝑘 ≥ 1. For every iteration 𝑡 ≥ 0, consider

the sets
𝐿𝑡 ≔ {𝑖 ∈ [𝑛] : 𝑥(𝑡)

𝑖
> Γ∥𝑥(𝑡)

𝑆𝑘
∥1} , 𝑀𝑡 ≔ [𝑛] \ (𝑆𝑘 ∪ 𝐿𝑡) ,

where 𝑘 is the phase in which iteration 𝑡 occured.

Lemma 8.6.1. For 𝑘 < 𝑛, let 𝑡 and 𝑡′ be the iteration in which Ratio-Circuit was first called in phase 𝑘 and
𝑘 + 1 respectively. Then, 𝐿𝑡 ⊊ 𝐿𝑡′ .
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8 CIRCUIT DIAMETER 8.6 A Circuit-Augmentation Algorithm for Optimization

Proof. Since the algorithm entered phase 𝑘 + 1, Ratio-Circuit was called 𝑇 times during phase 𝑘. It
follows that 𝑠(𝑡+𝑇−1) = 𝑠(𝑡

′−1). First, we show that the duality gap decreases geometrically between
iteration 𝑡 and 𝑡′:〈

𝑐(𝑘+1) , 𝑥(𝑡
′)
〉
≤

〈
𝑐(𝑘+1) , 𝑥(𝑡+𝑇)

〉
(from Support-Circuit)

≤
〈
𝑠(𝑡+𝑇−1) , 𝑥(𝑡+𝑇)

〉
(because 𝑐(𝑘+1) ≤ 𝑠(𝑡′−1))

≤
〈
𝑠(𝑡+𝑇−1) , 𝑥(𝑡+𝑇−1)

〉
(as

〈
𝑠(𝑡+𝑇−1) , 𝑔(𝑡+𝑇−1)〉 =

〈
𝑐(𝑘) , 𝑔(𝑡+𝑇−1)〉 ≤ 0)

≤ −𝑛
〈
𝑐(𝑘) , 𝑔(𝑡+𝑇−1)

〉
(due to the constraints in (8.4))

≤ 𝑛
(〈
𝑐(𝑘) , 𝑥(𝑡+𝑇−1)

〉
−OPT(𝑐(𝑘))

)
(by step size 𝛼 ≥ 1 in Lemma 8.2.1)

≤ 𝑛

2(𝑇−1)/𝑛

(〈
𝑐(𝑘) , 𝑥(𝑡)

〉
−OPT(𝑐(𝑘))

)
(by optimality gap decay in Lemma 8.2.1)

≤ 𝑛

2(𝑇−1)/𝑛

〈
𝑐(𝑘) , 𝑥(𝑡)

〉
.

Next, we claim that ∥𝑐(𝑘)∥∞ ≤ 4
√
𝑛𝜅. Since 0 ≤ 𝑐(𝑘) ≤ 𝑠(𝑡−1), it suffices to prove that ∥𝑠(𝑡−1)∥∞ ≤

4
√
𝑛𝜅. We know that 𝑠(𝑡−1) is a basic feasible solution to the dual of LP(𝑐(𝑘−1)). Moreover, by

induction 𝑐(𝑘−1) ∈ im(𝐴⊤) + 𝑐 − 𝑟 for some 0 ≤ 𝑟 ≤ (𝑘 − 1)𝛿1. It follows that 𝑠(𝑡−1) ∈ im(𝐴⊤) + 𝑐 − 𝑟.
Thus, by applying Corollary 8.2.4 to the dual LP, we see that

∥𝑠(𝑡−1)∥∞ ≤ (𝜅 + 1)∥𝑐 − 𝑟∥1 ≤ (𝜅 + 1)(∥𝑐∥1 + ∥𝑟∥1) ≤ (𝜅 + 1)
(√
𝑛 + 𝑛(𝑘 − 1)𝛿

)
≤ 4
√
𝑛𝜅

as desired. Combining this bound with the decay in duality gap yields a shrinkage between the
1-norms of 𝑥(𝑡)

𝑆𝑘
and 𝑥(𝑡

′)
𝑆𝑘+1

:

∥𝑥(𝑡
′)

𝑆𝑘+1
∥1 ≤

1
𝛿

〈
𝑐(𝑘+1) , 𝑥(𝑡

′)
〉
≤ 𝑛

2(𝑇−1)/𝑛𝛿

〈
𝑐(𝑘) , 𝑥(𝑡)

〉
≤ 4𝑛1.5𝜅

2(𝑇−1)/𝑛𝛿
∥𝑥(𝑡)

𝑆𝑘
∥1.

We are ready to prove that 𝐿𝑡 ⊆ 𝐿𝑡′ . Consider any iteration 𝑡 ≤ 𝑟 < 𝑡 + 𝑇 in phase 𝑘. For
every 𝑖 ∈ 𝑆𝑘 , we have 𝑥(𝑟)

𝑖
≤

〈
𝑐(𝑘) , 𝑥(𝑟)

〉
/𝛿 ≤

〈
𝑐(𝑘) , 𝑥(𝑡)

〉
/𝛿. Moreover, supp((𝑔(𝑟))−) ∩ 𝑆𝑘 ≠ ∅ because〈

𝑐(𝑘) , 𝑔(𝑟)
〉
< 0. Hence, the total change in any coordinate 𝑖 ∈ [𝑛] during the 𝑇 calls to Ratio-Circuit

in phase 𝑘 is at most

|𝑥(𝑡+𝑇)
𝑖
− 𝑥(𝑡)

𝑖
| ≤ 𝜅𝑇

𝛿

〈
𝑐(𝑘) , 𝑥(𝑡)

〉
≤ 4
√
𝑛𝜅2𝑇

𝛿
∥𝑥(𝑡)

𝑆𝑘
∥1.

By a similar argument, the total change in any coordinate 𝑖 ∈ [𝑛] during the calls to Support-Circuit
in phase 𝑘 + 1 is at most

|𝑥(𝑡
′)

𝑖
− 𝑥(𝑡+𝑇)

𝑖
| ≤ 𝑛𝜅

𝛿

〈
𝑐(𝑘+1) , 𝑥(𝑡+𝑇)

〉
≤ 𝑛2𝜅

2(𝑇−1)/𝑛𝛿

〈
𝑐(𝑘) , 𝑥(𝑡)

〉
≤ 4𝑛2.5𝜅2

2(𝑇−1)/𝑛𝛿
∥𝑥(𝑡)

𝑆𝑘
∥1 ≤ ∥𝑥(𝑡)𝑆𝑘 ∥1.

216



8 CIRCUIT DIAMETER 8.6 A Circuit-Augmentation Algorithm for Optimization

Therefore, for every 𝑖 ∈ 𝐿𝑡 , we have

𝑥
(𝑡′)
𝑖
≥ 𝑥(𝑡)

𝑖
−

(
4
√
𝑛𝜅2𝑇

𝛿
+ 1

)
∥𝑥(𝑡)

𝑆𝑘
∥1 ≥

(
Γ − 4

√
𝑛𝜅2𝑇

𝛿
− 1

)
∥𝑥(𝑡)

𝑆𝑘
∥1

≥
(
Γ − 4

√
𝑛𝜅2𝑇

𝛿
− 1

)
2(𝑇−1)/𝑛𝛿

4𝑛1.5𝜅
∥𝑥(𝑡

′)
𝑆𝑘+1
∥1

=

(
𝛿

4𝑛1.5𝜅
(Γ − 1) − 𝜅𝑇

𝑛

)
2(𝑇−1)/𝑛 ∥𝑥(𝑡

′)
𝑆𝑘+1
∥1

≥
(
𝜅𝑇
𝑛

)
2(𝑇−1)/𝑛 ∥𝑥(𝑡

′)
𝑆𝑘+1
∥1 ≥ Γ∥𝑥(𝑡

′)
𝑆𝑘+1
∥1 ,

where the last two inequalities follow from our choice of Γ and 𝑇.
To show strict containment 𝐿𝑡 ⊊ 𝐿𝑡′ , it suffices to prove that ∥𝑥(𝑡)

𝑆𝑘
∥1 ≤ 𝑚𝑛𝜅∥𝑥(𝑡

′)
𝑀𝑡∪𝑆𝑘 ∥∞. This

would then imply the existence of a coordinate 𝑖 ∈ 𝑀𝑡 ∪ 𝑆𝑘 such that

𝑥
(𝑡′)
𝑖
≥ 1
𝑚𝑛𝜅

∥𝑥(𝑡)
𝑆𝑘
∥1 ≥

2(𝑇−1)/𝑛𝛿

4𝑚𝑛2.5𝜅2 ∥𝑥
(𝑡′)
𝑆𝑘+1
∥1 ≥ Γ∥𝑥(𝑡

′)
𝑆𝑘+1
∥1.

Let ℎ(1) , ℎ(2) , . . . , ℎ(𝑝) be a conformal circuit decomposition of 𝑥(𝑡′) − 𝑥(𝑡). Consider the set 𝑅 ≔ {𝑖 ∈
[𝑝] : supp(ℎ(𝑖)) ∩ 𝑆𝑘 ≠ ∅}. For every 𝑖 ∈ 𝑅, there exists a coordinate 𝑗 ∈ 𝑀𝑡 ∪ 𝑆𝑘 such that ℎ(𝑖)

𝑗
> 0.

Otherwise, we have ℎ(𝑖)
𝑀𝑡∪𝑆𝑘 ≤ 0, so supp(ℎ(𝑖)) ⊆ supp(𝑥(𝑡)) and

〈
𝑐(𝑘) , ℎ(𝑖)

〉
≤ 0. However, this is a

contradiction as ℎ(𝑖) would have been found by Ratio-Circuit in phase 𝑘. Hence, we have

∥(𝑥(𝑡
′)

𝑆𝑘
− 𝑥(𝑡)

𝑆𝑘
)−∥1 =

∑
𝑖∈𝑅
∥(ℎ(𝑖)

𝑆𝑘
)−∥1 ≤ 𝑚𝜅

∑
𝑖∈𝑅
∥(ℎ(𝑖)

𝑀𝑡∪𝑆𝑘 )
+∥1 ≤ 𝑚𝜅∥(𝑥(𝑡

′)
𝑀𝑡∪𝑆𝑘 − 𝑥

(𝑡)
𝑀𝑡∪𝑆𝑘 )

+∥1

which then gives us

∥𝑥(𝑡)
𝑆𝑘
∥1 ≤ ∥𝑥(𝑡)𝑆𝑘 ∧ 𝑥

(𝑡′)
𝑆𝑘
∥1 + ∥(𝑥(𝑡

′)
𝑆𝑘
− 𝑥(𝑡)

𝑆𝑘
)−∥1

≤ ∥𝑥(𝑡)
𝑆𝑘
∧ 𝑥(𝑡

′)
𝑆𝑘
∥1 + 𝑚𝜅∥(𝑥(𝑡

′)
𝑀𝑡∪𝑆𝑘 − 𝑥

(𝑡)
𝑀𝑡∪𝑆𝑘 )

+∥1 ≤ 𝑚𝜅∥𝑥(𝑡
′)

𝑀𝑡∪𝑆𝑘 ∥1 ≤ 𝑚𝑛𝜅∥𝑥
(𝑡′)
𝑀𝑡∪𝑆𝑘 ∥∞.

as desired. □

Before proving the main result of this section, we need the following lemma which guarantees
the existence of a coordinate with large dual slack. It explains why we chose to work with a
projected and normalized cost vector in Algorithm 8.4.

Lemma 8.6.2. Let 𝑐, 𝑐′ ∈ R𝑛 be two cost vectors, and let 𝑠′ be an optimal dual solution to LP(𝑐′). If
𝑐 ∈ ker(A), ∥𝑐∥2 = 1 and ∥𝑐 − 𝑐′∥∞ < 1/(

√
𝑛(𝑚 + 2)𝜅) for some 𝜅 ≥ 1, then there exists an index 𝑗 ∈ [𝑛]

such that
𝑠′𝑗 >

𝑚 + 1√
𝑛(𝑚 + 2)

.

Proof. Let 𝑟 = 𝑐 − 𝑐′. Note that 𝑠′ + 𝑟 ∈ im(A⊤) + 𝑐. Then,

∥𝑠′∥∞ + ∥𝑟∥∞ ≥ ∥𝑠′ + 𝑟∥∞ ≥
1√
𝑛
∥𝑠′ + 𝑟∥2 ≥

1√
𝑛
∥𝑐∥2 =

1√
𝑛
,

where the last inequality is due to 𝑠′ + 𝑟 − 𝑐 and 𝑐 being orthogonal. This gives us

∥𝑠′∥∞ ≥
1√
𝑛
− ∥𝑟∥∞ >

(𝑚 + 2)𝜅 − 1√
𝑛(𝑚 + 2)𝜅

≥ 𝑚 + 1√
𝑛(𝑚 + 2)
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as desired because 𝜅 ≥ 1. □

Proof of Theorem 8.1.7. We first prove correctness of Algorithm 8.4. By Lemma 8.6.1, there exists a
phase 1 ≤ 𝑘 ≤ 𝑛with its first Ratio-Circuit iteration 𝑡 such that (𝑖) rk(A𝐿𝑡 ) = 𝑚; or (𝑖𝑖) rk(A𝐿𝑡 ) = 𝑚−1
and |𝐿𝑡 | = 𝑛 − 1. We claim that 𝑥(𝑡) is an optimal solution to LP(𝑐(𝑘)). Case (𝑖𝑖) is easy to see
because no circuits intersect 𝑆𝑘 = [𝑛] \ 𝐿𝑡 . For Case (𝑖), suppose that there exists a coordinate
𝑗 ∈ supp(𝑥(𝑡)) ∩ 𝑆𝑘 for the sake of contradiction. Since A𝐿𝑡 is full rank, we can pick any basis 𝐵 ⊆ 𝐿𝑡
to form a fundamental circuit in 𝐵 ∪ { 𝑗}. However, the associated elementary vector 𝑔 would have
been found by Support-Circuit because supp(𝑔) ⊆ supp(𝑥(𝑡)) and

〈
𝑐(𝑘) , 𝑔

〉
= 𝑐
(𝑘)
𝑗
𝑔𝑗 ≠ 0. This is a

contradiction.
Consider the output (𝑔(𝑡) , 𝑠(𝑡)) of Ratio-Circuit in iteration 𝑡. Since

〈
𝑐(𝑘) , 𝑔(𝑡)

〉
= 0, we have〈

𝑥(𝑡) , 𝑠(𝑡)
〉
= 0 from the constraints in (8.4). So, this is the last iteration of the algorithm. Furthermore,

𝑠(𝑡) is an optimal dual solution to LP(𝑐(𝑘)). By induction on 𝑘, we know that 𝑐(𝑘) ∈ im(A⊤) + 𝑐 − 𝑟
for some ∥𝑟∥∞ ≤ 𝑛𝛿. Hence, 𝑠(𝑡) is also an optimal dual solution to LP(𝑐′)where 𝑐′ ≔ 𝑐 − 𝑟. Since
𝑐 ∈ ker(A), ∥𝑐∥2 = 1 and ∥𝑐 − 𝑐′∥∞ ≤ 𝑛𝛿 < 1/(

√
𝑛(𝑚 + 2)𝜅), by Lemma 8.6.2, there exists an index

𝑗 ∈ [𝑛] such that 𝑠(𝑡)
𝑗

> (𝑚 + 1)𝜅𝑛𝛿 ≥ (𝑚 + 1)𝜅∥𝑐 − 𝑐′∥∞. Thus, Theorem 8.2.5 allows us to conclude
that 𝑥(𝑡) = 𝑥∗

𝑗
= 0 for every optimal solution 𝑥∗ to LP(𝑐).

Runtime-wise, there are at most 𝑇 calls to Ratio-Circuit per phase. On the other hand, there are
at most 𝑛 calls to Support-Circuit per phase because each call sets a primal variable to zero. Since
the main circuit-augmentation algorithm consists of applying Algorithm 8.4 at most 𝑛 times, we
obtain the desired runtime. □

8.7 An improved bound for steepest-descent augmentation

We now prove Theorem 8.1.3. The proof follows the same lines as that of the Goldberg–Tarjan
algorithm; see also [AMO93, Section 10.5] for the analysis. A factor log 𝑛 improvement over the
original bound was given in [RG94]. A key property in the original analysis is that for a flow
around a cycle (i.e., an elementary vector), every edge carries at least 1/|𝑉 | fraction of the ℓ1-norm
of the flow. This can be naturally replaced by the argument that for every elementary flow 𝑔, the
minimum nonzero value of |𝑔𝑖 | is at least ∥𝑔∥1/(1 + (𝑚 − 1)𝜅𝐴).

The Goldberg–Tarjan algorithm has been generalized to separable convex minimization with
linear constraints by Karzanov and McCormick [KM97]. Instead of 𝜅𝑊 , they use the maximum
entry in a Graver basis (see Section 3.6 below). Lemma 10.1 in their paper proves a weakly
polynomial bound similar to Lemma 8.7.2 for the separable convex setting. However, no strongly
polynomial analysis is given (which is in general not possible for the nonlinear setting).

Our arguments will be based on the dual of System 1.3:

max ⟨𝑦, 𝑏⟩−⟨𝑢, 𝑡⟩
A⊤𝑦 + 𝑠 − 𝑡 = 𝑐

𝑠, 𝑡 ≥ 0 .

(8.14)

Recall the primal-dual slackness conditions from Section 3.5: if 𝑥 is feasible to Capacitated-LP
and 𝑦 ∈ R𝑚 , they are primal and dual optimal solutions if and only if ⟨𝑎𝑖 , 𝑦⟩ ≤ 𝑐𝑖 if 𝑥𝑖 < 𝑢𝑖 and
⟨𝑎𝑖 , 𝑦⟩ ≥ 𝑐𝑖 if 𝑥𝑖 > 0.
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Let us start by formulating the steepest-descent direction as an LP. Let

Ā =

[
A −A

]
∈ R𝑚×(2𝑛) and 𝑐 =

[
𝑐

−𝑐

]
∈ R2𝑛 . (8.15)

It is easy to see that 𝜅Ā = 𝜅A. For a feasible solution 𝑥 = 𝑥(𝑡) to Capacitated-LP, we define residual
variable set

𝑁(𝑥) = {𝑖 ∈ [𝑛] : 𝑥𝑖 < 𝑢𝑖} ∪ {𝑛 + 𝑗 : 𝑗 ∈ [𝑛] : 𝑥 𝑗 > 0} ⊆ [2𝑛] ,

and consider the system
min ⟨𝑐, 𝑧⟩

Ā𝑧 = 0

⟨12𝑛 , 𝑧⟩ = 1

𝑧[2𝑛]\𝑁(𝑥) = 0

𝑧 ≥ 0 .

(8.16)

We can map a solution 𝑧 ∈ R2𝑛 to 𝑔 ∈ R𝑛 by setting 𝑔𝑖 = 𝑧𝑖 − 𝑧𝑛+𝑖 . We will assume that 𝑧 is chosen
as a basic optimal solution. Observe that every basic feasible solution to this program maps to an
elementary vector in ker(Ā). The dual program can be equivalently written as

min 𝜀

⟨�̄�𝑖 , 𝑦⟩ ≤ 𝑐𝑖 + 𝜀 ∀𝑖 ∈ 𝑁(𝑥) .
(8.17)

For the solution 𝑥, we let 𝜀(𝑥) denote the optimal solution to this dual problem; thus, the optimal
solution to the primal is −𝜀(𝑥). If 𝜀 = 0, then 𝑥 and 𝑦 are complementary primal and dual optimal
solutions to Capacitated-LP. We first show that this quantity is monotone (a key step also in the
analysis in [DHL15]).

Lemma 8.7.1. At every iteration of the circuit augmentation algorithm, 𝜀(𝑥(𝑡+1)) ≤ 𝜀(𝑥(𝑡)).

Proof. Let 𝜀 = 𝜀(𝑥(𝑡)) and let 𝑦 be an optimal solution to (8.17) for 𝑁(𝑥(𝑡)). We show that the
same 𝑦 is also feasible for 𝑁(𝑥(𝑡+1)); the claim follows immediately. There is nothing to prove if
𝑁(𝑥(𝑡+1)) ⊆ 𝑁(𝑥(𝑡)), so let 𝑖 ∈ 𝑁(𝑥(𝑡+1)) \ 𝑁(𝑥(𝑡)).

Assume first 𝑖 ∈ [𝑛 + 1, 2𝑛]; let 𝑖 = 𝑛 + 𝑗. This means that 𝑥(𝑡)
𝑗

= 0 < 𝑥
(𝑡+1)
𝑗

; therefore, the
augmenting direction 𝑔 has 𝑔𝑗 > 0. Thus, for the optimal solution 𝑧 to (8.16), we must have 𝑧 𝑗 > 0.
By primal-dual slackness,

〈
𝑎 𝑗 , 𝑦

〉
= 𝑐 𝑗 + 𝜀; thus,

⟨�̄�𝑖 , 𝑦⟩ =
〈
−𝑎 𝑗 , 𝑦

〉
= −𝑐 𝑗 − 𝜀 < −𝑐 𝑗 = 𝑐 𝑗 .

The case 𝑖 ∈ [𝑛] is analogous. □

The next lemma shows that within every 𝑛 iterations, 𝜀(𝑥(𝑡)) decreases by a factor depending on
𝜅A.

Lemma 8.7.2. For every iteration 𝑡, 𝜀(𝑥(𝑡+𝑛)) ≤
(
1 − 1

1+(𝑚−1)𝜅A

)
𝜀(𝑥(𝑡)).

Proof. Let us set 𝑁 = 𝑁(𝑥(𝑡)), 𝜀 = 𝜀(𝑥(𝑡)), and let 𝑦 = 𝑦(𝑡) be an optimal dual solution to (8.17) for
𝑥(𝑡). Let

𝑇 ≔ { 𝑖 ∈ 𝑁 : ⟨�̄�𝑖 , 𝑦⟩ > 𝑐𝑖 } ⊆ [2𝑛] ;
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that is, if 𝑖 ∈ [𝑛] then ⟨𝑎𝑖 , 𝑦⟩ > 𝑐𝑖 , and if 𝑖 ∈ [𝑛 + 1, 2𝑛], 𝑖 = 𝑛 + 𝑗, then
〈
𝑎 𝑗 , 𝑦

〉
< 𝑐 𝑗 . In particular,

|𝑇 ∩ {𝑖 , 𝑖 + 𝑛}| ≤ 1 for every 𝑖 ∈ [𝑛]. Let 𝑧(𝑡) be the basic optimal solution to (8.16) for 𝑥(𝑡). By
complementary slackness, every 𝑖 ∈ supp(𝑧(𝑡))must have ⟨�̄�𝑖 , 𝑦⟩ = 𝑐𝑖 + 𝜀, and thus, supp(𝑧(𝑡)) ⊆ 𝑇.

Claim 8.7.2.1. Let us pick 𝑘 > 𝑡 as the first iteration when for the basic optimal solution 𝑧(𝑘) to (8.16), we
have supp(𝑧(𝑘)) \ 𝑇 ≠ ∅. Then 𝑘 ≤ 𝑡 + 𝑛, and the solution (𝑦, 𝜀) is still feasible for (8.17) for 𝑥(𝑘).

Proof. For 𝑟 ∈ [𝑡 , 𝑘 − 1], let 𝑇(𝑟) = 𝑇 ∩𝑁(𝑥(𝑟)). We show that 𝑇(𝑟+1) ⊊ 𝑇(𝑟). Since |𝑇 | ≤ 𝑛, this implies
𝑘 ≤ 𝑡 + 𝑛. Let 𝑧(𝑟) be the basic optimal solution for (8.16); recall that the augmenting direction is
computed with 𝑔𝑗 = 𝑧

(𝑟)
𝑗
− 𝑧(𝑟)

𝑛+𝑗 . By the choice of 𝑘, supp(𝑧(𝑟)) ⊆ 𝑇(𝑟). Thus, we may only increase
𝑥𝑖 for 𝑖 ∈ 𝑇 ∩ [𝑛] and decrease it for 𝑖 = 𝑗 − 𝑛 for 𝑗 ∈ 𝑇 ∩ [𝑛 + 1, 2𝑛]. Consequently, every index 𝑖
entering 𝑁(𝑥(𝑟+1)) has ⟨�̄�𝑖 , 𝑦⟩ < 𝑐𝑖 , and therefore (𝑦, 𝜀) remains feasible throughout.

We now turn to the proof of 𝑇(𝑟+1) ⊊ 𝑇(𝑟). Since we use a maximal augmentation, at least one
index leaves 𝑇(𝑟) at each iteration. We claim that 𝑇(𝑟+1) \ 𝑇(𝑟) = ∅. For a contradiction, assume there
exists 𝑖 ∈ 𝑇(𝑟+1) \ 𝑇(𝑟). If 𝑖 ∈ [𝑛], then 𝑖 + 𝑛 must be in the support of 𝑧(𝑟); in particular, 𝑖 + 𝑛 ∈ 𝑇(𝑟).
But this would mean that {𝑖 , 𝑖 + 𝑛} ⊆ 𝑇, in contradiction with the definition of 𝑇. Similarly, for
𝑖 ∈ [𝑛 + 1, 2𝑛]. □

Let us now consider the optimal solution 𝑧 = 𝑧(𝑘) to (8.16) at iteration 𝑘; by the above claim, (𝑦, 𝜀)
is still a feasible dual solution. Select an index 𝑗 ∈ supp(𝑧) \ 𝑇.

⟨−𝑐, 𝑧⟩ =
〈
Ā⊤𝑦 − 𝑐, 𝑧

〉
≤ 𝜀

∑
𝑖∈supp(𝑧)\{ 𝑗}

𝑧𝑖 = (1 − 𝑧 𝑗)𝜀 ≤
(
1 − 1

1 + (𝑚 − 1)𝜅A

)
𝜀 .

In the first inequality, we use that ⟨�̄�𝑖 , 𝑦⟩ − 𝑐𝑖 ≤ 𝜀 by the feasibility of (𝑦, 𝜀), and
〈
�̄� 𝑗 , 𝑦

〉
− 𝑐 𝑗 ≤ 0 by

the choice of 𝑗 ∉ 𝑇. In the second equality, we use the constraint
∑
𝑖 𝑧𝑖 = 1. The final inequality uses

that 𝑧 is a basic solution, and therefore, an elementary vector in ker(Ā). In particular |supp(𝑧)| ≤ 𝑚,
and 𝑧𝑖 ≤ 𝜅Ā𝑧 𝑗 = 𝜅A𝑧 𝑗 . Consequently, 𝑧 𝑗 ≥ 1/(1 + (𝑚 − 1)𝜅A). □

We say that the variable 𝑗 ∈ [2𝑛] is frozen at iteration 𝑡, if 𝑗 ∉ 𝑁(𝑥(𝑡′)) for any 𝑡′ ≥ 𝑡. Thus,
for 𝑗 ∈ [𝑛], 𝑥 𝑗 = 𝑢𝑗 , and for 𝑗 ∈ [𝑛 + 1, 2𝑛], 𝑗 = 𝑖 + 𝑛, 𝑥𝑖 = 0 for all subsequent iterations. We
show that a new frozen variable can be found in every 𝑂(𝑛𝑚𝜅A log(𝑚𝜅A)) iterations; this implies
Theorem 8.1.3.

Lemma 8.7.3. For every iteration 𝑡 ≥ 1, there is a variable 𝑗 ∈ 𝑁(𝑥(𝑡)) that is frozen at iteration 𝑘 for
𝑘 = 𝑡 + 𝑂(𝑛𝑚𝜅A log(𝜅A + 𝑛)).

Proof. Let 𝜀 = 𝜀(𝑥(𝑡)). By Lemma 8.7.2, we can choose 𝑘 = 𝑡 + 𝑂(𝑛𝑚𝜅A log(𝑛 + 𝜅A)) such that
𝜀′ = 𝜀(𝑥(𝑘)) < 𝜀/(2𝑛(𝜅A + 1)). Consider the primal and dual optimal solutions (𝑧, 𝑦, 𝜀) to (8.16) and
(8.17) at iteration 𝑡 and (𝑧′, 𝑦′, 𝜀′) at iteration 𝑘.

Claim 8.7.3.1. There exists a 𝑗 ∈ supp(𝑧) such that
〈
�̄� 𝑗 , 𝑦

′〉 > 𝑐 𝑗 + 2𝑛(𝜅A + 1)𝜀′.

Proof. For a contradiction, assume that
〈
�̄� 𝑗 , 𝑦

′〉 − 𝑐 𝑗 ≤ 2𝑛(𝜅A + 1)𝜀′ for every 𝑗 ∈ supp(𝑧). Then,

𝜀 = ⟨𝑐, 𝑧⟩ =
〈
Ā⊤𝑦 − 𝑐, 𝑧

〉
≤ 2𝑛(𝜅A + 1)𝜀′

∑
𝑗

𝑧 𝑗 = 2𝑛(𝜅A + 1)𝜀′ ,

contradicting the choice of 𝜀′. □

We now show that all such indices are frozen at iteration 𝑘 by making use of Theorem 3.5.7 on
proximity. Let 𝑥′ = 𝑥(𝑘) and 𝑥′′ = 𝑥(𝑘

′′) for any 𝑘′′ > 𝑘; let (𝑦′′, 𝜀′′) be optimal to (8.17) at iteration
𝑘′′; we have 𝜀′′ ≤ 𝜀′ by Lemma 8.7.1.

220



8 CIRCUIT DIAMETER 8.7 An improved bound for steepest-descent augmentation

Let us define the cost 𝑐′ ∈ R𝑛 by

𝑐′𝑖 ≔


⟨�̄�𝑖 , 𝑦′⟩ if 0 < 𝑥′

𝑖
< 𝑢𝑖

max{𝑐𝑖 , ⟨�̄�𝑖 , 𝑦′⟩} if 𝑥′
𝑖
= 𝑢𝑖

min{𝑐𝑖 , ⟨�̄�𝑖 , 𝑦′⟩} if 𝑥′
𝑖
= 0 .

If we replace the cost 𝑐 by 𝑐′, then 𝑥′ and 𝑦′ satisfy complementary slackness, and hence are
optimal to Capacitated-LP and (8.14). Moreover, the optimality of (𝑦′, 𝜀′) to (8.17) guarantees that
∥𝑐′ − 𝑐∥∞ ≤ 𝜀′.

We similarly construct 𝑐′′ for 𝑦′′, and note that 𝑥′′ and 𝑦′′ are primal and dual optimal solutions
for the costs 𝑐′′, ∥𝑐′′ − 𝑐∥∞ ≤ 𝜀′′. Further,

∥𝑐′ − 𝑐′′∥1 ≤ 𝑛∥𝑐′ − 𝑐′′∥∞ ≤ 𝑛(∥𝑐′ − 𝑐∥∞ + ∥𝑐′′ − 𝑐∥∞) ≤ 𝑛(𝜀′ + 𝜀′′) ≤ 2𝑛𝜀′

We thus apply Theorem 3.5.7 for (𝑥′, 𝑦′) for 𝑐′ and (𝑥′′, 𝑦′′) for 𝑐′′, showing that every variable 𝑗 as
in Claim 8.7.3.1 must be frozen. □
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9 Fractional Linear Programming

We present an accelerated, or look-ahead version of the Newton–Dinkelbach method, a
well-known technique for solving fractional and parametric optimization problems.
This acceleration halves the Bregman divergence between the current iterate and the
optimal solution within every two iterations. Using the Bregman divergence as a
potential in conjunction with combinatorial arguments, we obtain strongly polynomial
algorithms in three applications domains: (i) For linear fractional combinatorial
optimization, we show a convergence bound of 𝑂(𝑚 log𝑚) iterations; the previous
best bound was𝑂(𝑚2 log𝑚) by Wang et al. (2006). (ii) We obtain a strongly polynomial
label-correcting algorithm for solving linear feasibility systems with Two Variables
Per Inequality (2VPI). For a 2VPI system with 𝑛 variables and 𝑚 constraints, our
algorithm runs in 𝑂(𝑚𝑛) iterations. Every iteration takes 𝑂(𝑚𝑛) time for general 2VPI
systems, and 𝑂(𝑚+𝑛 log 𝑛) time for the special case of Deterministic Markov Decision
Processes (DMDP). This extends and strengthens a previous result by Madani (2002)
that showed a weakly polynomial bound for a variant of the Newton–Dinkelbach
method for solving DMDPs. (iii) We give a simplified variant of the parametric
submodular function minimization result by Goemans et al. (2017). We only present
(i) in full detail, see [DKNV21] for the full proofs of (ii) and (iii).

This chapter is based on joint work with Daniel Dadush, Zhuan Khye Koh, and László
A. Végh [DKNV21]. Section 9.3 contains novel unpublished material.
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9.1 Introduction

Linear fractional optimization problems are well-studied in combinatorial optimization. Given a
closed domain𝒟 ⊆ R𝑚 and 𝑐, 𝑑 ∈ R𝑚 such that ⟨𝑑, 𝑥⟩ > 0 for all 𝑥 ∈ 𝒟, the problem is

inf ⟨𝑐, 𝑥⟩⟨𝑑, 𝑥⟩ s.t. 𝑥 ∈ 𝒟 . (9.1)
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9 FRACTIONAL LINEAR PROGRAMMING 9.1 Introduction

The domain 𝒟 could be either a convex set or a discrete set 𝒟 ⊆ {0, 1}𝑚 . Classical examples
include finding minimum cost-to-time ratio cycles and minimum ratio spanning trees. One can
equivalently formulate (9.1) as a parametric search problem. Let

𝑓 (𝛿) ≔ inf
{
(𝑐 − 𝛿𝑑)⊤𝑥 : 𝑥 ∈ 𝒟

}
, (9.2)

be a concave and decreasing function. Assuming (9.1) has a finite optimum 𝛿, it corresponds to the
unique root 𝑓 (𝛿) = 0.

A natural question is to investigate how the computational complexity of solving the minimum
ratio problem (9.1) may depend on the complexity of the corresponding linear optimization problem
min 𝑐⊤𝑥 s.t. 𝑥 ∈ 𝒟. Using the reformulation (9.2), one can reduce the fractional problem to the
linear problem via binary search; however, the number of iterations needed to find an exact solution
may depend on the bit complexity of the input. A particularly interesting question is: assuming
there exists a strongly polynomial algorithm for linear optimization over a domain𝒟, can we find
a strongly polynomial algorithm for linear fractional optimization over the same domain?

A seminal paper by Megiddo [Meg79] introduced the parametric search technique to solve
linear fractional combinatorial optimization problems. He showed that if the linear optimization
algorithm only uses 𝑝(𝑚) comparisons and 𝑞(𝑚) additions, then there exists an𝑂(𝑝(𝑚)(𝑝(𝑚)+𝑞(𝑚))
algorithm for the linear fractional optimization problem. This in particular yielded the first strongly
polynomial algorithm for the minimum cost-to-time ratio cycle problem. On a very high level,
parametric search works by simulating the linear optimization algorithm for the parametric problem
(9.2), with the parameter 𝛿 ∈ R being indeterminate.

A natural alternative approach is to solve (9.2) using a standard root finding algorithm. Radzik
[Rad92] showed that for a discrete domain𝒟 ⊆ {0, 1}𝑚 , the discrete Newton method—in this context,
also known as Dinkelbach’s method [Din67]—terminates in a strongly polynomial number of
iterations. In contrast to parametric search, there are no restrictions on the possible operations in
the linear optimization algorithm. In certain settings, such as the maximum ratio cut problem, the
discrete Newton method outperforms parametric search; we refer to the comprehensive survey by
Radzik [Rad98] for details and comparison of the two methods.

9.1.1 Our Contributions

We introduce a new, accelerated variant of Newton’s method for univariate functions. Let
𝑓 : R→ R ∪ {−∞} be a concave function. Under some mild assumptions on 𝑓 , our goal is to either
find the largest root, or show that no root exists. Let 𝛿∗ denote the largest root, or in case 𝑓 < 0, let
𝛿∗ denote the largest maximizer of 𝑓 . For simplicity, we now describe the method for differentiable
functions. This will not hold in general: functions of the form (9.2) will be piecewise linear if𝒟 is
finite or polyhedral. The algorithm description in Section 9.2 uses a form with supergradients (that
can be choosen arbitrarily between the left and right derivatives).

The standard Newton method, also used by Radzik, proceeds through iterates 𝛿(1) > 𝛿(2) > . . . >

𝛿(𝑡) such that 𝑓 (𝛿(𝑖)) ≤ 0, and updates 𝛿(𝑖+1) = 𝛿(𝑖) − 𝑓 (𝛿(𝑖))/ 𝑓 ′(𝛿(𝑖)).
Our new variant uses a more aggressive look-ahead technique. At each iteration, we compute

𝛿 = 𝛿(𝑖) − 𝑓 (𝛿(𝑖))/ 𝑓 ′(𝛿(𝑖)), and jump ahead to 𝛿′ = 2𝛿 − 𝛿(𝑖). In case 𝑓 (𝛿′) ≤ 0 and 𝑓 ′(𝛿′) < 0, we
update 𝛿(𝑖+1) = 𝛿′; otherwise, we continue with the standard iterate 𝛿.

This modification leads to an improved and at the same time simplified analysis based on the
Bregman divergence 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)) = 𝑓 (𝛿(𝑖)) + 𝑓 ′(𝛿(𝑖))(𝛿∗ − 𝛿(𝑖)) − 𝑓 (𝛿∗). We show that this decreases by
a factor of two between any two iterations.
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9 FRACTIONAL LINEAR PROGRAMMING 9.1 Introduction

A salient feature of the algorithm is that it handles both feasible and infeasible outcomes in a
unified framework. In the context of linear fractional optimization, this means that the assumption
𝑑⊤𝑥 > 0 for all 𝑥 ∈ 𝒟 in (9.1) can be waived. Instead, 𝑑⊤𝑥 > 0 is now added as a feasibility
constraint to (9.1). This generalization is important when we use the algorithm to solve two
variables per inequality systems.

This general result leads to improvements and simplifications of a number of algorithms using
the discrete Newton method.

• For linear fractional combinatorial optimization, namely the setting (9.1) with 𝒟 ⊆ {0, 1}𝑚 ,
we obtain an 𝑂(𝑚 log𝑚) bound on the number of iterations, a factor 𝑚 improvement over
the previous best bound 𝑂(𝑚2 log𝑚) by Wang et al. [WYZ06] from 2006. We remark that
Radzik’s first analysis [Rad92] yielded a bound of 𝑂(𝑚4 log2 𝑚) iterations, improved to
𝑂(𝑚2 log2 𝑚) in [Rad98].

• Goemans et al. [GGJ17] used the discrete Newton method to obtain a strongly polynomial
algorithm for parametric submodular function minimization. We give a simple new variant
of this result with the same asymptotic running time, using the accelerated algorithm.

• For 2VPI systems, we obtain a strongly polynomial label-correcting algorithm. This will be
discussed in more detail next.

9.1.2 Two Variables per Inequality Systems

A major open question in the theory of linear programming (LP) is whether there exists a strongly
polynomial algorithm for LP. This problem is one of Smale’s eighteen mathematical challenges
for the twenty-first century [Sma98]. An LP algorithm is strongly polynomial if it only uses
elementary arithmetic operations (+,−,×, /) and comparisons, and the number of such operations
is polynomially bounded in the number of variables and constraints. Furthermore, the algorithm
needs to be in PSPACE, i.e., the numbers occurring in the computations must remain polynomially
bounded in the input size.

The notion of a strongly polynomial algorithm was formally introduced by Megiddo [Meg83]
in 1983 (using the term ‘genuinely polynomial’), where he gave the first such algorithm for 2VPI
systems. These are feasibility LPs where every inequality contains at most two variables. More
formally, letℳ2(𝑛, 𝑚) be the set of 𝑛 ×𝑚 matrices with at most two nonzero entries per column. A
2VPI system is of the form A⊤𝑦 ≤ 𝑐 for A ∈ ℳ2(𝑛, 𝑚) and 𝑐 ∈ R𝑚 .

If we further require that every inequality has at most one positive and at most one negative
coefficient, it is called a (Monotone Two Variables Per Inequality (M2VPI)) system. A simple and
efficient reduction is known from 2VPI systems with 𝑛 variables and 𝑚 inequalities to M2VPI
systems with 2𝑛 variables and ≤ 2𝑚 inequalities [ERW89; HMNT93].

Connection between 2VPI and parametric optimization An M2VPI system has a natural
graphical interpretation: after normalization, we can assume every constraint is of the form
𝑦𝑢 − 𝛾𝑒 𝑦𝑣 ≤ 𝑐𝑒 . Such a constraint naturally maps to an arc 𝑒 = (𝑢, 𝑣)with gain factor 𝛾𝑒 > 0 and cost
𝑐𝑒 . Based on Shostak’s work [Sho81] that characterized feasibility in terms of this graph, Aspvall
and Shiloach [AS80] gave the first weakly polynomial algorithm for M2VPI systems.

We say that a directed cycle 𝐶 is flow absorbing if
∏

𝑒∈𝐶 𝛾𝑒 < 1 and flow generating if
∏

𝑒∈𝐶 𝛾𝑒 > 1.
Every flow absorbing cycle 𝐶 implies an upper bound for every variable 𝑦𝑢 incident to 𝐶; similarly,
flow generating cycles imply lower bounds. The crux of Aspvall and Shiloach’s algorithm is to find
the tightest upper and lower bounds for each variable 𝑦𝑢 .

224



9 FRACTIONAL LINEAR PROGRAMMING 9.1 Introduction

Finding these bounds corresponds to solving fractional optimization problems of the form (9.1),
where 𝒟 ⊆ R𝑚 describes ‘generalized flows’ around cycles. The paper [AS80] introduced the
Grapevine algorithm—a natural modification of the Bellman-Ford algorithm—to decide whether
the optimum ratio is smaller or larger than a fixed value 𝛿. The optimum value can be found using
binary search on the parameter.

Megiddo’s strongly polynomial algorithm [Meg83] replaced the binary search framework in
Aspvall and Shiloach’s algorithm by extending the parametric search technique in [Meg79].
Subsequently, Cohen and Megiddo [CM94] devised faster strongly polynomial algorithms for the
problem. The current fastest strongly polynomial algorithm is given by Hochbaum and Naor
[HN94], an efficient Fourier–Motzkin elimination with running time of 𝑂(𝑚𝑛2 log𝑚).

2VPI via Newton’s method Since Newton’s method proved to be an efficient and viable alternative
to parametric search, a natural question is to see whether it can solve the parametric problems
occurring in 2VPI systems. Radzik’s fractional combinatorial optimization results [Rad92; Rad98]
are not directly applicable, since the domain𝒟 in this setting is a polyhedron and not a discrete
set.1 Madani [Mad02] used a variant of the Newton–Dinkelbach method as a tool to analyze the
convergence of policy iteration on DMDP, a special class of M2VPI systems (discussed later in
more detail). He obtained a weakly polynomial convergence bound; it remained open whether
such an algorithm could be strongly polynomial.

Our 2VPI algorithm We introduce a new type of strongly polynomial 2VPI algorithm by
combining the accelerated Newton–Dinkelbach method with a variable fixing analysis. Variable
fixing was first introduced in the seminal work of Tardos [Tar85] on minimum-cost flows, and has
been a central idea of strongly polynomial algorithms, see in particular [GT89; RG94] for cycle
cancelling minimum-cost flow algorithms, and [OV20; Vég17] for maximum generalized flows, a
dual to the 2VPI problem.

We show that for every iterate 𝛿(𝑖), there is a constraint that has been ‘actively used’ at 𝛿(𝑖) but
will not be used ever again after a strongly polynomial number of iterations. The analysis combines
the decay in Bregman divergence shown in the general accelerated Newton–Dinkelbach analysis
with a combinatorial subpath monotonicity property.

Our overall algorithm can be seen as an extension of Madani’s DMDP algorithm. In particular,
we adapt his ‘unfreezing’ idea: the variables 𝑦𝑢 are admitted to the system one-by-one, and the
accelerated Newton–Dinkelbach method is used to find the best ‘cycle bound’ attainable at the
newly admitted 𝑦𝑢 in the graph induced by the current variable set. This returns a feasible solution
or reports infeasibility within 𝑂(𝑚) iterations. As every iteration takes 𝑂(𝑚𝑛) time, our overall
algorithm terminates in 𝑂(𝑚2𝑛2) time. For the special setting of DMDP, the runtime per iteration
improves to 𝑂(𝑚 + 𝑛 log 𝑛), giving a total runtime of 𝑂(𝑚𝑛(𝑚 + 𝑛 log 𝑛)).

Even though our running time bound is worse than the state-of-the-art 2VPI algorithm [HN94],
it is of a very different nature from all previous 2VPI algorithms. In fact, our algorithm is a
label-correcting, naturally fitting to the family of algorithms used in other combinatorial optimization
problems with constraint matrices fromℳ2(𝑛, 𝑚) such as maximum flow, shortest paths, minimum-
cost flow, and generalized flow problems. We next elaborate on this connection.

Label-correcting algorithms An important special case of M2VPI systems corresponds to the
shortest paths problem: given a directed graph 𝐺 = (𝑉, 𝐸) with target node 𝑡 ∈ 𝑉 and arc costs
𝑐 ∈ R𝐸, we associate constraints 𝑦𝑢 − 𝑦𝑣 ≤ 𝑐𝑒 for every arc 𝑒 = (𝑢, 𝑣) ∈ 𝐸 and 𝑦𝑡 = 0. If the system

1The problem could be alternatively formulated with𝒟 ⊆ {0, 1}𝑚 but with nonlinear functions instead of 𝑐⊤𝑥 and 𝑑⊤𝑥.
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is feasible and bounded, the pointwise maximal solution corresponds to the shortest path labels
to 𝑡; an infeasible system contains a negative cost cycle. A generic label-correcting algorithm
maintains distance labels 𝑦 that are upper bounds on the shortest path distances to 𝑡. The labels
are decreased according to violated constraints. Namely, if 𝑦𝑢 − 𝑦𝑣 > 𝑐𝑒 , then decreasing 𝑦𝑢 to
𝑐𝑒 + 𝑦𝑣 gives a smaller valid distance label at 𝑢. We terminate with the shortest path labels once all
constraints are satisfied. The Bellman–Ford algorithm for the shortest paths problem is a particular
implementation of the generic label-correcting algorithm; we refer the reader to [AMO93, Chapter
5] for more details.

It is a natural question if label-correcting algorithms can be extended to general M2VPI systems,
where constraints are of the form 𝑦𝑢 − 𝛾𝑒 𝑦𝑣 ≤ 𝑐𝑒 for a ‘gain/loss factor’ 𝛾𝑒 > 0 associated with each
arc. A fundamental property of M2VPI systems is that, whenever bounded, a unique pointwise
maximal solution exists, i.e. a feasible solution 𝑦∗ such that 𝑦 ≤ 𝑦∗ for every feasible solution
𝑦. A label-correcting algorithm for such a setting can be naturally defined as follows. Let us
assume that the problem is bounded. The algorithm should proceed via a decreasing sequence
𝑦(0) ≥ 𝑦(1) ≥ . . . ≥ 𝑦(𝑡) of labels that are all valid upper bounds on any feasible solution 𝑦 to the
system. The algorithm either terminates with the unique pointwise maximal solution 𝑦(𝑡) = 𝑦∗, or
finds an infeasibility certificate.

The basic label-correcting operation is the ‘arc update’, decreasing 𝑦𝑢 to min{𝑦𝑢 , 𝑐𝑒 + 𝛾𝑒 𝑦𝑣} for
some arc 𝑒 = (𝑢, 𝑣) ∈ 𝐸. Such updates suffice in the shortest path setting. However, in the general
setting arc operations only may not lead to finite termination. Consider a system with only two
variables, 𝑦𝑢 and 𝑦𝑣 , and two constraints, 𝑦𝑢 − 𝑦𝑣 ≤ 0, and 𝑦𝑣 − 1

2 𝑦𝑢 ≤ −1. The alternating sequence
of arc updates converges to (𝑦∗𝑢 , 𝑦∗𝑣) = (−2,−2), but does not finitely terminate. In this example, we
can ‘detect’ the cycle formed by the two arcs, that implies the bound 𝑦𝑢 − 1

2 𝑦𝑢 ≤ −1.
Shostak’s [Sho81] result demonstrates that arc updates, together with such ‘cycle updates’ should

be sufficient for finite termination. Our M2VPI algorithm amounts to the first strongly polynomial
label-correcting algorithm for general M2VPI systems, using arc updates and cycle updates.

Deterministic Markov decision processes A well-studied special case of M2VPI systems in
which 𝛾 ≤ 1 is known as DMDP. A policy corresponds to selecting an outgoing arc from every
node, and the objective is to find a policy that minimizes the total discounted cost over an infinite
time horizon. The pointwise maximal solution of this system corresponds to the optimal values of
a policy.

The standard policy iteration, value iteration, and simplex algorithms can be all interpreted as
variants of the label-correcting framework.2 Value iteration can be seen as a generalization of the
Bellman–Ford algorithm to the DMDP setting. As our previous example shows, value iteration
may not be finite. One could still consider as the termination criterion the point where value
iteration ‘reveals’ the optimal policy, i.e. updates are only performed using constraints that are
tight in the optimal solution. If each discount factor 𝛾𝑒 is at most 𝛾′ for some 𝛾′ > 0, then it is
well-known that value iteration converges at the rate 1/(1 − 𝛾′). This is in fact true more generally,
for nondeterministic MDPs [LDK95]. However, if the discount factors can be arbitrarily close to 1,
then Feinberg and Huang [FH14] showed that value iteration cannot reveal the optimal policy in
strongly polynomial time even for DMDPs. Post and Ye [PY15] proved that simplex with the most
negative reduced cost pivoting rule is strongly polynomial for DMDPs; this was later improved by
Hansen et al. [HKZ14]. These papers heavily rely on the assumption 𝛾 ≤ 1, and does not seem to
extend to general M2VPI systems.

2The value sequence may violate monotonicity in certain cases of value iteration.
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Madani’s previously mentioned work [Mad02] used a variant of the Newton–Dinkelbach method
as a tool to analyze the convergence of policy iteration on deterministic MDPs, and derived a
weakly polynomial runtime bound.

One of our main results in [DKNV21] is the following.

Theorem 9.1.1 ([DKNV21]). There exists a label-correcting algorithm based on the accelerated Newton–
Dinkelbach methods that solves the feasibility of M2VPI linear systems in 𝑂(𝑚2𝑛2) time.

9.1.3 Submodular functions

The accelerated Newton Method for Line Search in Submodular Base Polytopes Let 𝑉 be a
set with 𝑛-elements and define 2𝑉 ≔ { 𝑆 : 𝑆 ⊆ 𝑉 } to be the set of all subsets of 𝑉 . A function
ℎ : 2𝑉 → R is submodular if

ℎ(𝑆) + ℎ(𝑇) ≥ ℎ(𝑆 ∩ 𝑇) + ℎ(𝑆 ∪ 𝑇) ∀𝑆, 𝑇 ⊆ 𝑉 .

Given a non-negative submodular function ℎ : 2𝑉 → R+ and a vector 𝑎 ∈ R𝑉 satisfying max𝑖∈𝑉 𝑎𝑖 >
0, we examine the problem of computing

𝛿∗ ≔ max
{
𝛿 : min

𝑆⊆𝑉
ℎ(𝑆) − 𝛿𝑎(𝑆) ≥ 0

}
, (9.3)

where 𝑎(𝑆) ≔ ∑
𝑖∈𝑆 𝑎𝑖 . As the input model, we assume access to an evaluation oracle for ℎ, which

allows us to query ℎ(𝑆) for any set 𝑆 ⊆ 𝑉 . The above problem models the line-search problem
inside a submodular polyhedron and has been studied in [GGJ17; Nag07; Top78].

To connect to the root finding problem studied in previous sections, for 𝛿 ∈ R, we define

𝑓 (𝛿) ≔ min
𝑆⊆𝑉

ℎ𝛿(𝑆) ≔ min
𝑆⊆𝑉

ℎ(𝑆) − 𝛿𝑎(𝑆).

Since 𝑓 is the minimum of 2𝑛 affine functions, 𝑓 is a piecewise linear concave function. Noting
that 𝑓 is continuous, problem (9.3) can be equivalently restated as that of computing the largest
root of 𝑓 , i.e., the largest 𝛿∗ ∈ R such that 𝑓 (𝛿∗) = 0. The assumption that ℎ is non-negative
ensures that 𝑓 (0) ≥ 0, and the assumption that max𝑖∈𝑉 𝑎𝑖 > 0 ensures that 𝛿∗ exists and 𝛿∗ ≥ 0
(see the initialization section below). Given the root finding representation, we may apply the
Newton–Dinkelbach method on 𝑓 to compute 𝛿∗. This approach was taken by Goemans, Gupta
and Jaillet [GGJ17], who were motivated to give a more efficient alternative to the parametric search
based algorithm of Nagano [Nag07]. Their main result is as follows:

Theorem 9.1.2 ([GGJ17]). The Newton-Dinkelbach method requires at most 𝑛2 +𝑂(𝑛 log2 𝑛) iterations to
solve (9.3).

We provide in [DKNV21] a simplified potential function based proof of the above theorem using
the accelerated Newton–Dinkelbach method (Algorithm 9.1), where we will give a slightly weaker
2𝑛2 + 2𝑛 + 4 bound on the iteration count. Our analysis uses the same combinatorial ring family
analysis as in [GGJ17], but the Bregman divergence enables considerable simplifications.

Chapter organization In Section 9.2, we present an accelerated Newton’s method for univariate
concave functions, and apply it to linear fractional combinatorial optimization and linear fractional
programming. Section 9.3 contains our general of our results to general LP with dependency on
the circuit imbalances 𝜅.
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9.2 An Accelerated Newton–Dinkelbach Method

Let 𝑓 : R → R be a proper concave function such that 𝑓 (𝛿) ≤ 0 and 𝜕 𝑓 (𝛿) ∩ R<0 ≠ ∅ for some
𝛿 ∈ dom( 𝑓 ). Given a suitable starting point, as well as value and supergradient oracles of 𝑓 , the
Newton–Dinkelbach method either computes the largest root of 𝑓 or declares that it does not have
a root. In this chapter, we make the mild assumption that 𝑓 has a root or attains its maximum.
Consequently, the point

𝛿∗ ≔ max({ 𝛿 : 𝑓 (𝛿) = 0 } ∪ arg max 𝑓 (𝛿))

is well-defined. It is the largest root of 𝑓 if 𝑓 has a root. Otherwise, it is the largest maximizer of 𝑓 .
Therefore, the Newton–Dinkelbach method returns 𝛿∗ if 𝑓 has a root, and certifies that 𝑓 (𝛿∗) < 0
otherwise.

The algorithm takes as input an initial point 𝛿(1) ∈ dom( 𝑓 ) and a supergradient 𝑔(1) ∈ 𝜕 𝑓 (𝛿(1))
such that 𝑓 (𝛿(1)) ≤ 0 and 𝑔(1) < 0. At the start of every iteration 𝑖 ≥ 1, it maintains a point
𝛿(𝑖) ∈ dom( 𝑓 ) and a supergradient 𝑔(𝑖) ∈ 𝜕 𝑓 (𝛿(𝑖)) where 𝑓 (𝛿(𝑖)) ≤ 0. If 𝑓 (𝛿(𝑖)) = 0, then it returns
𝛿(𝑖) as the largest root of 𝑓 . Otherwise, a new point 𝛿 ≔ 𝛿(𝑖) − 𝑓 (𝛿(𝑖))/𝑔(𝑖) is generated. Now, there
are two scenarios in which the algorithm terminates and reports that 𝑓 does not have a root: (1)
𝑓 (𝛿) = −∞; (2) 𝑓 (𝛿) < 0 and 𝑔 ≥ 0 where 𝑔 ∈ 𝜕 𝑓 (𝛿) is the supergradient given by the oracle. If
both scenarios do not apply, the next point and supergradient is set to 𝛿(𝑖+1) ≔ 𝛿 and 𝑔(𝑖+1) ≔ 𝑔

respectively. Then, a new iteration begins.
According to this update rule, observe that 𝑔(𝑖) < 0 except possibly in the final iteration when

𝑓 (𝛿(𝑖)) = 0. This proves the correctness of the algorithm. Indeed, 𝛿(𝑖) = 𝛿∗ if 𝑓 (𝛿(𝑖)) = 0. On the
other hand, if either of the aforementioned scenarios apply, then combining it with 𝑓 (𝛿(𝑖)) < 0 and
𝑔(𝑖) < 0 certifies that 𝑓 (𝛿∗) < 0.

The following lemma shows that 𝛿(𝑖) is monotonically decreasing while 𝑓 (𝛿(𝑖)) is monotonically
increasing. Furthermore, 𝑔(𝑖) is monotonically increasing except in the final iteration where it may
remain unchanged. The lemma also illustrates the useful property that | 𝑓 (𝛿(𝑖))| or |𝑔(𝑖) | decreases
geometrically. These are well-known facts and similar statements can be found in e.g. Radzik
[Rad98, Lemmas 3.1 & 3.2].

Lemma 9.2.1. For every iteration 𝑖 ≥ 2, we have 𝛿∗ ≤ 𝛿(𝑖) < 𝛿(𝑖−1), 𝑓 (𝛿∗) ≥ 𝑓 (𝛿(𝑖)) > 𝑓 (𝛿(𝑖−1)) and 𝑔(𝑖) ≥
𝑔(𝑖−1), where the last inequality holds at equality if and only if 𝑔(𝑖) = inf𝑔∈𝜕 𝑓 (𝛿(𝑖)) 𝑔, 𝑔(𝑖−1) = sup𝑔∈𝜕 𝑓 (𝛿(𝑖−1)) 𝑔

and 𝑓 (𝛿(𝑖)) = 0. Moreover,
𝑓 (𝛿(𝑖))
𝑓 (𝛿(𝑖−1))

+ 𝑔(𝑖)

𝑔(𝑖−1) ≤ 1 .

Proof. Since 𝑓 (𝛿(𝑖)) ≤ 0 and 𝑔(𝑖) < 0, by concavity of 𝑓 we have that 𝑓 (𝛿) ≤ 𝑓 (𝛿(𝑖)) + 𝑔(𝑖)(𝛿 − 𝛿(𝑖)) <
𝑓 (𝛿(𝑖)) ≤ 0, for all 𝛿 > 𝛿(𝑖). Given this, we must have 𝛿∗ ≤ 𝛿(𝑖) since either 𝑓 (𝛿∗) = 0 ≥ 𝑓 (𝛿(𝑖)) or
0 > 𝑓 (𝛿∗) = max𝑧∈R 𝑓 (𝑧) ≥ 𝑓 (𝛿(𝑖)). As 𝛿(𝑖) = 𝛿(𝑖−1) − 𝑓 (𝛿(𝑖−1))

𝑔(𝑖−1) < 𝛿(𝑖−1), since 𝑓 (𝛿(𝑖−1)), 𝑔(𝑖−1) < 0, we
have 𝑓 (𝛿(𝑖−1)) < 𝑓 (𝛿(𝑖)). Furthermore, 𝑔(𝑖) ≥ 𝑔(𝑖−1) is immediate from the concavity of 𝑓 .

To understand when 𝑔(𝑖) = 𝑔(𝑖−1), we see by concavity that

𝑔(𝑖) ≥ inf
𝑔∈𝜕 𝑓 (𝛿(𝑖))

𝑔 ≥ 𝑓 (𝛿(𝑖−1)) − 𝑓 (𝛿(𝑖))
𝛿(𝑖−1) − 𝛿(𝑖)

≥ sup
𝑔∈𝜕 𝑓 (𝛿(𝑖−1))

𝑔 ≥ 𝑔(𝑖−1).
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To have equality throughout, we must therefore have that 𝑔(𝑖) and 𝑔(𝑖−1) are equal to the respective
infimum and supremum. We must also have 𝑓 (𝛿(𝑖)) = 0 since

𝑓 (𝛿(𝑖−1)) − 𝑓 (𝛿(𝑖))
𝛿(𝑖−1) − 𝛿(𝑖)

=
𝑓 (𝛿(𝑖−1)) − 𝑓 (𝛿(𝑖))

𝑓 (𝛿(𝑖−1))
𝑔(𝑖−1)

= 𝑔(𝑖−1)
(
1 − 𝑓 (𝛿(𝑖))

𝑓 (𝛿(𝑖−1))

)
To have equality throughout, we must therefore have that 𝑔(𝑖) and 𝑔(𝑖−1) are equal to the respective
infimum and supremum and that 𝑓 (𝛿(𝑖)) = 0.

Lastly, since 𝑓 is concave

𝑓 (𝛿(𝑖−1)) ≤ 𝑓 (𝛿(𝑖)) + 𝑔(𝑖)(𝛿(𝑖−1) − 𝛿(𝑖)) = 𝑓 (𝛿(𝑖)) + 𝑔(𝑖)
𝑓 (𝛿(𝑖−1))
𝑔(𝑖−1) .

The moreover now follows by dividing both sides by 𝑓 (𝛿(𝑖−1)) < 0. □

Our analysis of the Newton–Dinkelbach method utilizes the Bregman divergence associated
with 𝑓 as a potential. Even though the original definition requires 𝑓 to be differentiable and strictly
concave, it can be naturally extended to our setting in the following way.

Definition 9.2.2. Given a proper concave function 𝑓 : R→ R, the Bregman divergence associated with
𝑓 is defined as

𝐷 𝑓 (𝛿′, 𝛿) ≔


𝑓 (𝛿) + sup

𝑔∈𝜕 𝑓 (𝛿)
𝑔(𝛿′ − 𝛿) − 𝑓 (𝛿′) if 𝛿 ≠ 𝛿′,

0 otherwise.
(9.4)

for all 𝛿, 𝛿′ ∈ dom( 𝑓 ) such that 𝜕 𝑓 (𝛿) ≠ ∅.

Since 𝑓 is concave, the Bregman divergence is nonnegative. The next lemma shows that
𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)) is monotonically decreasing except in the final iteration where it may remain unchanged.
The proof is given in Appendix A.

Lemma 9.2.3. For every iteration 𝑖 ≥ 2, we have 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)) ≤ 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖−1)) which holds at equality if
and only if 𝑔(𝑖−1) = inf𝑔∈𝜕 𝑓 (𝛿(𝑖−1)) 𝑔 and 𝑓 (𝛿(𝑖)) = 0.

Proof. By Lemma 9.2.1, we know that 𝛿∗ ≤ 𝛿(𝑖) < 𝛿(𝑖−1) and 0 ≥ 𝑓 (𝛿(𝑖)) > 𝑓 (𝛿(𝑖−1)). Hence,

𝐷 𝑓 (𝛿∗ , 𝛿(𝑖−1)) = 𝑓 (𝛿(𝑖−1)) + sup
𝑔∈𝜕 𝑓 (𝛿(𝑖−1))

𝑔(𝛿∗ − 𝛿(𝑖−1)) − 𝑓 (𝛿∗)

≥ 𝑓 (𝛿(𝑖−1)) + 𝑔(𝑖−1)(𝛿(𝑖) − 𝛿(𝑖−1)) + 𝑔(𝑖−1)(𝛿∗ − 𝛿(𝑖)) − 𝑓 (𝛿∗)
= 0 + 𝑔(𝑖−1)(𝛿∗ − 𝛿(𝑖)) − 𝑓 (𝛿∗)
≥ 𝑓 (𝛿(𝑖)) + 𝑔(𝑖−1)(𝛿∗ − 𝛿(𝑖)) − 𝑓 (𝛿∗) (by concavity of 𝑓 )

≥ 𝑓 (𝛿(𝑖)) + sup
𝑔∈𝜕 𝑓 (𝛿(𝑖))

𝑔(𝛿∗ − 𝛿(𝑖)) − 𝑓 (𝛿∗)

= 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)).

For the equality condition, note that the first two inequalities hold at equality precisely when
𝑔(𝑖−1) = inf𝑔∈𝜕 𝑓 (𝛿(𝑖−1)) 𝑔 and 𝑓 (𝛿(𝑖)) = 0. If 𝑓 (𝛿(𝑖)) = 0, then 𝛿(𝑖) = 𝛿∗, and hence the third inequality
holds at equality as well. □

To accelerate this classical method, we perform an aggressive guess 𝛿′ ≔ 2𝛿 − 𝛿(𝑖) < 𝛿 on the
next point at the end of every iteration 𝑖. We call this procedure look-ahead, which is implemented
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on Lines 7–10 of Algorithm 9.1. Let 𝑔′ ∈ 𝜕 𝑓 (𝛿′) be the supergradient returned by the oracle. If
−∞ < 𝑓 (𝛿′) < 0 and 𝑔′ < 0, then the next point and supergradient are set to 𝛿(𝑖+1) ≔ 𝛿′ and
𝑔(𝑖+1) ≔ 𝑔′ respectively as 𝛿′ ≥ 𝛿∗. In this case, we say that look-ahead is successful in iteration
𝑖. Otherwise, we proceed as usual by taking 𝛿(𝑖+1) ≔ 𝛿 and 𝑔(𝑖+1) ≔ 𝑔. It is easy to verify that
Lemmas 9.2.1 and 9.2.3 also hold for Algorithm 9.1.

Algorithm 9.1: Look-ahead Newton
Input :Value and supergradient oracles for a proper concave function 𝑓 , an initial point

𝛿(1) ∈ dom( 𝑓 ) and supergradient 𝑔(1) ∈ 𝜕 𝑓 (𝛿(1))where 𝑓 (𝛿(1)) ≤ 0 and 𝑔(1) < 0.
Output :The largest root of 𝑓 if it exists; report NO ROOT otherwise.

1 𝑖 ← 1
2 while 𝑓 (𝛿(𝑖)) < 0 do
3 𝛿← 𝛿(𝑖) − 𝑓 (𝛿(𝑖))/𝑔(𝑖)
4 𝑔 ∈ 𝜕 𝑓 (𝛿) /* Empty if 𝑓 (𝛿) = −∞ */
5 if 𝑓 (𝛿) = −∞ or ( 𝑓 (𝛿) < 0 and 𝑔 ≥ 0) then
6 return NO ROOT

7 𝛿′← 2𝛿 − 𝛿(𝑖) /* Look-ahead guess */
8 𝑔′ ∈ 𝜕 𝑓 (𝛿′) /* Empty if 𝑓 (𝛿′) = −∞ */
9 if −∞ < 𝑓 (𝛿′) < 0 and 𝑔′ < 0 then /* Is the guess successful? */

10 𝛿← 𝛿′, 𝑔 ← 𝑔′

11 𝛿(𝑖+1) ← 𝛿, 𝑔(𝑖+1) ← 𝑔

12 𝑖 ← 𝑖 + 1

13 return 𝛿(𝑖)

If look-ahead is successful, then we have made significant progress. Otherwise, by our choice of
𝛿′, we learn that we are not too far away from 𝛿∗. The next lemma demonstrates the advantage of
using the look-ahead Newton–Dinkelbach method. It exploits the proximity to 𝛿∗ to produce a
geometric decay in the Bregman divergence of 𝛿(𝑖) and 𝛿∗.

Lemma 9.2.4. For every iteration 𝑖 > 2 in Algorithm 9.1, we have 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)) < 1
2𝐷 𝑓 (𝛿∗ , 𝛿(𝑖−2)).

Proof. Fix an iteration 𝑖 > 2 of Algorithm 9.1. Let 𝑔(𝑖)+ = min𝑔∈𝜕 𝑓 (𝛿(𝑖)) 𝑔 denote the right derivative
of 𝑓 at 𝛿(𝑖). From Lemma 9.2.1, we know that 𝛿∗ ≤ 𝛿(𝑖) < 𝛿(𝑖−1) < 𝛿(𝑖−2), 0 ≥ 𝑓 (𝛿∗) ≥ 𝑓 (𝛿(𝑖)) >
𝑓 (𝛿(𝑖−1)) > 𝑓 (𝛿(𝑖−2)) and 0 > 𝑔

(𝑖)
+ ≥ 𝑔(𝑖−1) > 𝑔(𝑖−2). Since 𝛿∗ ≤ 𝛿(𝑖), we see that 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)) =

𝑓 (𝛿(𝑖)) + 𝑔(𝑖)+ (𝛿∗ − 𝛿(𝑖)) − 𝑓 (𝛿∗).
Assume first that the look-ahead step in iteration 𝑖 − 1 was successful. We now claim that

0 < −2𝑔(𝑖)+ ≤ −𝑔(𝑖−1). To see this, we have that

𝑓 (𝛿(𝑖−1)) ≤ 𝑓 (𝛿(𝑖)) + 𝑔(𝑖)+ (𝛿(𝑖−1) − 𝛿(𝑖)) (by concavity of 𝑓 )

≤ 𝑔(𝑖)+ (𝛿(𝑖−1) − 𝛿(𝑖)) (as 𝑓 (𝛿(𝑖)) ≤ 0)

= 2𝑔(𝑖)+
𝑓 (𝛿(𝑖−1))
𝑔(𝑖−1) (by definition of the accelerated step)

The desired inequality follows by multiplying through by − 𝑔(𝑖−1)

𝑓 (𝛿(𝑖−1)) < 0.
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Using the above inequality, we compare Bregman divergences as follows:

𝐷 𝑓 (𝛿∗ , 𝛿(𝑖−1)) ≥ 𝑓 (𝛿(𝑖−1)) + 𝑔(𝑖−1)(𝛿∗ − 𝛿(𝑖−1)) − 𝑓 (𝛿∗) (𝐷 𝑓 is a maximum over supergradients)

> 𝑔(𝑖−1)(𝛿∗ − 𝛿(𝑖)) − 𝑓 (𝛿∗) ( 𝑓 (𝛿(𝑖−1)) + 𝑔(𝑖−1)(𝛿(𝑖) − 𝛿(𝑖−1)) = − 𝑓 (𝛿(𝑖−1)) > 0)

≥ 𝑔(𝑖−1)(𝛿∗ − 𝛿(𝑖)) (− 𝑓 (𝛿∗) ≥ 0)

≥ 2𝑔(𝑖)+ (𝛿∗ − 𝛿(𝑖)) (−𝑔(𝑖−1) ≥ −2𝑔(𝑖)+ and 𝛿(𝑖) > 𝛿∗)

≥ 2( 𝑓 (𝛿(𝑖)) + 𝑔(𝑖)+ (𝛿∗ − 𝛿(𝑖)) − 𝑓 (𝛿∗)) ( 𝑓 (𝛿∗) ≥ 𝑓 (𝛿(𝑖)))

= 2𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)). (by choice of 𝑔(𝑖)+ )

The desired inequality now follows from 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖−2)) > 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖−1)) by Lemma 9.2.3.
Now assume that the look-ahead step at iteration 𝑖 − 1 was unsuccessful. This implies that

2𝛿(𝑖) − 𝛿(𝑖−1) ≤ 𝛿∗ ⇔ 2(𝛿(𝑖) − 𝛿∗) ≤ 𝛿(𝑖−1) − 𝛿∗, i.e. that the look-ahead step “went past or exactly to”
𝛿∗. We compare Bregman-divergences as follows:

𝐷 𝑓 (𝛿∗ , 𝛿(𝑖−2)) ≥ 𝑓 (𝛿(𝑖−2)) + 𝑔(𝑖−2)(𝛿∗ − 𝛿(𝑖−2)) − 𝑓 (𝛿∗) (𝐷 𝑓 is a maximum over supergradients)

≥ 𝑔(𝑖−2)(𝛿∗ − 𝛿(𝑖−1)) − 𝑓 (𝛿∗) ( 𝑓 (𝛿(𝑖−2)) + 𝑔(𝑖−2)(𝛿(𝑖−1) − 𝛿(𝑖−2)) ≥ 0)

≥ 𝑔(𝑖−2)(𝛿∗ − 𝛿(𝑖−1)) (− 𝑓 (𝛿∗) ≥ 0)

> 𝑔
(𝑖)
+ (𝛿∗ − 𝛿(𝑖−1)) (0 > 𝑔

(𝑖)
+ > 𝑔(𝑖−2) and 𝛿(𝑖−1) > 𝛿∗)

≥ 2𝑔(𝑖)+ (𝛿∗ − 𝛿(𝑖)) (0 > 𝑔
(𝑖)
+ and 𝛿(𝑖−1) − 𝛿∗ ≥ 2(𝛿(𝑖) − 𝛿∗))

≥ 2( 𝑓 (𝛿(𝑖)) + 𝑔(𝑖)+ (𝛿∗ − 𝛿(𝑖)) − 𝑓 (𝛿∗)) (as 𝑓 (𝛿∗) ≥ 𝑓 (𝛿(𝑖)))

= 2𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)). (by choice of 𝑔(𝑖)+ )

This concludes the proof. □

In the remaining of this section, we apply the accelerated Newton–Dinkelbach method to linear
fractional combinatorial optimization and linear fractional programming. The application to
parametric submodular function minimization can be found in full detail in [DKNV21].

9.2.1 Linear Fractional Combinatorial Optimization

The problem (9.1) with𝒟 ⊆ {0, 1}𝑚 is known as linear fractional combinatorial optimization. Radzik
[Rad92] showed that the Newton–Dinkelbach method applied to the function 𝑓 (𝛿) as in (9.2)
terminates in a strongly polynomial number of iterations. Recall that 𝑓 (𝛿) = min𝑥∈𝒟 ⟨𝑐 − 𝛿𝑑, 𝑥⟩.
By the assumption ⟨𝑑, 𝑥⟩ > 0 for all 𝑥 ∈ 𝒟, this function is concave, strictly decreasing, finite
and piecewise-linear. Hence, it has a unique root. Moreover, 𝑓 (𝛿) < 0 and 𝜕 𝑓 (𝛿) ∩ R<0 ≠ ∅ for
sufficiently large 𝛿. To implement the value and supergradient oracles, we assume that a linear
optimization oracle over𝒟 is available, i.e. it returns an element in arg min𝑥∈𝒟(𝑐 − 𝛿𝑑)⊤𝑥 for any
𝛿 ∈ R.

Our result for the accelerated variant improves the state-of-the-art bound 𝑂(𝑚2 log𝑚) by Wang
et al. [WYZ06] on the standard Newton–Dinkelbach method. We will need the following lemma,
given by Radzik and credited to Goemans in [Rad98]. It gives a strongly polynomial bound on the
length of a geometrically decreasing sequence of sums.

Lemma 9.2.5 ([Rad98]). Let 𝑐 ∈ R𝑚+ and 𝑥(1) , 𝑥(2) , . . . , 𝑥(𝑘) ∈ {−1, 0, 1}𝑚 . If 0 < 𝑐⊤𝑥(𝑖+1) ≤ 1
2 𝑐
⊤𝑥(𝑖) for

all 𝑖 < 𝑘, then 𝑘 = 𝑂(𝑚 log𝑚).
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Theorem 9.2.6. Algorithm 9.1 converges in 𝑂(𝑚 log𝑚) iterations for linear fractional combinatorial
optimization problems.

Proof. Observe that Algorithm 9.1 terminates in a finite number of iterations because 𝑓 is piecewise
linear. Let 𝛿(1) > 𝛿(2) > · · · > 𝛿(𝑘) = 𝛿∗ denote the sequence of iterates at the start of Algorithm
9.1. Since 𝑓 is concave, we have 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)) ≥ 0 for all 𝑖 ∈ [𝑘]. For each 𝑖 ∈ [𝑘], pick 𝑥(𝑖) ∈
arg min𝑥∈𝒟(𝑐 − 𝛿(𝑖)𝑑)⊤𝑥 which maximizes 𝑑⊤𝑥. This is well-defined because 𝑓 is finite. Note that
−𝑑⊤𝑥(𝑖) = min 𝜕 𝑓 (𝛿(𝑖)). As 𝑓 (𝛿∗) = 0, the Bregman divergence of 𝛿(𝑖) and 𝛿∗ can be written as

𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)) = 𝑓 (𝛿(𝑖)) + max
𝑔∈𝜕 𝑓 (𝛿(𝑖))

𝑔(𝛿∗ − 𝛿(𝑖)) = (𝑐 − 𝛿(𝑖)𝑑)⊤𝑥(𝑖) − 𝑑⊤𝑥(𝑖)(𝛿∗ − 𝛿(𝑖)) = (𝑐 − 𝛿∗𝑑)⊤𝑥(𝑖) .

According to Lemma 9.2.4, (𝑐 − 𝛿∗𝑑)⊤𝑥(𝑖) = 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)) < 1
2𝐷 𝑓 (𝛿∗ , 𝛿(𝑖−2)) = 1

2 (𝑐 − 𝛿∗𝑑)⊤𝑥(𝑖−2) for all
3 ≤ 𝑖 ≤ 𝑘. By Lemma 9.2.3, we also know that 𝐷 𝑓 (𝛿∗ , 𝛿(𝑖)) > 0 for all 1 ≤ 𝑖 ≤ 𝑘 − 2. Thus, applying
Lemma 9.2.5 yields 𝑘 = 𝑂(𝑚 log𝑚). □

9.2.2 Linear Fractional Programming

We next consider linear fractional programming, an extension of (9.1) with the assumption that the
domain𝒟 ⊆ R𝑚 is a polyhedron, but removing the condition ⟨𝑑, 𝑥⟩ > 0 for 𝑥 ∈ 𝒟. For 𝑐, 𝑑 ∈ R𝑚 ,
the problem is

inf ⟨𝑐, 𝑥⟩⟨𝑑, 𝑥⟩ s.t. ⟨𝑑, 𝑥⟩ > 0, 𝑥 ∈ 𝒟 . (F)

For the problem to be meaningful, we assume that𝒟 ∩ {𝑥 : 𝑑⊤𝑥 > 0} ≠ ∅. The common form in
the literature assumes ⟨𝑑, 𝑥⟩ > 0 for all 𝑥 ∈ 𝒟 as in (9.1); we consider the more general setup for
the purpose of solving M2VPI systems in the full version [DKNV21]. It is easy to see that any linear
fractional combinatorial optimization problem on a domain 𝒳 ⊆ {0, 1}𝑚 can be cast as a linear
fractional program with the polytope 𝒟 = conv(𝒳) because 𝑐⊤ �̄�/𝑑⊤ �̄� ≥ min𝑥∈𝒳 𝑐⊤𝑥/𝑑⊤𝑥 for all
�̄� ∈ 𝒟. The next theorem characterizes when (F) is unbounded.

Theorem 9.2.7. If𝒟 ∩ { 𝑥 : 𝑑⊤𝑥 > 0 } ≠ ∅, then the optimal value of (F) is −∞ if and only if at least one
of the following two conditions hold:

1. There exists 𝑥 ∈ 𝒟 such that 𝑐⊤𝑥 < 0 and 𝑑⊤𝑥 = 0;

2. There exists 𝑟 ∈ R𝑚 such that 𝑐⊤𝑟 < 0, 𝑑⊤𝑟 = 0 and 𝑥 + 𝜆𝑟 ∈ 𝒟 for all 𝑥 ∈ 𝒟 ,𝜆 ≥ 0.

Proof. By the Minkowski-Weyl Theorem, the polyhedron �̄� ≔ 𝒟 ∩ { 𝑥 : 𝑑⊤𝑥 ≥ 0 } can be written
as

�̄� =


𝑘∑
𝑖=1

𝜆𝑖 𝑔𝑖 +
ℓ∑
𝑗=1

𝜈𝑗ℎ 𝑗 : 𝜆 ≥ 0, 𝜈 ≥ 0, ∥𝜆∥1 = 1


for some vectors 𝑔1 , . . . , 𝑔𝑘 and ℎ1 , . . . , ℎℓ . Note that 𝑑⊤𝑔𝑖 ≥ 0 for all 𝑖 ∈ [𝑘] and 𝑑⊤ℎ 𝑗 ≥ 0 for all
𝑗 ∈ [ℓ ]. Let 𝑥◦ ∈ 𝒟 ∩ {𝑥 : 𝑑⊤𝑥 > 0}. If there exists 𝑖 ∈ [𝑘] such that 𝑐⊤𝑔𝑖 < 0 and 𝑑⊤𝑔𝑖 = 0 or 𝑗 ∈ [ℓ ]
such that 𝑐⊤ℎ 𝑗 < 0 and 𝑑⊤ℎ 𝑗 = 0, then,

lim
𝜆↗1

𝑐⊤(𝜆𝑔𝑖 + (1 − 𝜆)𝑥◦)
𝑑⊤(𝜆𝑔𝑖 + (1 − 𝜆)𝑥◦)

= −∞ or lim
𝜆→∞

𝑐⊤(𝑥◦ + 𝜆ℎ 𝑗)
𝑑⊤(𝑥◦ + 𝜆ℎ 𝑗)

= −∞

as in Condition 1 or Condition 2.
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9 FRACTIONAL LINEAR PROGRAMMING 9.3 Fractional LP with circuit imbalances

Otherwise, the fractional value of any element in𝒟 ∩ {𝑥 : 𝑑⊤𝑥 > 0} can be lower bounded by

𝑐⊤(∑𝑘
𝑖=1 𝜆𝑖 𝑔𝑖 +

∑ℓ
𝑗=1 𝜈𝑗ℎ 𝑗)

𝑑⊤(∑𝑘
𝑖=1 𝜆𝑖 𝑔𝑖 +

∑ℓ
𝑗=1 𝜈𝑗ℎ 𝑗)

≥
∑
𝑖∈[𝑘],𝑑⊤𝑔𝑖>0 𝜆𝑖𝑐

⊤𝑔𝑖 +
∑
𝑗∈[ℓ ],𝑑⊤ℎ 𝑗>0 𝜈𝑗𝑐

⊤ℎ 𝑗∑
𝑖∈[𝑘],𝑑⊤𝑔𝑖>0 𝜆𝑖𝑑⊤𝑔𝑖 +

∑
𝑗∈[ℓ ],𝑑⊤ℎ 𝑗>0 𝜈𝑗𝑑⊤ℎ 𝑗

≥ min
{

min
𝑖∈[𝑘],𝑑⊤𝑔𝑖>0

𝑐⊤𝑔𝑖
𝑑⊤𝑔𝑖

, min
𝑗∈[ℓ ],𝑑⊤ℎ 𝑗>0

𝑐⊤ℎ 𝑗
𝑑⊤ℎ 𝑗

}
,

where the last expression is finite by the assumption that𝒟 ∩ { 𝑥 : 𝑑⊤𝑥 > 0 } is non-empty. □

Example 9.2.8. Unlike in linear programming, the optimal value may not be attained even if it is finite.
Consider the instance given by inf(−𝑥1 + 𝑥2)/(𝑥1 + 𝑥2) subject to 𝑥1 + 𝑥2 > 0 and −𝑥1 + 𝑥2 = 1. The
numerator is equal to 1 for any feasible solution, while the denominator can be made arbitrarily large. Hence,
the optimal value of this program is 0, which is not attained in the feasible region.

We use the Newton–Dinkelbach method for 𝑓 as in (9.2), that is, 𝑓 (𝛿) = inf𝑥∈𝒟(𝑐 − 𝛿𝑑)⊤𝑥. Since
𝒟 ≠ ∅, 𝑓 (𝛿) < ∞ for all 𝛿 ∈ R. By the Minkowski–Weyl theorem, there exist finitely many points
𝑃 ⊆ 𝒟 such that 𝑓 (𝛿) = min𝑥∈𝑃(𝑐 − 𝛿𝑑)⊤𝑥 for all 𝛿 ∈ dom( 𝑓 ). Hence, 𝑓 is concave and piecewise
linear. Observe that 𝑓 (𝛿) > −∞ if and only if every ray 𝑟 in the recession cone of 𝒟 satisfies
(𝑐 − 𝛿𝑑)⊤𝑟 ≥ 0. For 𝑓 to be proper, we need to assume that Condition 2 in Theorem 9.2.7 does not
hold. Moreover, we require the existence of a point 𝛿′ ∈ dom( 𝑓 ) such that 𝑓 (𝛿′) = (𝑐 − 𝛿′𝑑)⊤𝑥′ ≤ 0
for some 𝑥′ ∈ 𝒟 with 𝑑⊤𝑥′ > 0. It follows that 𝑓 has a root or attains its maximum because dom( 𝑓 )
is closed. We are ready to characterize the optimal value of (F) using 𝑓 .

Lemma 9.2.9. Assume that there exists 𝛿′ ∈ dom( 𝑓 ) such that 𝑓 (𝛿′) = (𝑐 − 𝛿′𝑑)⊤𝑥′ ≤ 0 for some 𝑥′ ∈ 𝒟
with 𝑑⊤𝑥′ > 0. If 𝑓 has a root, then the optimal value of (F) is equal to the largest root and is attained.
Otherwise, the optimal value is −∞.

Proof. Recall the definition of 𝛿∗ = max({𝛿 : 𝑓 (𝛿) = 0} ∪ arg max 𝑓 (𝛿)). By our assumption on 𝑓 ,
there exists 𝑥∗ ∈ 𝒟 such that 𝑓 (𝛿∗) = (𝑐 − 𝛿∗𝑑)⊤𝑥∗ and 𝑑⊤𝑥∗ > 0. If 𝑓 has a root, then 𝑓 (𝛿∗) = 0.
This implies that 𝑐⊤𝑥/𝑑⊤𝑥 ≥ 𝛿∗ = 𝑐⊤𝑥∗/𝑑⊤𝑥∗ for all 𝑥 ∈ 𝒟 with 𝑑⊤𝑥 > 0 as desired. Next, assume
that 𝑓 does not have a root. Then 𝑓 (𝛿∗) < 0 and 0 ∈ 𝜕 𝑓 (𝛿∗). By convexity, there exists �̄� ∈ 𝒟
such that (𝑐 − 𝛿∗𝑑)⊤ �̄� = 𝑓 (𝛿∗) < 0 and 𝑑⊤ �̄� = 0. Then 𝑐⊤ �̄� < 0, so �̄� is a point as in Condition 1 of
Theorem 9.2.7.

□

9.3 Fractional LP with circuit imbalances

In this section we consider the fractional analogue of LP
Recall from (9.2) that solving the problem Fractional LP is equivalent to finding the unique

𝜆∗ ∈ R such that the optimal solution to

min
𝑥

⟨𝑐, 𝑥⟩ − 𝜆∗⟨𝑞, 𝑥⟩

s.t. A𝑥 = 𝑏,

𝑥 ≥ 0

(9.5)

has objective value 0. Solving (9.5) for a fixed value 𝜆 is equivalent to solving LP(A, 𝑏, 𝑐 − 𝜆∗𝑞), a
problem whose solutions we studied extensively in Chapters 4 and 7.

We now sketch how can be solved within 𝑂(𝑛 log𝜅) calls to any exact linear system solver. For
simplicity let us assume boundedness, the argument will easily extend to unbounded instances.
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We further assume that 𝑐 ∈ 𝑊 and 𝑞 ∈ 𝑊 . Note that otherwise the problem is invariant under
replacing 𝑐 with Π𝑊 (𝑐) and 𝑞 with Π𝑊 (𝑞). For an angle 𝛼 ∈ [−𝜋,𝜋] we associate the value 𝜆 such
that 𝛼 = ∢(𝑐, 𝑐 − 𝜆𝑞). In abuse of notation we let ∢ range from −𝜋/2 to 𝜋/2, which is well-defined
as we operate in the 2-dimensional space spanned by 𝑐 and 𝑞. Within �̃�(log𝜅A) iteration binary
search we are able to find angles 𝛼− and 𝛼+ such that 𝛼+ ≥ 𝛼−, 𝛼+ − 𝛼− = poly(𝑛)−Θ(1)𝜅−Θ(1)A and
the corresponding values 𝜆− and 𝜆+ sandwich 𝜆∗, i.e., 𝜆− ≤ 𝜆∗ ≤ 𝜆+.

With the objectives

𝑐− ≔
𝑐 − 𝜆−𝑞
∥𝑐 − 𝜆−𝑞∥ , and 𝑐+ ≔

𝑐 − 𝜆+𝑞
∥𝑐 − 𝜆+𝑞∥ (9.6)

and noting that ∢(𝑐− , 𝑐+) = poly(𝑛)−Θ(1)𝜅−Θ(1)A and so in particular ∢(𝑐− , 𝑐∗) = poly(𝑛)−Θ(1)𝜅−Θ(1)A
and ∢(𝑐∗ , 𝑐+) = poly(𝑛)−Θ(1)𝜅−Θ(1)A , where 𝑐∗ = 𝑐 − 𝜆∗𝑞. Note further that 𝑐− , 𝑐∗ , 𝑐+ ∈ 𝑊 by the
assumption that 𝑐, 𝑞 ∈ 𝑊 and hence cos(∢(𝑐− ,𝑊)) = cos(∢(𝑐+ ,𝑊)) = cos(∢(𝑐,𝑊)) = 1. We can
apply Theorem 3.5.9 to obtain a primal-dual optimal solution (�̃� , 𝑠) to LP(A, 𝑏, 𝑐+). By the statement
of the theorem we have that for the set

𝑅 ≔

{
𝑖 ∈ [𝑛] : 𝑠𝑖

∥𝑠∥ >
𝑛(𝜅𝑊 + 1)∢(𝑐, 𝑐)

cos(∢(𝑐,𝑊))

}
=

{
𝑖 ∈ [𝑛] : 𝑠𝑖

∥𝑠∥ > 𝑛(𝜅𝑊 + 1)∢(𝑐, 𝑐))
}

⊇
{
𝑖 ∈ [𝑛] : 𝑠𝑖

∥𝑠∥ > 𝑛(𝜅𝑊 + 1)poly(𝑛)−Θ(1)𝜅−Θ(1)A

}
,

the variables 𝑥∗
𝑅
= 0 in any optimal solution 𝑥∗ to LP(A, 𝑏, 𝑐∗). 𝑅 is non-empty if the constants in

the exponents are chosen appropriately and so the primal variables in 𝑅 can be deleted and one
recurses on the variable set [𝑛] \ 𝑅. This, together with the blackbox LP solvers gives following
result:

Theorem 9.3.1. LP(A, 𝑏, 𝑐, 𝑞) can be solved in 𝑂(𝑛2𝑚Ψ(A) log2 𝜅A) time.
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CP Central Path
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max-circuit imbalance measure, 21, 22
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max-norm, 17

neighborhood, 181

orthogonal projection, 18

pairwise imbalance, 27
parametric search, 223, 225
pivot rule, 12
polarized, 115, 145
polarizing partition, 120, 121, 125–127, 129,

145
polynomial Hirsch conjecture, 13, 37
proximity, 15, 151
pseudo-inverse, 17
PSPACE, 11

quasipolynomial, 13

rank, 17
rational linear space, 18, 21, 45
real model of computation, 11, 102

residual, 65

scaling invariant, 14, 55, 149
separable, 19, 30, 61
sign-consistent, 183, 184, 186
simplex method, 12
standard form, 10
steepest descent, 200, 204
strongly polynomial, 11, 200, 224
submodularity, 227
subpath monotonicity, 225
subspace form, 10
supergradient, 18, 228, 230, 231

total curvature, 14, 140, 141, 145, 149
treewidth, 161, 165, 179, 180, 193, 194
trivial subspace, 18
trust region, 58, 102

variable fixing, 225
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